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1 Introduction

There is strong empirical evidence suggesting that the aggregate economy

is characterized by periodic shifts between distinct regimes of the business

cycle (e.g. Hamilton 1989, Filardo 1994 and Diebold and Rudebusch 1996).

A number of papers have also successfully used Markov regime-switching

models to fit the dynamics of the short-term interest rate (see, among

others, Hamilton 1988, Garcia and Perron 1996, Gary 1996 and Ang and

Bakeart 1998).1 These results have motivated the recent studies of the

impact of regime shifts on the entire yield curve using dynamic term struc-

ture models. A common approach, as in Naik and Lee (1997), Boudoukh

et al.(1999), Evans (2001) and Bansal and Zhou (2002), is to incorporate

Markov-switching into the stochastic processes of the pricing kernel and/or

state variables.2 The regime-dependence introduced by these studies im-

plies richer dynamic behavior of the market prices of risk and therefore

offers greater econometric flexibility for the term structure models to si-

multaneously account for the time series and cross-sectional properties of

interest rates. However, as pointed out by Dai and Singleton (2003), the

risk of regime shifts is not priced in these models, hence does not contribute

independently to bond risk premiums.

The main objective of current paper is to extend this strand of literature

by developing and estimating a fully fledged dynamic term structure model

under the systematic risk of regime shifts in a general equilibrium setting

similar to that in Cox, Ingersoll and Ross (1985a, 1985b). We show that

the regime-switching risk can be priced in a similar way as in the case of

jump risk (e.g. Ahn and Thompson, 1988). Our model implies that bond

risk premiums include two components under regime shifts in general. One

1The expectation theory is usually invoked to relate long-term interest rates to the
short rate in this literature, such as in Ang and Bakeart (1998).

2Other studies of the term structure of interest rates under hidden Markov chains
include Bielecki and Rutkowski (2001), Elliott and Mamon (2001) among others.
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is a regime-dependent risk premium due to diffusion risk as in the previous

studies. This risk premium has added econometric flexibilities relative to

those in single-regime models because of the Markov-shift of the underlying

parameters. The other is a regime-switching risk premium that depends on

the difference of bond prices across regimes as well as the Markov transition

probabilities. Therefore the model introduces a new source of time-variation

in bond risk premiums. This additional component of the term premiums

is associated with the systematic risk of periodic shifts in bond prices due

to regime changes. Given the empirical evidence from the previous studies

that the yield curve exhibits significantly different properties across regimes,

the model implies that the regime-switching risk is likely to be an important

factor that affects bond returns.

To get a quantitative measure of the impact of the regime-switching risk

on the yield curve, we obtain a closed-form solution of the term structure

of interest rates for an affine-type model using the log-linear approximation

similar to that in Bansal and Zhou (2002). The model is estimated by the

Efficient Method of Moments (EMM) developed in Bansal et al. (1995)

and Gallant and Tauchen (1996, 2001). We use the monthly data on 6-

month treasury bill and 5-year treasury bond from 1964 to 2000 in the

estimation. We find that the market price of the regime-switching risk is

not only statistically significant, but also economically important. Empirical

results suggest that the risk of regime shifts account for a significant portion

of the term premiums, particularly for bonds of maturities longer than 5

years. Ignoring the regime-switching risk leads to underestimation of long-

term interest rates and therefore flatter yield curves.

The rest of the paper is organized as follows. Section 2 specifies the

underlying economy and lays out the asset pricing model under the system-

atic regime-switching risk. Section 3 obtains the closed-form solution for

the term structure of interest rates. Section 4 discusses the empirical results

from EMM estimation and section 5 concludes.
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2 The Model

2.1 The Underlying Economy

Consider an economy with a single good and a large number of infinitely

lived and identical consumers similarly to that in Cox, Ingersoll and Ross

(1985a, 1985b) (henceforth CIR). We first describe the state variables and

investment opportunities of the economy as well as the representative con-

sumer’s objective function below.

2.1.1 State Variables

We assume that the economy is driven by two state variables.3 One of the

state variable x(t) has a continuous path and is determined by the stochastic

differential equation below

dx = µxdt + σxdBt (1)

where the drift term µx and the diffusion term σx are in general time-varying

and regime-dependent. The other state variable is a continuous-time Markov

chain s(t) taking on values of 1, 2, · · · , N if there are N distinct regimes.

Following Landen (2000), we make use of the marked point process to get a

convenient representation of s(t). In particular, the mark space E is defined

as

E = {(i, j) : i ∈ {1, ..., N}, j ∈ {1, 2, ..., N}, i �= j}

with σ-algebra E = 2E . Denote z = (i, j) as a generic point in E. A marked

point process, m(t, ·) is uniquely characterized by its stochastic intensity

3It is straight forward to extend the model to include more state variables. We keep
the model as simple as possible for exposition purpose.
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kernel,4, which can be defined as

γm(dt, dz) = h(z, x(t−))I{s(t−) = i}εz(dz)dt, (2)

where h(z, x(t−)) is the regime-shift (from regime i to j) intensity at z =

(i, j), I{s(t−) = i} is an indicator function, and εz(A) is the Dirac measure

(on a subset A of E) at point z (defined by εz(A) = 1 if z ∈ A and 0,

otherwise). Heuristically, for z = (i, j), γm(dt, dz) can be thought of as

the conditional probability of shifting from Regime i to Regime j during

[t, t + dt) given x(t−) and s(t−) = i.

Let A be a subset of E. Then m(t, A) counts the cumulative number of

regime shifts that belong to A during (0, t]. m(t, A) has its compensator,

γm(t, A), given by

γm(t, A) =
∫ t

0

∫
A

h(z, x(τ−))I{s(τ−) = i}εz(dz)dτ. (3)

This simply implies that m(t, A) − γm(t, A) is a martingale.

Using the above notations, the evolution of the regime s(t) can be con-

veniently represented as

ds =
∫

E
ζ(z)m(dt, dz) (4)

with the compensator given by

γs(t)dt =
∫

E
ζ(z)γm(dt, dz), where ζ(z) = ζ((i, j)) = j − i (5)

For example, if there is a regime shift from i to j occurred at time t, equation

(4) then implies st = (j − i) + st− = j. Note that
∫
E is equivalent to

∑
i�=j .

4See Last and Brandt (1995) for detailed discussion of marked point process, stochastic
intensity kernel and related results.
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2.1.2 Investment Opportunities

We assume that, without loss of generality, the output is produced by a

single technology which depends on both state variables x(t) and s(t) as

described by the following stochastic differential equation

dy = yµydt + yσydBt +
∫

E
yδy(z)m(dt, dz) (6)

where both µy and σy can be functions of x(t−) and s(t−). And δy(z) is

the discrete percentage change in y due to a regime shift, i.e. δy(z) = ∆sy
y =

y(t,s(t))−y(t−,s(t−))
y(t−,s(t−)) .

As in CIR model, we assume that there is a competitive market for

instantaneous borrowing and lending at the short-term interest rate r(t).

