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Abstract

We consider risk sharing problems with a single good and finite number
of states. Agents have a common prior and their preferences are repre-
sented in the expected utility form and are risk averse. We study efficient
and individually rational risk sharing rules satisfying strategy-proofness,
the requirement that no one can ever be benefited by misrepresenting his
preference. When aggregate certainty holds, we show that “fixed price se-
lections” from the Walrasian correspondence are the only rules satisfying
efficiency, individual rationality, and strategy-proofness. However, when
aggregate uncertainty holds, we show that there exists no rule satisfying
the three requirements. Moreover, in the two agents case, we show that
dictatorial rules are the only efficient and strategy-proof rules. Dropping
the common prior assumption in the model, we show that this assumption
is necessary and sufficient for the existence of rules satisfying the three
main requirements in the two agents and aggregate certainty case.
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1 Introduction

Economic transactions are often made prior to the realization of uncertain states.

Agents typically face different types of risks in their endowments and have dif-

ferent attitudes toward risk. Thus, by transacting state-wise, they may share

individual risks for their common benefit. In particular, when there is a single

good, or money, such state-wise transactions are made purely for the purpose of

risk sharing. We consider such simple risk sharing problems.

More precisely, there is a finite number S of states. Agents have individual

endowments, or state-contingent commodity vectors in R
S
+, and preferences over

R
S
+. An economy is characterized by a profile of preferences and individual en-

dowments. An allocation designates how much income each agent receives at each

state. A risk sharing rule, or simply, a rule, associates with each economy a single

feasible allocation. We study rules satisfying the following requirements. Effi-

ciency requires that the choice by a rule should always be such that no one can be

made better off without anyone else being made worse off. Individual rationality

requires that everyone should be at least as well off as in his individual endow-

ment. Strategy-proofness (Gibbard, 1973, Satterthwaite, 1975) requires that no

one can ever be benefited by misrepresenting his preference, independently of

others’ representations.

Without any additional restriction on preferences other than “monotonicity”,

“continuity”, and “convexity”, risk sharing problems are identical to allocation

problems in exchange economies. Thus we can apply the earlier studies by Hur-

wicz (1972), Dasgupta et al. (1979), Hurwicz and Walker (1990), Zhou (1991),

Barberà and Jackson (1995), Schummer (1997), Serizawa (2000), Serizawa and

Weymark (2002) among others. There is no rule satisfying efficiency, individ-

ual rationality, and strategy-proofness as shown by Hurwicz (1972) and Ser-

izawa (1998).1 Moreover, in the two agents case, there is no efficient and strategy-

proof rules satisfying the minimal equity criteria, “non-dictatorship” as shown by

Dasgupta et al. (1979), Zhou (1991), and Schummer (1997). These impossibility

results rely crucially on some “richness conditions” of the family of admissible

preferences in exchange economies.2

In Decision Theory, various systems of behavioral axioms are introduced for

preferences over state-contingent outcomes, or “acts”. These systems characterize

1An even stronger impossibility result is established by Serizawa and Weymark (2002), re-
placing individual rationality with a much weaker axiom called “minimum consumption guar-
antee”.

2Dasgupta et al. (1979), Zhou (1991), and Schummer (1997) rely on successively weaker
form of “richness” condition.
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interesting restricted families of preferences; in particular, the “expected utility

preferences” by von Neumann and Morgenstern (1944) and Savage (1954) and

the “maximin expected utility preferences” by Gilboa and Schmeidler (1989),

etc. Over these restricted domains, we may hope for some possibility results.

In this paper, we consider expected utility preferences. We further assume

that all agents have the same belief over states, or the “common prior” and they

are “risk averse”. We refer readers to Aumann (1976), Bacharach (1985), and

McKelvey and Page (1986) for the motivation of the common prior assumption.

These studies support the emergence of consensus in agents’ beliefs in the en-

vironment with possible communications among agents and public devices for

transforming private information structures.

Our results depend crucially on the nature of aggregate risk. Aggregate cer-

tainty holds when the aggregate income is constant across states. Otherwise

aggregate uncertainty holds. We show that when aggregate certainty holds, there

always exist Walrasian (equilibrium) allocations supported by the price equal to

the common prior (the definition of Walrasian equilibrium is the same as in stan-

dard exchange economies). Hence “fixed price selections” from the Walrasian

correspondence are well-defined when the price is equal to the common prior.