There is also a competitive market for default-free pure discount bonds

whose prices are given by

dF = FµF dt + FσF dBt +
∫

E
FδF (z)m(dt, dz) (7)

Note that µF , σF and δF (z) are to be determined by the equilibrium con-

ditions. And δF (z) is the discrete percentage change in the bond prices due

to a regime shift. (7) can be alternatively written as

dF = FµF dt +
∫

E
FδF (z)γm(dt, dz)

+ FσF dBt +
∫

E
FδF (z)(m(dt, dz) − γm(dt, dz))

(8)

The last two terms in the above equation are martingales. Therefore (7)

implies that the instantaneous expected bond return is

Et−
(

dF

F

)
= µF dt +

∫
E

δF (z)γm(dt, dz) (9)
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2.1.3 The Consumer’s Objective Function

Given the initial wealth w0, a representative consumer seeks to maximize

her expected lifetime utility given by

E0

[∫ ∞

0
e−ρtU(c(t))dt

]
(10)

where c(t) is the flow of consumption and U(·) is the instantaneous utility

function. As usual, U(·) is assumed to be strictly concave, increasing and

twice differentiable with U(0) = 0 and U ′(0) = ∞.

At each instant, the representative consumer allocates her wealth among

investment in the physical production, the discount bonds, the risk-free

borrowing and lending and consumption. We assume that both physical

investment and trading of the financial assets take place in continuous time

without borrowing constraint, transaction cost and all other forms of market

frictions. The consumer’s budget constraint is therefore given by

dw = wµwdt + wσwdBt +
∫

E
wδw(z)m(dt, dz) (11)

where

wµw = w[φ1(µy − r) + φ2(µF − r) + r] − c (12)

wσw = w[φ1σy + φ2σF ] (13)

wδw(z) = w[φ1δy(z) + φ2δF (z)] (14)

In the above equations, w(t) is the consumer’s wealth at time t, φ1 is the

proportion of her wealth invested in the physical production, φ2 is the pro-

portion of her wealth invested in the discount bonds, and c(t) is her flow of

consumption.
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2.2 The Equilibrium Bond Returns

In this section we state the main asset pricing results for the economy subject

the systematic regime-switching risk. The detailed derivations are provided

in the Appendix.

Let J(w(t), s(t), x(t)) = sup{c,φ1,φ2} Et

[∫ ∞
t e−ρ(τ−t)U(c(τ))dτ

]
. J(w, s, x)

is the indirect utility function. We use the following notations in our discus-

sions below: Jw = ∂J
∂w , Jx = ∂J

∂x , Jww = ∂2J
∂w2 and Jwx = ∂2J

∂w∂x . As in CIR, we

also denote V ar(wc) = (wσw)2, V ar(x) = σ2
x, and Cov(wc, x) = (wσw)σx.

To further simplify notations, we define ∆sf = f(s(t)) − f(s(t−)) for any

function f(·) that depends on s(t). ∆sf is therefore the difference in f(·)
due to a regime shift at time t.

The following two propositions give the equilibrium instantaneous short-

term interest rate and the expected excess rate of return on a bond respec-

tively.

Proposition 1 The equilibrium short-term interest rate is given by

r = µ∗
y −

(
−Jww

Jw

)
V ar(wc)

w
−

(
−Jwx

Jx

)
Cov(wc, x)

w

−
∫

E

(
−∆sJw

Jw

)
∆sw

w
γm(dz)

(15)

where

µ∗
y = µy +

∫
E

δy(z)γm(dz) (16)

and

γm(dz) = h(z, x(t−))I{s(t−) = i}εz(dz) (17)

Note that µ∗
ydt is in fact the expect rate of return of the production tech-

nology Et−
(

dy(t)
y(t−)

)
. And ∆sw

w and ∆sJw
Jw

in (15) are the discrete percentage

changes in w and Jw respectively due to a regime shift, i.e. ∆sw
w = δw(z) =
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φ1δy(z) + φ2δF (z), and

∆sJw

Jw
=

Jw(w(1 + δw(z)), s + ζ(z), x) − Jw(w, s, x)
Jw(w, s, x)

Proposition 1 implies that the instantaneous short-term interest rate

r(t) is a function of both state variables x(t) and s(t) because of the regime-

dependence of µ∗
y, V ar(wc), Cov(wc, x) and the marginal utility Jw. If the

regime shifts is not a systematic risk as assumed in the previous literature,
∆sJw

Jw
would be equal to zero. Otherwise the short-term interest rate will

also be affected by the last term. Since the indirect value function J(w, s, x)

is concave in w, if it is also separable in w and s (as in the case of log utility

function), we will have

(
−∆sJw

Jw

)
∆sw

w
> 0

Therefore the impact of the systematic regime-switching risk is to lower the

equilibrium short-term interest rate, as the local risk-free borrowing and

lending opportunity offers a hedge against such risk. This result is similar

to the impact of a systematic jump risk on the interest rate as shown in Ahn

and Thompson (1988).

Proposition 2 Let µ∗
F dt = Et−

(
dF (t)
F (t−)

)
, the instantaneous expected rate of

return of a discount bond. At equilibrium, we have

µ∗
F − r =

[(
−Jww

Jw

)
V ar(wc) +

(
−Jwx

Jw

)
Cov(wc, x)

]
Fw

F

+
[(

−Jww

Jw

)
Cov(wc, x) +

(
−Jwx

Jw

)
V ar(x)

]
Fx

F

+
∫

E

(
−∆sJw

Jw

)
∆sF

F
h(z, x)I{s = i}εz(dz)

(18)

where Fw = ∂F
∂w , Fx = ∂F

∂x , and ∆sF
F = δF (z), the discrete percentage change
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in the bond price due to a regime shift. Cov(wc, x), V ar(wc) and V ar(x)

are defined at the beginning of this section.

We can clearly see from the above proposition that, when there is only

one regime, ∆sF
F = 0, ∆sJw

Jw
= 0 and ∆sw

w = 0, (18) is reduced to the

standard result in CIR. On the other hand, in the term structure models

with regime shifts such as those in Bansal and Zhou (2002) and Evans (2001)

among others, V ar(wc), V ar(x) and Cov(wc, x) are assumed to be regime-

dependent. Therefore these models have additional econometric flexibility

and are shown to have better empirical performance than models that don’t

include regime shifts. One implicit assumption maintained by these models,

however, is that ∆sJw
Jw

= 0.

To further illustrate the role played by ∆sJw
Jw

in determining bond returns,

let’s assume that Jwx = 0 and Fw = 0.5 We can obtain from (18) that

µ∗
F − r = −Jww

Jw
wσw

σxFx

F
−

∫
E

∆sJw

Jw

∆sF

F
h(z, x)I{s = i}εz(dz) (19)

The first term in (19) is the instantaneous diffusion risk premium. σxFx
F

is the volatility of the bond return due to diffusions in x(t).
(
−Jww

Jw

)
wσw

measures the extra rate of return per unit of such volatility and is commonly

referred to as the market price of risk in the literature. The second term can

be thought of as the instantaneous regime-switching risk premium, where
∆sF

F h(z, x)I{s = i}εz(dz) is the expected discrete percentage change in the

bond price due to regime shifts and
(
−∆sJw

Jw

)
measures the excess bond

return per unit of such expected changes. Hence
(
−∆sJw

Jw

)
can be analo-

gously defined as the market price of regime-switching risk. And we can see

from (19), unless Jw or the marginal utility does not depend on regime s(t),

investors will price the regime-switching risk into the bond returns.

5For example, both Jwx = 0 and Fw = 0 hold under log utility function for discount
bonds as shown in CIR.
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Note that, by Ito’s formula, the diffusion term of the bond price is given

by FσF = (wσw)Fw+σxFx. Hence more insight can be obtained by rewriting

(18) as

µ∗
F − r = −Cov

(
dJc

w

Jw
,
dF c

F

)
−

∫
E

∆sJw

Jw

∆sF

F
h(z, x)I{s = i}εz(dz) (20)

where

Cov

(
dJc

w

Jw
,
dF c

F

)
=

(
Jwwwσw + Jwxσx

Jw

)
σF F

F

(20) implies that the expected excess bond return includes two com-

ponents under regime shifts. The first term depends on the covariance of

the continuous part of the bond return and continuous part of the rate of

change in the marginal utility of wealth. The second term depends on the

covariation between the discrete percentage change in the marginal utility

and the discrete percentage change in the bond price under regime shifts.

The higher the covariation, the greater the payoff the bond provides when

marginal utility is higher. Hence consumers are willing to accept a lower the

expected rate of return on the asset.

In the previous regime-switching term structure models, greater flexibil-

ities are obtained in fitting the time-varying excess bond returns by making

Cov
(

dJc
w

Jw
, dF c

F

)
regime-dependent. Equation (20) shows that allowing in-

vestors to price the regime-switching risk (i.e. ∆sJw
Jw

�= 0) introduces an ad-

ditional source of time-variation in the expected excess bond returns. This

new component in the bond returns is associated with the potentially large

shifts in bond prices across different regimes ∆sF
F . It also depends on the

regime-shift intensity h(z, x) as well as the market price of regime-switching

risk −∆sJw
Jw

. Holding ∆sF
F and −∆sJw

Jw
constant, the higher the regime-shift

intensity h(z, x), the larger the risk premium.6 On the other hand, given

6Boudoukh et al (1999) found that business turning points are usually characterized
by highly volatile and strongly time-varying term premium.
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(
−∆sJw

Jw

)
and h(z, x), the regime-switching risk premium depends on the

magnitude ∆sF
F . The bigger the difference in the bond price across different

regimes, the more important the risk premium due to regime shifts. Empir-

ical results from the previous studies (e.g. Bansal and Zhou, 2002) imply

sizeable ∆sF
F , hence suggesting that the regime-switching risk premium is

unlikely a negligible component of bond returns.

3 The Term Structure of Interest Rates

In this section we obtain a closed form solution for the term structure of

interest rates. We assume that U(c) = log(c) as in CIR model. It can be

shown that the prices of default-free pure discount bonds are given by the

following proposition (see the Appendix for details).

Proposition 3 The price at time t of a default-free pure discount bond

F (t, x(t), s(t), T ) that matures at time T satisfies the following system of

partial differential equations

Ft + (µx − σyσx)Fx +
1
2
σ2

xFxx

+
∫

E
(1 − λs(z))∆sFh(z, x)I{s = i}εz(dz) = rF

(21)

with the boundary condition: f(T, x, s, T ) = 1.

In the above equation, Ft = ∂F
∂t , Fx = ∂F

∂x , Fxx = ∂2F
∂x2 , ∆sF = F (t, x(t), s(t−)+

ζ(z), T )−F (t−, x(t−), s(t−), T ), and λs(z) = δy(z)
1+δy(z) . Note that (21) holds

for each regime of s(t), it therefore defines a system of N partial equations

if there are N distinct regimes. Moreover, under the log utility function, the

equilibrium short-term interest rate r(t) can be obtained from Proposition

1 as

r = µy − σ2
y +

∫
E

λs(z)h(z, x)I{s = i}εz(dz) (22)
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In general the system (21) does not admit a closed form solution to the

bond price. Hence we consider the following affine specification which is

known to offer a tractable model of the term structure of interest rate.7 In

particular, we assume

µx = a0(s) + a1(s)x (23)

σx =
√

σ(s)x (24)

h(z, x) = eηs(z) (25)

σy = θx(s)
√

σ(s)x (26)

µy = x + θ2
x(s)σ(s)x −

∫
E

λs(z)γm(dz) (27)

λs(z) = 1 − eθs(z) (28)

where γm(dz) = h(z, x)I{s = i}εz(dz).

Under (23) and (24), the state variable x(t) follows a conventional mean-

reverting square-root process with regime-dependent drift and diffusion terms,

that is

dx = (a0(s) + a1(s)x) dt +
√

σ(s)x dBt (29)

(26) and (27) are assumptions about the drift term and the diffusion term

of the physical production process y(t). Under the log utility function, they

imply that in equilibrium the market price of the diffusion risk is given by

λx(s) = θx(s)
√

σ(s)x (30)

(25) assumes that the Markov chain s(t) has constant transition probabilities

given by eηs(z). Equation (28) parameterizes the market price of the regime-

switching risk λs(z) as 1 − eθs(z). Moreover (22), (26) and (27) together

7Duffie and Kan (1996) and Dai and Singleton (2000) offer detailed discussions of
affine term structure models under diffusions. Bansal and Zhou (2002), Evans (2001) and
Landen (2000) also use affine specifications in their regime-switching models.
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imply that r(t) = x(t). Therefore

dr = κ(s)(r̄(s) − r) dt +
√

σ(s) r dBt (31)

where κ(s) = −a1(s), r̄(s) = a0(s)
−a1(s) .

The Appendix shows that, using a log-linear approximation similar to

that in Bansal and Zhou (2002), the term structure of interest rates can be

solved as follows

Proposition 4 Under the assumptions (23) – (28), the price at time t of

a default-free pure discount bond with maturity τ is given by F (t, τ) =

eA(τ,s(t))+B(τ,s(t))r(t) and the τ -period interest rate is given by R(t, τ) =

−A(τ,s(t))
τ − B(τ,s(t))r(t)

τ , where A(τ, s) and B(τ, s) are determined by the fol-

lowing system of differential equations

−∂B(τ, s)
∂τ

+ [a1(s) − θx(s)σ(s)]B(τ, s) +
1
2
σ(s)B2(τ, s)

+
∫

E

(
e∆sA∆sB

)
eηs(z)+θs(z)1(s = i)εz(dz) = 1

(32)

and

−∂A(τ, s)
∂τ

+ a0(s)B(τ, s) +
∫

E

(
e∆sA − 1

)
eηs(z)+θs(z)1(s = i)εz(dz) = 0

(33)

with boundary conditions A(0, s) = 0 and B(0, s) = 0, where ∆sA = A(τ, s+

ζ(z)) − A(τ, s) and ∆sB = B(τ, s + ζ(z)) − B(τ, s)

Proposition 4 nests the models in Bansal and Zhou (2002) and Landen

(2000). Without using the log-linear approximation, Landen(200) only con-

siders models where ∆sB = 0 and is silent on the market prices of risk

θx(s) and θs(z). In the case of Bansal and Zhou (2002), the risk of regime

shifts is not priced, namely θs(z) is assumed to be zero in their model. The

model in Proposition 4 is in fact a special case of that in Dai and Singleton
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(2003), which proposes a general dynamic term structure model where the

risk of regime shifts is priced. The main difference between the current paper

and Dai and Singleton (2003) is that we derived our model from a general

equilibrium framework with economic interpretations of the market price

of the regime-switching risk. Another difference is that we also provided

an explicit solution for the term structure of interest rates using log-linear

approximation. This allows us to assess quantitatively the impact of the

regime-switching risk on the yield curve.