We show that all fixed price selections from the Walrasian correspondence are

efficient , individually rational , and strategy-proof rules and, moreover, they are

the only such rules. However, when aggregate uncertainty holds, we show that

there exists no efficient, individually rational, and strategy-proof rules. There-

fore, aggregate certainty is a necessary and sufficient condition for the existence

of rules satisfying our three requirements. In the two agents case, we establish a

stronger impossibility result: dictatorial rules are the only efficient and strategy-

proof rules. Dropping the common prior assumption in the model, we show that

in the two agents and aggregate certainty case, this assumption is necessary and

sufficient for the existence of rules satisfying the three main requirements. Fi-

nally, extending the model to allow for more than one good, we show that when

there are two agents and at least two goods, dictatorial rules are the only efficient

and strategy-proof rules (without regard to the nature of aggregate risk).

Risk sharing problems with expected utility preferences when agents’ beliefs

are not revealed, are considered by Ju (2001). He shows that in the two agents

case, only dictatorial rules are efficient and strategy-proof. Billot et al. (2000) and

Chateauneuf et al. (2000) consider risk sharing problems with non-expected util-

ity preferences and aggregate certainty. Billot et al. (2000) investigate properties

of efficient allocations for “maximin expected utility preferences” (Gilboa and
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Schmeidler, 1989). Also Chateauneuf et al. (2000) study efficient risk sharing

for the “Choquet-expected utility” case (Schmeidler, 1989). In the case of max-

imin expected utility preference, uncertainty is represented by a set of beliefs,

instead of a single belief, and state-contingent bundles are compared in terms of

the “minimum expected utility” over these multiple beliefs. Ju (2002) studies

efficient and strategy-proof rules for maximin expected utility preferences. In

particular, he shows that in the aggregate certainty case, more variety of rules

are efficient, individually rational, and strategy-proof than in the current model

with expected utility preferences. These rules include non-fixed price selections

from the Walrasian correspondence as well as fixed price selections.

A number of authors have studied implementability of the Walrasian corre-

spondence in Nash equilibrium: see Hurwicz (1979), Schmeidler (1980), Bennassy

(1986), etc. Nash implementation is applicable under the strong informational

requirement that agents know each others’ strategies. Such a requirement is

not needed for the powerful notion of “implementability in dominant strategy

equilibrium”, of which necessary and sufficient condition is strategy-proofness.

However, in most economic environments studied earlier, including the exchange

economy, no selection from the Walrasian correspondence is strategy-proof.3 The

risk sharing problem with aggregate certainty is one of few exceptions. In the lin-

ear production economy, Maniquet and Sprumont (1999) characterizes a unique

efficient and strategy-proof rule that treats agents “anonymously”. The common

feature between this rule and our fixed price selections from the Walrasian cor-

respondence is that there exists a “constant” opportunity set, or budget set, for

each agent and the choice by these rules always maximizes each agent’s utility

over his budget set.

Sobel (1981, 1998) considers exchange economies with risk averse expected

utility preferences. He studies the relation between Walrasian allocations in

markets “after the resolution of uncertainty” and the equilibrium outcomes of

“distortion quasi-games”.4 In distortion quasi-games, agents report their utility

functions and an outcome correspondence associates with reported utility func-

tions a set of allocations. The equilibrium concept is similar, in spirit, to Nash

equilibrium in standard games. Sobel (1998) shows that every Walrasian alloca-

tion is an equilibrium outcome for the distortion quasi-game of which outcome

3As shown by the impossibility results in Hurwicz (1972), Satterthwaite and Sonnenschein
(1981), Zhou (1991), etc

4More precisely, he considers the “constrained” Walrasian equilibrium, which is the same
as Walrasian equilibrium except the boundary equilibrium allocation case. The terminology,
“quai-game” is due to Thomson (1984).

4



correspondence is induced by the “relative utilitarian” bargaining solution. In the

transferable utility and exchange economic environment, Thomson (1984) studies

outcome correspondences selecting only efficient and individually rational allo-

cations for reported preferences. Their studies are related with ours, since they

connect the Walrasian correspondence with efficiency, individual rationality, and

a kind of “realizability” through quasi-games.