4 Empirical Results

4.1 Data and Summary Statistics

The data used in this study are monthly interest rates from June 1964 to

November 2000 obtained from the Center for Research in Security Prices

(CRSP). There are eight interest rates with maturities ranging from 1 month

to 5 years. Table 1 contains the summary statistics of the interest rates. We

can see that the yield curve is on average upward-sloping. The large skewness

and kurtosis suggest significant departure from Gaussian distribution.

We also report in Table 2 the results from regressions of excess bond

returns on forward interest rates and a business cycle dummy variable. We

use NBER dates of business cycles to distinguish between expansions and

recessions. As in the previous literature we find significant coefficients on for-

ward rates in the regression, suggesting that forward rates contain informa-

tion about the state variables driving the interest rates. More importantly,

the coefficients on the business cycle dummy variable are all negative and

significant, suggesting important regime-dependent property of the bond re-

turns. Note that the sign of the coefficient on the business cycle dummy

variable is consistent with the counter-cyclical behavior of risk premiums as

documented in Fama and French (1989).
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4.2 Econometric Methodology

We use Efficient Method of Moments (EMM) in this paper to estimate the

term structure model in Proposition 4. We assume that there are two dis-

tinct regimes (N = 2) for s(t). Therefore (32) and (33) define a system of 4

differential equations that must be solved simultaneously. The model has a

total of 12 parameters. Bansal et al (1995) and Gallant and Tauchen (1996,

2001) contain detailed discussion of EMM. As in Bansal and Zhou (2002),

we fit the model to the data on the 6-month and the 5-year rates.

Under EMM procedure, the empirical conditional density of the observed

interest rates is first estimated by an auxiliary model that is a close approx-

imation to the true data generating process. Gallant and Tauchen (2001)

suggests a semi-nonparametric (SNP) series expansion as a convenient gen-

eral purpose auxiliary model. As pointed out by Bansal and Zhou (2002),

one advantage of using the semi-nonparametric specification for the aux-

iliary model is that it can asymptotically converge to any smooth distri-

butions (Gallant and Tauchen, 1998), including Markov regime-switching

models. The dimension of this auxiliary model can be selected by, for exam-

ple, the Schwarz’s Bayesian Information Criterion (BIC). The score function

of the auxiliary model are then used as moment conditions to compute a

chi-square criterion function, which can be evaluated through simulations

given the term structure model under consideration. A nonlinear optimizer

is used to find the parameter setting that minimizes the criterion function.

Gallant and Tauchen (1996) shows that such estimation procedure yields

fully efficient estimators if the score function of the auxiliary model encom-

passes the score functions of the model under consideration. Bansal and

Zhou (2002) is an excellent example of applying EMM to estimate the term

structure model under regime shifts. Dai and Singleton (2000) also provides

extensive discussions of estimating affine term structure models using EMM

procedure.
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4.3 Results

Table 3 and Table 4 report the results from SNP estimations. In searching for

the preferred specification, we follow closely Bansal and Zhou (2002) mainly

because we use the same interest rate data (with longer sample period).

Different choices of SNP density and their corresponding BIC values are

reported in Table 3. Consistent with Bansal and Zhou (2002), we found

that the SNP specification with 1 lag (Lµ = 1) in the VAR-based conditional

mean, 5 lags in ARCH term (Lr = 5) and a polynoinal of order 4 (Kz = 4) in

the standardized residual z has the overall best fit based on BIC. Estimates

of the coefficients in the preferred SNP density are reported in Table 4.

Given the SNP density, the parameters of the term structure model can

be estimated through simulations. We estimate three versions of CIR model.

One is the standard one-factor CIR model. The second is a one-factor CIR

model with regime shifts, but the risk of regime shifts is not priced. We

allow the parameters in the diffusion process of the instantaneous short-

term interest rate r(t) to be regime-dependent. We also assume different

market prices of the diffusion risk across regimes. The third model is the

one-factor CIR developed in Proposition 4 where the risk of regime shifts is

priced. The results are reported in Table 5.

In the standard 1-factor CIR model, the parameter estimates imply a

highly persistent short-term interest rate process with a long-run average

level of 6.4% [r̄ = a0/(−a1)] and a speed of adjustment of only 0.0907 (κ =

−a1). This roughly corresponds an AR(1) process with the coefficient on

the lagged interest rate being around 0.91, which is consistent with the

results from the previous empirical studies of the interest rate. The estimates

also imply stochastic volatility is an important property of the interest rate

process with a conditional standard deviation of 1.27% on average
(√

σr̄
)
.

Model 2 introduces Markov regime shifts into the standard CIR model
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without pricing such risk. Consistent with the previous studies, we find

that the interest rate process is characterized by two distinct regimes. In one

regime (Regime 2) the short rate r(t) is highly persistent (κ = −a1 = 0.0735)

with a long-run mean of 11.7% [r̄ = a0/(−a1)]. The interest rate r(t) in the

other regime (Regime 1), however, is less persistent (κ = −a1 = 0.1501)

with a much lower long-run mean of 1.8%. Given the average short-term

interest rate of 5% - 6% in the sample (see Table 1), this implies that the

interest rate is usually rising in Regime 2 and declining in Regime 1. This

empirical regularity is consistent with features of the business cycle where

expansions are usually characterized by rising interest rates and recessions

tend to witness declining interest rates. Moreover, the estimated coefficients

on the conditional volatility and the market price of (diffusion) risk all are

different across regimes, further suggesting that the yield curve exhibits

strong regime-dependence properties.8 The regime-shift intensity is param-

eterized as eηs(z) in the model. Table 5 reports that ηs(1, 2) = −1.2040

and ηs(2, 1) = −1.4706. This implies that Regime 2 is more persistent than

Regime 1 (namely smaller transition probability from Regime 2 to Regime

1). For the monthly data used in the paper, the estimates of ηs(z) suggest

that the probability of switching from Regime 1 to Regime 2 is approxi-

mately 0.0250 while the probability of switching from Regime 2 to Regime

1 is approximately 0.0191. These are consistent with the results from the

previous studies based on discreet time models (e.g. Bansal and Zhou, 2002).

In Model 3, the risk of regime shifts is priced. The estimates of the

model parameters (a0, a1, σ, θx and ηs) are similar to those obtained in

Model 2, confirming that the periodic shifts across distinct regimes is an

important empirical property of the interest rate dynamics. In Model 3,

the implied long-run mean of r(t) becomes 11.1% in Regime 2 and 2.4%

in Regime 1 respectively. This again suggests that the interest rate tends

8The conditional volatility of the short term interest rate r(t) is given by
√

σr(t), and

the market price of diffusion risk is given by θx

√
σr(t) in the model.
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to increase in Regime 2 and tends to decrease in Regime 1. The estimates

of a1 and σ indicate that r(t) is more persistent with a larger conditional

variance in Regime 2 (κ = −a1 = 0.0916, σ = 0.0034) than in Regime 1

(κ = −a1 = 0.1491, σ = 0.0025). As in Model 2, we also find that the

market price of the diffusion risk varies across regimes. The estimate of

θx is −15.54 in Regime 1 and −17.00 in Regime 2 respectively. Moreover

the estimates of regime-switching intensities confirm that Regime 2 is more

persistent than Regime 1. In particular, the estimates of ηs(z) imply that,

at monthly frequency, the Markov chain s(t) switches from Regime 1 to

Regime 2 with probability 0.0260 and switches from Regime 2 to Regime 1

with probability 0.0169.

In Figure 1, we plot the estimated average yield curve in Regime 1 to-

gether with that in Regime 2 by fixing the short-term interest rate at the

sample average of 5.6% using Model 3. The differences in the yield curves

are obvious. In Regime 2 the yield curve is higher and steeper compared to

that in Regime 1 due to the fact that interest rates tend to rise in Regime

2. The average yield curve in Regime 1 not only has a lower level, but also

has a different shape. It initially slopes downward and then slopes upward.

This is because that the short-term interest rate declines in Regime 1 on av-

erage. Since the term premiums are small for bonds of short maturities, the

interest rates on these bonds are mainly determined by the expectation of

the short-term interest rate in the near future, therefore resulting in a neg-

ative slope in the yield curve. However, as maturities of the bonds increase,

the term premiums start to play a more important role in determining the

interest rates. Moreover, since Regime 1 is not as persistent as Regime 2,

the short-term interest rate is also expected to increase over a long horizon

as s(t) switches from Regime 1 to Regime 2 in the future. Hence the slope

of the yield curve becomes positive as maturities increase.

Figure 1 clearly shows that the yield curve alternates between two dis-

tinct regimes as s(t) evolves over time. Whether or not these regime shifts
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pose a significant risk to investors depends on the estimate of θs(z), the

parameter that determines the market price of the regime-switching risk.9

Table 5 shows that the estimates of θs(z) are highly significant in both

regimes. In particular, θs(z) is estimated to be 0.1438 with a standard error

of 0.0337 in Regime 1 and -0.0789 with a standard error of 0.0109 in Regime

2 respectively. Moreover there is a big improvement in the goodness-of-fit

of the regime-switching model. The χ2 statistics decreases from 109.70 with

18 degree of freedom in Model 2 to 60.38 with 16 degree of freedom after

the regime-switching risk is priced in Model 3. These results suggest that

the regime-switching risk is likely to be an important factor that determines

bond returns.

4.3.1 Decomposition of the Term Premiums

To assess the quantitative impact of the regime-switching risk, we decompose

the term premium on a bond into two parts. One is a term premium due

to the diffusion risk and the other component is associated with the risk of

regime shifts. In particular, ignoring the Jensen’s inequality term, one can

obtain that,

R(t0, τ) − 1
τ
Et0

[∫ t0+τ

t0

rtdt

]
≈

1
τ
Et0

[∫ t0+τ

t0

θx(st)σ(st)xtB(t0 + τ − t, st)dt

]

1
τ
Et0

[∫ t0+τ

t0

∫
E

λs(z)
(
e∆SA(t0+τ−t,st)+∆sB(t0+τ−t,st)xt − 1

)
γm(dt, dz)

]

(34)

where R(t0, τ) is the interest rate on a default-free bond of maturity τ at

time t0, rt is the instantaneous short-term interest rate. So the left-hand

9The market price of the regime switching risk λs(z) is parameterized as 1− eθs in the
model, see equation (28).
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side of (34) is the difference between the interest rate on the long-term bond

of maturity τ and the average of the expected future short-term interest

rate. The Expectation Hypothesis of the term structure maintains that the

difference is zero because long-term interest rates are solely determined by

the expected future short rate. However, as it is made clear in (34), long-

term interest rates can deviate substantially from the levels implied by the

Expectation Hypothesis. The first term on the right-hand of (34) is the ex-

cess return demanded by investors due to the diffusion risk and the second

term is the excess return due to the regime-switching risk, where the mar-

ket prices of risk are given by θx(st)
√

σ(st)xt and λs(z) respectively. Note

that A(τ, s) and B(τ, s) are determined in Proposition 4 and γm(dt, dz) is

given in (2). Using the estimated parameters, the average values of these

two components of the term premium can be obtained through Monte Carlo

simulations.10 In Figure 2, we report the average total term premiums and

the two components for bonds of various maturities ranging from 3 months

to 30 years. The lower part of each graph measures the diffusion risk pre-

miums and the upper part of each graph measures the regime-switching

risk premiums. For bonds with short maturities (less than 3-year), we can

see that not only the term premiums are small, but also most of the term

premiums are due to the diffusion risk. As maturities increase, both com-

ponents of the term premiums start to increase, and the regime-switching

risk premiums become a significant part of the total term premiums. The

lower panel of Figure 2 indicates that the regime-switching risk can account

for more than 10% of the term premiums for bonds with maturities longer

than 6 years, and up to 15% for a 30-year bond.

10More specifically, we simulate the sample paths of x(t) and s(t) 5000 times given
x(t0) and s(t0). To get ride of the impact of the initial values of x(t0) and s(t0), in each
simulation the first one thousand sample points of x(t) and s(t) are ignored. We then take
the average over the 5000 sample paths of x(t) and s(t).
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4.3.2 How Does the Regime-shift Risk Affect the Yield Curve?

The term structure model developed in Proposition 4 allows us to compute

the prices of bonds of different maturities in the presence of the regime-

switching risk. In this section we examine the impact of such risk on the

yield curve. Specifically, we compare the estimated bond prices in Model 3

with the bond prices obtained using the same model and the same parameter

values except holding the market price of the regime-switching risk θs(z) at

zero.11 When computing the bond prices, we set the short-term interest

rate at the sample average of the 1-month rate of 5.6%. We report the price

differential in both regimes in Figure 3. The corresponding yield curves

are plotted in Figure 4. We find that when fixing θs(z) at zero, the prices

of long-term bonds become significantly higher. Figure 3 shows that, for

example, the price of a 30-year bond would be about 15% higher if θs(z) is

set to zero instead of its estimated value of 0.1438 in Regime 1 or -0.0789 in

Regime 2. On the other hand, the regime-switching risk has almost no effect

on short-term bonds. For bonds with maturities of less than 3 years, we get

almost the same price. This implies that the regime-shift risk affects mainly

the long end of the yield curve. Ignoring the regime-shift risk would lead to

underestimation of long-term interest rate, and therefore flatter yield curves

(see Figure 4).

Another way to examine the impact of the regime-shift risk on the yield

curve is to compare the bond prices estimated by Model 2 and Model 3

respectively. The two models are the same 1-factor CIR model subject

to Markov regime changes except that Model 2 does not price the risk of

such regime shifts. To compute the bond prices, we again fix the short-

term interest rate r(t) at the sample average of the 1-month rate of 5.6%.

We report in Figure 5 the bond price differential in both regimes. The

11In Model 3, the estimates of θs(z) are 0.1438 with a standard error of 0.0337 in Regime
1 and -0.0789 with a standard error of 0.0109 in Regime 2 respectively.
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corresponding yield curves are plotted in Figure 6. The results are similar

to those obtained above. In particular, for bonds of short maturities (less

than 3 years), the two term structure models give almost the same result,

suggesting that the risk of regime shifts is not important for short-term

bonds. However, as bond maturities increase, the price differential becomes

significantly bigger. In fact, Model 2 implies much higher prices (up to 40%

higher in Regime 1 and 35% higher in Regime 2) than Model 3 does for

bonds of long maturities. The corresponding difference in the yield curves

can be clearly seen in Figure 6. Without pricing the risk of regime shifts,

Model 2 obtains much flatter yield curves in both regimes than Model 3

does.

4.3.3 Are the Regime Shifts a Systematic Risk?

Ignoring the risk of regime shifts, the previous studies have essentially

treated the regime shifts as an idiosyncratic risk that can be diversified

away. However, these studies have also shown that the regimes are inti-

mately related to the business cycle, suggesting a close link between the

regime shifts and aggregate uncertainties. Hence it is more likely that the

Markov regime shifts represent a systematic risk which should be priced in

the term structure models.