Although, in the aggregate uncertainty case or the multiple goods case, we

draw similar conclusions to the previous studies by Hurwicz (1972), Dasgupta

et al. (1979), Zhou (1991), Schummer (1997), and Serizawa (2000) in exchange

economies, their results are not applicable because of the expected utility and

common prior restrictions on preferences. Many useful and common techniques

in exchange economies, for example, the admissibility of “(strong Maskin) mono-

tonic transformation”, the admissibility of common monotonic transformation of

two preferences, the existence of Pareto sets arbitrarily close to the boundary of

the feasibility set, etc., are severely restricted.

This paper is organized as follows. In Section 2, we introduce our model and

define basic concepts. In Section 3, we state the main results. Proofs are collected

in Section 4. We conclude with a few remarks in Section 5.

2 The model and basic concepts

Consider a society consisting of n ≥ 2 agents, N ≡ {1, · · · , n}. There is a finite

number S of uncertain states with S ≥ 2 (for convenience, we also use S to

denote the state space). At each state s ∈ S, a fixed amount Ωs of a single good,

or money, is available in the society, which is the sum of individual incomes. Let

Ω ≡ (Ωs)s∈S be the aggregate endowment. Aggregate certainty holds if the

aggregate endowment is composed of a constant amount across states, that is,

Ω1 = · · · = ΩS. Otherwise, aggregate uncertainty holds. We admit a variety

of “individual endowments” whose sum is equal to Ω. Let W ≡ {(ωi)i∈N ∈
R

S×N
+ : for all i ∈ N, ωi ∈ R

S
+ and

∑
N ωi = Ω} be the set of all profiles of

individual endowments. For each profile (ωi)N ∈ W, the i-th component ωi ≡
(ωis)s∈S indicates agent i’s endowment. Note that although we admit variability

of individual endowments, we assume that aggregate endowment is fixed. Such

an ad hoc feature does not play a crucial role in our results except Theorem 2.

All other results apply even if we assume that both individual and aggregate

endowments are fixed.

We consider the problem of allocating the aggregate endowment among agents
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before the realization of a state. An allocation is a list (zi)N ∈ R
N×S
+ of state-

contingent bundles indexed by agents. Each agent i ∈ N receives the i-th com-

ponent zi ∈ R
S
+. The allocation is feasible if the sum of individual bundles is

equal to the aggregate endowment. Let Z be the set of all feasible allocations.

We use z ≡ (zi)N to denote allocations generically. We use x, y to denote bundles

in R
S
+. Let Z0 ≡ {x ∈ R

S
+ : x � Ω} be the set of all possible bundles at feasible

allocations.5 A full insurance bundle is composed of a constant amount of

money across states. A full insurance allocation is an allocation consisting

of only full insurance bundles. Clearly, there is a feasible full insurance allocation

if and only if aggregate certainty holds.

Throughout the paper, we assume that all agents have the same belief over

the state space, denoted by π ∈ ∆S−1. We call π the common prior. We refer

readers to Aumann (1976), Bacharach (1985), and McKelvey and Page (1986) for

the motivation of the common prior assumption.

Each agent has a preference that is a continuous, strictly monotonic, and

convex weak ordering6 and is represented in the following “expected utility form”.

An expected utility preference Ri is represented by a real valued function

ui : R+ → R as follows: for all x, x′ ∈ R
S
+,

x Ri x′ ⇔
∑
s∈S

πsui (xs) ≤
∑
s∈S

πsui (x
′
s) .

We call ui a utility index for Ri.
7 Preference Ri is risk averse if its utility in-

dex is concave, that is, for all m,m′ ∈ R+ and all λ ∈ [0, 1], ui (λm + (1 − λ)m′) ≥
λui (m)+(1 − λ) ui (m

′) . It is strictly risk averse if the inequality is strict for

all m,m′ ∈ R+ and all λ ∈ (0, 1). It is risk neutral if the inequality holds with

equality for all m,m′ ∈ R+ and all λ ∈ (0, 1).

Let R be the family of all risk averse expected utility preferences and RN the

family of profiles of preferences in R. An economy is characterized by agents’

preferences and individual endowments. Let E ≡ RN × W be the family of all

economies. A “risk sharing rule”, or briefly, a rule is a function ϕ : E → Z

5Throughout the paper, we use the following notation for vector inequality. For all x, x′ ∈
R

S , x � x′ if for all s ∈ S, xs ≥ x′
s. We denote x ≥ x′ if for all s ∈ S, xs ≥ x′

s and for some
r ∈ S, xr > x′

r. We denote x > x′ if for all s ∈ S, xs > x′
s.