We plot in Figure 7 the implied regimes together with the business cycle

expansions and recessions identified by NBER. To find the implied regimes,

we follow the suggestion of Bansal and Zhou (2002).12 Figure 7 confirms

the results from the previous studies that the distinct regimes underlying

the dynamics of the term structure of interest rates are closely related to

the fluctuations of the aggregate economy. Therefore it is important that

12Specifically, the estimated term structure model allows us to compute interest rates of
different maturities conditional on the regime R̂(t, τ |st). An estimate of st can be obtained
by choosing the regime that minimizes the average difference between the actually observed
interest rate R(t, τ) and R̂(t, τ |st), i.e. ŝt = arg min

∑
τ |R(t, τ) − R̂(t, τ |st)|
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these periodic shifts of regimes are treated as a systematic risk to investors

in the term structure models. It is also interesting to note from Figure 7

that the regime shifts tend to precede business cycle turning points.13 This

is consistent with the empirical finding that the yield curve has significant

predictive power for the business cycle, see Estrella and Mishkin (1995) and

Chauvet and Potter (2003) among others.

5 Concluding Remarks

Previous studies have provided strong empirical evidence that the joint

movements of interest rates of different maturities can be well described

by dynamic term structure models that incorporate regime shifts. More-

over these studies also show that there is a close link between the regime

shifts and the business cycle fluctuations. Therefore it is very likely that

such large periodic shifts of interest rates across distinct regimes present a

systematic risk to investors. This paper develops and estimates an affine-

type term structure model where such risk is priced. We show that the

regime-switching risk introduces a new source of time-variation in bond risk

premiums. The model offers an additional econometric flexibility to account

for the joint movements of interest rates with different maturities. Moreover,

we find that the regime-switching risk is not a negligible factor determining

bond prices and has a major impact on the term structure of interest rates.

Empirical results suggest that regime shifts can account for a significant

portion of the term premiums for long-term bonds. Ignoring the regime-

shift risk will lead to underestimation of long-term interest rate and result

in flatter yield curves. Such systematic risk of regime shifts is also likely to

have important implications for pricing bond derivatives (e.g. Singleton and

Umantsev, 2002) as well as for investors’ optimal portfolio choice problem

13Note that the regime shifts near the end of the sample period precede the most recent
recession starting from March 2001 as classified by NBER.
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(e.g. Campbell and Viceira, 2001). Another extension is to estimate the

term structure model jointly with macroeconomic variables under regime

shifts. This would provide more direct evidence regarding the nature of the

regime-switching risk. These extensions are left for future research.
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A Proof of Proposition 1

Let J(w(t), s(t), x(t)) = sup Et

[∫ ∞
t e−ρ(τ−t)U(c(τ))dτ

]
. We assume that

a solution to the consumer’s problem exists and indirect utility function

J(w(t), s(t), x(t)) as well as the optimal consumption and portfolio choice

satisfy the Bellman equation (see the result in Section 3.1.6 of Kushner and

Dupuis, 2001)

sup(φ1,φ2,c)DJ(w, s, x) − ρJ(w, s, x) + U(c) = 0 (35)

where

DJ(w, s, x) = (wµw)Jw+µxJx+
1
2
(wσw)2Jww+(wσw)σxJwx+

1
2
σ2

xJxx+
∫

E
∆sJγm(dz)

and

∆sJ = J(w(1 + δw(z)), s + ζ(z), x) − J(w, s, x)

.

In the above equations, Jw = ∂J
∂w , Jx = ∂J

∂x , Jww = ∂2J
∂w2 , Jwx = ∂2J

∂w∂x . µw,

σw and δw are given in (12), (13) and (14) respectively. γm(dz) is defined in

(17). µx and σx are the drift and diffusion terms of the state variable x(t)

respectively as defined in (1).

The first order conditions (35) are

U ′(c) − Jw = 0 (36)

w(µy − r)Jw + (wσw)(wσy)Jww + (wσy)σwJwx

+
∫

E
wδy(z)Jw(w(1 + δw(z)), s + ζ(z), x)γm(dz) = 0

(37)

w(µF − r)Jw + (wσw)(wσF )Jww + (wσF )σxJwx

+
∫

E
wδF (z)Jw(w(1 + δw(z)), s + ζ(z), x)γm(dz) = 0

(38)
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Note that at equilibrium φ1 = 1 and φ2 = 0, hence Proposition 1 follows

from (37).

B Proof of Proposition 2

From (38) above, we have

µF +
∫

E
δF (z)γm(dz) − r =

(
−Jww

Jw

)
(wσw)(wσF )

w
+

(
−Jwx

Jw

)
(wσF )σx

w

+
∫

E

(
−∆sJw

Jw

)
∆sF

F
γm(dz)

(39)

Apply Ito’s formula to F (t, w, s, x), we have14

dF =
[
Ft + (wµw)Fw + µxFx +

1
2
(wσw)2Fww + (wσw)σxFwx +

1
2
σ2

xFxx

]
dt

+ [(wσw)Fw + σxFx] dB(t) +
∫

E
∆sFm(dt, dz)

(40)

Compare (40) with (7), we have

FµF = Ft +(wµw)Fw +µxFx +
1
2
(wσw)2Fww +(wσw)σxFwx +

1
2
σ2

xFxx (41)

FσF = (wσw)Fw + σxFx (42)

and

δF (z) =
∆sF

F
(43)

Proposition 2 follows after substituting (42) and (43) into (39) and defin-

ing µ∗
F = µF +

∫
E δF (z)γm(dz).

14See Protter (1990) for the generalized Ito’s formula for semi-martingales.
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C Proof of Proposition 3

Proposition 2 implies that

µF +
∫

E
δF (z)γm(dz) − r

=
[(

−Jww

Jw

)
V ar(w) +

(
−Jwx

Jw

)
Cov(w, x)

]
Fw

F

+
[(

−Jww

Jw

)
Cov(w, x) +

(
−Jwx

Jw

)
V ar(x)

]
Fx

F

+
∫

E

(
−∆sJw

Jw

)
∆sF

F
γm(dz)

(44)

Using (41), we have

Ft +
1
2
(wσw)2Fww + (wσw)σxFwx +

1
2
σ2

xFxx

+
[
µx −

(
−Jww

Jw

)
(wσw)σx −

(
−Jwx

Jw

)
σ2

x

]
Fx

+
[
(wµw) −

(
−Jww

Jw

)
(wσw)2 −

(
−Jwx

Jw

)
(wσw)σx

]
Fw

+
∫

E

(
1 +

∆sJw

Jw

)
∆sFγm(dz) = rF

(45)

Note again that at equilibrium, φ1 = 1 and φ2 = 0. Hence (12), (13)

and (14) imply that

wµw = wµy − c (46)

wσw = wσy (47)

wδw(z) = wδy(z) (48)
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Moreover, Proposition 1 implies

wr = wµy −
(
−Jww

Jw

)
(wσy)2 −

(
−Jwx

Jx

)
(wσy)σx

+
∫

E

(
1 +

∆sJw

Jw

)
wδy(z)γm(dz)

(49)

Combining (45) – (49), We have the following fundamental partial dif-

ferential equations of asset pricing as in CIR

Ft +
1
2
(wσy)2Fww + (wσy)σxFwx +

1
2
σ2

xFxx

+
[
µx −

(
−Jww

Jw

)
(wσy)σx −

(
−Jwx

Jw

)
σ2

x

]
Fx

+
[
wr − c −

∫
E

(
1 +

∆sJw

Jw

)
wδy(z)γm(dz)

]
Fw

+
∫

E

(
1 +

∆sJw

Jw

)
∆sFγm(dz) = rF

(50)

Under logarithm utility function U(c(t)) = log c(t), it is well known

that the indirect utility function is separable in w(t) and x(t) and s(t), i.e.

J(w, s, x) can be written as 1
ρ log w + f(s, x) where f(s, x) solve the system

of differential equation after substituting J(w, s, x) and the optimal choice

of consumption (c∗) and portfolio (φ∗
1, φ

∗
2) into the Bellman equation (35).

This separability implies that Jwx = 0.

Moreover, for default-free discount bonds , Fw = 0, Fww = 0 and Fwx =

0. Therefore equation (50) can simplified as

Ft +
1
2
σ2

xFxx + (µx − σyσx)Fx +
∫

E

(
1 +

∆Jw

Jw

)
∆sFγm(dz) = rF (51)

Using the fact that Jw = 1
ρw and (48), it can be easily shown

1 +
∆sJw

Jw
= 1 − λs(z) (52)
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where λs(z) = δy(z)
1+δy(z) .

Proposition 3 can be obtained by substituting the above equation into

(51). Note that (51) defines a system of partial differential equations.

D Proof of Proposition 4

First note that under assumptions (26) and (27), (22) implies that r(t) =

x(t).

Without loss of generality, let the price at time t of a pure-discount bond

that will mature at T be given as

F (t, s(t), x(t), T ) = eA(τ,s(t))+B(τ,s(t))r(t)

where τ = T − t and A(0, s) = 0, B(0, s) = 0.

Proposition 3 then implies

r = −∂A(τ, s)
∂τ

− ∂B(τ, s)
∂τ

r

+ [a0(s) + (a1(s) − θx(s)σ(s))r]B(τ, s) +
1
2
[σ(s)r]B2(τ, s)

+
∫

E

(
e∆sA+∆sBr − 1

)
eηs(z)+θs(z)1(s = i)εz(dz)

(53)

where ∆sA = A(τ, s + ζ(z)) − A(τ, s) and ∆sB = B(τ, s + ζ(z)) − B(τ, s)

Using the log-linear approximation

e∆sBr ≈ 1 + ∆sBr

Proposition 4 follows by substituting the above equation into (53) and

match the coefficients on r on both side of the equation.
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Table 1 Summary Statistics of the term structure of interest rates 1964 - 2000 (the first column 

indicates the maturities of the interest rates)

mean std corr skew kurt max min

1-month 0.05608 0.025452 1 1.28697 5.17923 0.161376 0.013176

3-month 0.060275 0.026706 0.985712 1.26099 4.91011 0.160332 0.017112

6-month 0.062443 0.026954 0.978383 1.21604 4.69365 0.165168 0.017808

1-year 0.06455 0.026314 0.964593 1.07663 4.21845 0.15812 0.01956

2-year 0.066561 0.025774 0.938704 1.01143 3.93613 0.15639 0.02368

3-year 0.068159 0.025069 0.916046 0.998881 3.84814 0.15557 0.0296

4-year 0.069354 0.024795 0.897531 0.965216 3.74017 0.15824 0.03118

5-year 0.069981 0.024589 0.883406 0.921516 3.57469 0.15001 0.03346

Note: mean = average interest rate; std = standard deviation; corr = correlation coefficient between long rates and 

the 1-month interest rate; skew = skewness; kurt = kurtosis; max = maximum interest rate; min=minimum interest 

rate
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Table 2: Using forward rates to predict excess bond returns. 

3-month 6-month 1-year 2-year 3-year 4-year 5-year

constant 0.0030 0.0116 0.0188 0.0224 0.0236 0.0187 0.0161

(0.0022) (0.0054) (0.0124) (0.0227) (0.0321) (0.0321) (0.0455)

Bus-cycle -0.0074 -0.0167 -0.0313 -0.0495 -0.0619 -0.0694 -0.0773

(0.0021) (0.0050) (0.0111) (0.0199) (0.0272) (0.0272) (0.0371)

f1 -0.2145 -0.5015 -0.1386 -0.8860 -1.4536 -1.9372 -2.2324

(0.0979) (0.2362) (0.5121) (0.8805) (1.1746) (1.1746) (1.7405)

f6 0.1363 0.3895 -0.2358 -0.0988 -0.0620 -0.3291 -0.6753

(0.1039) (0.1963) (0.4121) (0.7022) (0.9602) (0.9602) (1.4695)

f60 0.1935 0.2128 0.5717 1.2403 1.8126 2.6277 3.3306

(0.0694) (0.1458) (0.3320) (0.6012) (0.8451) (0.8451) (1.2642)

Note: The first row indicates maturities of the bonds. The first column includes the

explanatory variables in the regression. Bus-cycle is a business cycle dummy variable

according to NBER business dates. Bus-cycle=1: expansion; Bus-cycle=0: recession. f1

= 1-month rate , f6 = 6-month forward rate, f60 = 5-year forward rate. Numbers in

parentheses are Newy-West standard errors.
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Table 3: SNP specifications
Lµ Lr Lp Kz Iz Kx Ix lθ sn(θ̂) BIC
1 0 1 0 0 0 0 9 -.82698 -.76277
2 0 1 0 0 0 0 13 -.85153 -.75897
3 0 1 0 0 0 0 17 -.85784 -.73656
1 1 1 0 0 0 0 11 -1.02082 -.94234
1 2 1 0 0 0 0 13 -1.05923 -.96648
1 3 1 0 0 0 0 15 -1.10226 -.99525
1 4 1 0 0 0 0 17 -1.15356 -1.03228
1 5 1 0 0 0 0 19 -1.17153 -1.03598
1 6 1 0 0 0 0 21 -1.17394 -1.02412
1 7 1 0 0 0 0 23 -1.18247 -1.01839
1 5 1 2 1 0 0 23 -1.18124 -1.01716
1 5 1 2 0 0 0 24 -1.22077 -1.04956
1 5 1 3 2 0 0 25 -1.18248 -1.00413
1 5 1 3 1 0 0 26 -1.22941 -1.04393
1 5 1 3 0 0 0 28 -1.23006 -1.03030
1 5 1 4 3 0 0 27 -1.22163 -1.02901
1 5 1 4 2 0 0 28 -1.25705 -1.05729
1 5 1 4 1 0 0 30 -1.26133 -1.04703
1 5 1 4 0 0 0 33 -1.28814 -1.05272
1 5 1 5 4 0 0 29 -1.22625 -1.01936
1 5 1 5 3 0 0 30 -1.25837 -1.04435
1 5 1 5 2 0 0 32 -1.26270 -1.03441
1 5 1 5 1 0 0 35 -1.29353 -1.04383
1 5 1 5 0 0 0 39 -1.29058 -1.01235
1 5 1 4 2 1 0 48 -1.32073 -.97829
1 5 1 4 2 2 1 68 -1.36002 -.87490
1 5 1 4 2 2 0 78 -1.37679 -.82033

Note: Lµ is the number of lags in VAR conditional mean. Lr is number of lags in

ARCH conditional standard deviation. Kz is the degree of the square Hermite polynomial

that captures the deviation of the standardized innovation z from conditional Gaussian

distribution. The interaction polynomial term above the Iz degree is suppressed as zero.