6A preference is continuous if for each bundle x, both the set of all bundles weakly preferred
to x and the set of all bundles to which x is weakly preferred are closed. A preference is
monotonic if for all x, y, x is weakly preferred to y whenever x � y and x is preferred to y
whenever x > y. It is strictly monotonic if for all x, y, x is preferred to y whenever x ≥ y.
Finally, a preference is convex if for all x, the set of all bundles preferred to x is convex.

7Utility indices are unique up to “affine transformations”.
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associating with each economy a feasible allocation.

We are interested in rules satisfying the following requirements. A rule ϕ

is efficient if it always recommends an “efficient allocation”, formally, for all

(R,ω) ∈ E , there exists no z ∈ Z such that zi Ri ϕi (R,ω) for all i ∈ N and

zj Pj ϕj (R,ω) for some j ∈ N . It is individually rational if all agents are

at least as well off as in their individual endowments. It is strategy-proof if

no one can ever be benefited by misrepresenting his preference, independently of

others’ representations; formally, for all (R,ω) ∈ E , all i ∈ N, and all R′
i ∈ R,

ϕi (R,ω) Ri ϕi ((R
′
i, R−i) , ω) .

The following rules are crucial in our work. We first define rules that always

select from the following well-known notion of market outcome. A Walrasian

(equilibrium) allocation for (R, ω) is an allocation z ∈ Z that has a price vec-

tor p ∈ ∆S−1 such that for all i ∈ N and all z′i ∈ R
S
+ with p · z′i ≤ p · ωi, zi Ri z′i.

We call p an equilibrium price. For each economy (R,ω) , let W (R,ω) be the

set of Walrasian allocations. We refer to the set valued function W : E � Z

as the Walrasian correspondence. Since preferences are continuous, mono-

tonic, and convex, it is non-empty valued.8 A selection from the Walrasian

correspondence is a rule associating with each economy a “single” Walrasian

allocation. It is well-known that any selection from the Walrasian correspondence

is efficient.9 Since individual endowments are always available in the “Walrasian

budget sets”, it is also individually rational . We will show later that in the ag-

gregate certainty case, some selections from the Walrasian correspondence are

strategy-proof and that in the aggregate uncertainty case, there is no strategy-

proof selection.

A rule ϕ is dictatorial if for each profile of individual endowments ω ∈ W,

there exists an agent i ∈ N, the “dictator”, who always receives the entire ag-

gregate endowment Ω independently of preferences, that is, for all R ∈ RN ,

ϕi (R,ω) = Ω. Note that the dictator may vary across profiles of individual en-

dowments. By strict monotonicity of preferences, any dictatorial rule is efficient.

Since for each ω ∈ W, dictatorial rules are constant across economies with ω,

they are strategy-proof. Since, at least one agent, say j, receives 0, by strict

monotonicity of preferences, no dictatorial rule is individually rational.

8See Mas-Colell, Whinston, and Green (1995).
9See, for instance, Mas-Colell, Whinston, and Green (1995), p. 326.
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3 The results

Our results depend crucially on aggregate risk: aggregate certainty or aggregate

uncertainty.

The Aggregate Certainty Case

In the aggregate certainty case, there exist rules satisfying efficiency, individ-

ual rationality, and strategy-proofness. To show this, note first that by aggregate

certainty, for any profile ω of individual endowments, the full insurance allocation

where each agent receives the expected value of his endowment π · ωi for sure, is

feasible. By risk aversion, this allocation is best for each agent over his budget

set associated with the “common prior price” π. So this full insurance alloca-

tion is a Walrasian allocation supported by equilibrium price π. Now define the

rule that always recommends such full insurance allocation. Then it is efficient

and individually rational. Since the choice does not depend on preferences, it is

strategy-proof.

The above rule is an example of the following important family of rules. A

rule is a fixed price selection from the Walrasian correspondence if there

is a price p such that the rule maps each economy into a Walrasian allocation

supported by the equilibrium price p. Note that there are economies in which the

common prior is the only equilibrium price up to normalization.10 Thus π is the

only price that can be used for a fixed price selection.

Since there can be multiple Walrasian allocations supported by π, there exist

a variety of fixed price selections. However, such a variety is inessential because

all Walrasian allocations supported by π are always indifferent for all agents.11

Since there can be Walrasian allocations supported by prices not parallel to π,

“non-fixed price selections” also exist.

Now we are ready to state our first result.

Theorem 1. In the aggregate certainty case, a rule is efficient, individually ra-

tional, and strategy-proof if and only if it is a fixed price selection from the

Walrasian correspondence.

The independence of the three requirements can be established by the follow-

ing three examples. Any dictatorial rule satisfies efficiency and strategy-proofness,

10In fact, we can show that for every economy with smooth preferences, the common prior is
the unique equilibrium price up to normalization.

11Suppose that z is a Walrasian allocation supported by equilibrium price π. Then by risk
aversion, for all i ∈ N , zi is indifferent to the certain amount π · ωi.
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but violates individual rationality. Consider, next, the “ no trade rule” that rec-

ommends the profile of individual endowments for each economy. Clearly, this

rule is individually rational and strategy-proof. However, it is not efficient since

there are economies in which the profile of individual endowments is not efficient.

Finally, consider the rule selecting a best allocation for agent 1 among efficient

and individually rational allocations. It is easy to show that this rule satisfies

efficiency and individual rationality, but violates strategy-proofness.

The Aggregate Uncertainty Case

We now turn to the aggregate uncertainty case. Note that in the aggregate

certainty case, the set of feasible full insurance allocations is nonempty and is

always included in the “Pareto set” (the set of efficient allocations), independently

of preferences. Such a “partial invariance” of the Pareto set plays an important

role for the existence result in Theorem 1. In the aggregate uncertainty case, no

full insurance allocation is feasible and there is no “focal set” of allocations that

is always included in the Pareto set. The Pareto set varies more substantially

across economies than in the aggregate certainty case. This makes it harder to

design strategy-proof selections from the Pareto set.

We establish two impossibility results similar to the results in exchange economies,

established by Hurwicz (1972), Dasgupta et al. (1979), Zhou (1991), Schum-

mer (1997), and Serizawa (1998). The next result corresponds to the results by

Hurwicz (1972) and Serizawa (1998).

Theorem 2. In the aggregate uncertainty case, there exists no rule satisfying

efficiency, individual rationality, and strategy-proofness.

The proof of Theorem 2 relies crucially on the admissibility of a variety of

profiles of individual endowments in W .

It follows from Theorems 1 and 2 that aggregate certainty is a necessary and

sufficient condition for the existence of rules satisfying the three requirements.

Moreover, we obtain

Corollary 1. The following three statements are equivalent.

(i) Aggregate certainty holds.

(ii) There exists a strategy-proof selection from the Walrasian correspondence.

(iii) There exists an efficient, individually rational, and strategy-proof rule.

The impossibility extends even further in the two agents case. We show that

the non-existence result continues to hold, after replacing individual rationality

with the minimal equity criterion, non-dictatorship. Formally:
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Theorem 3. In the aggregate uncertainty and two agents case, a rule is efficient

and strategy-proof if and only if it is dictatorial.

When there are more than two agents, there exist non-dictatorial rules satisfy-

ing efficiency and strategy-proofness. For example, consider the rule that selects

(Ω, 0, 0) , whenever agent 3’s preference satisfies a certain fixed property (e.g. the

ratio of the first and second partial derivatives at Ω is less than or equal to 1)

and selects (0, Ω, 0) , otherwise (the definition is due to Satterthwaite and Son-

nenschein, 1981 and Zhou, 1991). Although this rule is non-dictatorial, it is quite

close to dictatorship since its range is composed of only most unequal alloca-

tions in which an agent receives the entire aggregate endowment. In exchange

economies, a well-known conjecture by Zhou (1991) and Kato and Ohseto (2001)

is that no other rule satisfies efficiency and strategy-proofness.

Common Prior and the Existence of Efficient, Individually Rational and

Strategy-Proof Rules

In the aggregate certainty case, we showed that the common prior assumption

in our model is sufficient for the existence of efficient, individual rational, and

strategy-proof rules. Is the common prior assumption also necessary? In order

to address this question, we drop the common prior assumption and consider a

more general model with fixed beliefs. Our next result shows that the common

prior assumption is also necessary, in the two agents case.

In what follows, we assume that N ≡ {1, 2} and each agent i ∈ N has

a fixed and non-degenerate belief πi ∈ ∆S−1.12 For each i ∈ N , let Rπi be

the family of risk averse expected utility preferences associated with πi. Let

D (π1, π2) ≡ Rπ1 ×Rπ2 ×W be the domain of two agents economies with fixed

beliefs π1 and π2 and risk averse expected utility preferences.