The degree of x-polynomial Kx is fixed at 0, and by convention Lp is set to be 1. lθ

is the number of coefficients in the SNP model. sn(θ̂) is the negative sample mean log-

likelihood. BIC is the Bayesian Information Criterion. According to BIC, the preferred

SNP specification is 10514200.
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Table 4: Parameter Estimates of SNP density
Parameter Estimates Standard Error

a(0,0) 1.00000 0.00000
a(0,1) -0.05179 0.06782
a(1,0) 0.07111 0.06689
a(0,2) -0.10675 0.05547
a(1,1) 0.22368 0.06511
a(2,0) -0.23111 0.08141
a(0,3) 0.01787 0.01269
a(3,0) -0.01448 0.01384
a(0,4) 0.01470 0.00595
a(4,0) 0.02222 0.00684
µ(2,0) -0.00079 0.00704
µ(1,0) -0.00531 0.01195
µ(2,2) 0.98033 0.01447
µ(2,1) 0.00659 0.01593
µ(1,2) 0.01049 0.01401
µ(1,1) 0.97699 0.01507
R(1,0) 0.04068 0.00901
R(2,0) 0.04830 0.00820
R(3) 0.08870 0.01251

R(1,1) 0.33931 0.07707
R(2,1) 0.18582 0.05988
R(1,2) 0.22569 0.07642
R(2,2) 0.11341 0.05650
R(1,3) 0.16133 0.06670
R(2,3) 0.25376 0.07700
R(1,4) 0.12867 0.05434
R(2,4) 0.03708 0.05448
R(1,5) 0.09542 0.05642
R(2,5) 0.00238 0.06357

This table reports point estimates as well as their standard errors of the parameters in

the SNP model (10514200). a(i, j) are parameters of the Hermit polynomial function.

µ(i, j) are parameters of the VAR conditional mean. R(i, j) are parameters of the ARCH

standard deviation of the innovation z. See Gallant and Tauchen (2001) or Bansal and

Zhou (2002) for more detailed interpretations of these parameters.
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Table 5: Parameter Estimates of the Term Structure Models
Model 1 Model 2 Model 3

Regime 1 a0 0.0058 0.0027 0.0036
(0.0007) (0.0002) (0.0003)

a1 -0.0907 -0.1501 -0.1488
(0.0096) (0.0036) (0.0006)

σ 0.0025 0.0024 0.0025
(0.0002) (2.6e-5) (0.0003)

θx -10.7774 -15.7689 -15.5444
(1.7709) (0.0070) (0.0053)

θs 0.1438
(0.0337)

Regime 2 a0 0.0086 0.0102
(0.0004) (0.0004)

a1 -0.0735 -0.0916
(0.0022) (0.0005)

σ 0.0030 0.0034
(1.4e-5) (1.4e-5)

θx -17.6468 -16.9962
(0.4841) (0.0975)

θs -0.0789
(0.0109)

Transition ηs(1, 2) -1.2040 -1.1655
Intensity (0.0097) (0.0263)

ηs(2, 1) -1.4706 -1.4457
(0.0505) (0.0130)

χ2 213.34 109.70 60.38
Z-value 27.33 15.28 7.85
d.o.f. 24 18 16

This table reports EMM estimates of the term structure models. Model 1 refers to the

standard 1-factor CIR without regime shifts. Model 2 refers to the 1-factor CIR model

with regime shifts, but the risk of regime shifts is not priced. Model 3 is the 1-factor

CIR model developed in Proposition 4 where the risk of regime shifts is priced. a0, a1

and σ0 are the coefficients in the diffusion process of x(t): dx = (a0 + a1x)dt +
√

σxdw.

θx is coefficient on the market price of diffusion risk, which is given by θx
√

σx. θs is

the coefficient that determines the market price of regime-switching risk λs(z), which is

parameterized as 1 − eθs(z) in the model. The transition intensity of the Markov chain is

given by eηs(z). Numbers in parentheses are the standard errors. The table also reports

the χ2 statistics and its degree of freedom (dof) from the EMM estimation.
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Figure 1: Different Regimes of the Yield Curves
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The figure plots the estimated average yield curves (Model 3) in Regime 1 (s(t) = 1 and

Regime 2 (s(2) = 2)). When computing the yield curves, we fix the short-term interest

rate r(t) at the sample average of the 1-month rate of 5.6%.
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Figure 2: Decompositions of the Term Premiums
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The above two figures report the decompositions of the term premiums for bonds of

various maturities (from 3-month to 30-year). The upper panel plots the bond term

premiums as the sum of two components due to the diffusion risk and the regime-shift

risk respectively. The lower panel plots these two risk components as percentages of the

total term premiums.
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Figure 3: The Impact of Regime-shift Risk on Bond Prices
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The figure reports the impact of regime-shift risk on bond prices. The price differential

is obtained as P∗(τ)−P (τ)
P (τ)

, where P (τ) is the estimated price of the bond of maturity τ

in Model 3. P ∗(τ) is the price of the same bond obtained using the same model and

the same parameter values except holding the market price of regime-shift risk at zero

(θs(z) = 0). In calculating the bond prices, we fix the short-term interest rate r(t) at the

sample average of the 1-month rate of 5.6%. The line with diamonds is the bond price

differential in regime 1. The line with crosses is the bond price differential in regime 2.

40



Figure 4: The Impact of Regime-shift Risk on the Yield Curve
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These two figures illustrate the impact of regime-shift risk on the yield curve in Regime

1 (the upper panel) and Regime 2 (the lower panel) respectively. The solid line is the

estimated yield curve from Model 3. The dashed line is the yield curve obtained using the

same model and the same parameter values except holding the market price of regime-shift

risk at zero (θs(z) = 0). In calculating the yields, we fix the short-term interest rate r(t)

at the sample average of the 1-month rate of 5.6%.
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Figure 5: Bond Price Differentials
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The price differential is obtained as P (Model2)−P (Model3)
P (Model3)

, where P (Model3) is the esti-

mated bond price using Model 3. P (Model2) is the estimated price of the same bond

using Model 2. The difference between the two models is that in Model 2 the risk of

regime shifts is not priced. In calculating the bond prices, we fix the short-term interest

rate r(t) at the sample average of the 1-month rate of 5.6%. The line with diamonds is

the bond price differential in regime 1. The line with crosses is the bond price differential

in regime 2.
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Figure 6: Differences in the Yield Curves
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These two figures report the average yield curves estimated by Model 2 and Model 3

respectively in Regime 1 (the upper panel) and in Regime 2 (the lower panel). The

difference between the two models is that Model 2 doesn’t price the risk of regime shifts.

The solid line is the estimated yield curve from Model 3. The dashed line is the estimated

yield curve from Model 2. When calculating the yields, we fix the short-term interest rate

r(t) at the sample average of the 1-month rate of 5.6%.
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Figure 7: Business cycle and the interest rate regimes
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The figure plots the implied regimes by the term structure model (Model 3 in table 5)

together with the business cycle. NBER business cycle recessions are indicated the shaded

area. The dashed line indicates the regimes implied by the interest rates. We also plot

the 6-month (the thinner solid line) and 5-year interest rate (the thicker solid line) in the

graph.
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