Theorem 4. In the aggregate certainty case, there exists an efficient, individually

rational, and strategy-proof rule over the two agents domain D (π1, π2) with fixed

beliefs π1 and π2 if and only if the common prior condition holds, that is, π1 = π2.

Multiple Goods and an Impossibility Result

In our model, we assumed that there is only one good, or money, at each state.

Thus, “ex post efficiency” simply means complete usage of aggregate endowment.

12When beliefs are variable (or unrevealed), the same impossibility result as Theorem 3 holds
as shown by Ju (2001).
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When there are more than one goods, ex post efficiency is more complicated and

so variability of Pareto set increases. Will our positive result, Theorem 1, continue

to hold in the multiple goods case? The answer is negative as implied by the next

result.

At each state s ∈ S, there are l goods, l ≥ 2, and the state-s endowment,

denoted by Ωs, is a vector in R
l
++. Let Ω ≡ (Ωs)s∈S be the aggregate endowment.

Let U be the family of utility index functions over R
l
+, which represent monotonic,

continuous, and convex (ex post) preferences over R
l
+. Let Rl-goods be the family

of preferences represented by a utility index in U and the common prior π in the

expected utility form. Let El-goods be the family of all economies with preferences

in Rl-goods.

Theorem 5. When there are two agents, a rule over the multiple goods domain

El-goods with l ≥ 2 is efficient and strategy-proof if and only if it is dictatorial.

4 Proofs

We use the following concepts and notation throughout Section 4. An allocation

z is efficient if z ∈ Z and there exists no z′ ∈ Z such that for all i ∈ N, z′i Ri zi

and for some j ∈ N, z′j Pj zj. For each profile R ∈ RN , let P (R) be the set of

all efficient allocations for R. Note that this set does not depend on individual

endowments but only on the aggregate endowment Ω, which is fixed; so we do

not need the extra argument ω. For each i ∈ N, let Pi (R) ≡ {zi : z ∈ P (R)}.
An allocation z is individually rational at (R, ω) if for all i ∈ N, zi Ri ωi.

Let FI0 be the set of all full insurance bundles. Let FI be the set of all full

insurance allocations. For all p ∈ R
S
+ and all ωi ∈ R

S
+, let B (p, ωi) ≡ {y ∈ R

S
+ :

p ·y ≤ p ·ωi} be the Walrasian budget set with price p and individual endowment

ωi. For all X ⊆ R
S
+ and all Ri ∈ R, let Max[Ri, X] be the set of all best bundles

for Ri in X. For all Ri ∈ R and all x ∈ R
S
+, let UC (Ri, x) ≡ {y ∈ R

S
+ : y Ri x},

SUC (Ri, x) ≡ {y ∈ R
S
+ : y Pi x}, and LC (Ri, x) ≡ {y ∈ R

S
+ : x Ri y} be

the “upper contour set”, “strict upper contour set”, and “lower contour set” at

x, respectively. For all x ∈ R
S
+ and all p ∈ R

S
++, p supports Ri at x if for all

y ∈ UC (Ri, x) , p · y ≥ p · x. For all z ≡ (zi)N ∈ R
N×S, p supports R at z if

for all i ∈ N, p supports Ri at zi.
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4.1 Proof of Theorem 1

By convexity of preferences, in the two states case, if an indifference curve is

steeper at a bundle x than the constant expected value line through x, then x

should be above the full insurance path, or the 45-degree line. If the indifference

curve is flatter, then x should be below the full insurance path. The following

lemma is a generalization of this fact in more than two states case.

Lemma 1. If a risk averse expected utility preference with belief π is supported

by p ∈ ∆S−1 at x ∈ R
S
+. Then for all r, s ∈ S, if πr/πs < pr/ps, xr ≤ xs.

Proof. Let R0 be an expected utility preference with prior π. Let p support R0

at x. Suppose to the contrary that for some r, s ∈ S, πr/πs < pr/ps and xr > xs.

Let x̄ ∈ R
S
+ be such that π · x̄ = π ·x, x̄r = x̄s, and for all q 	= r, s, x̄q ≡ xq. Thus,

πrx̄r + πsx̄s = (πr + πs)x̄r = πrxr + πsxs. Clearly, p · x̄ < p · x. Let u0 be the

utility index for R0. Then since u0 is concave,

πru0 (x̄r) + πsu0 (x̄s) +
∑

q �=r,s u0 (x̄q)

= (πr + πs)u0 (x̄r) +
∑

q �=r,s u0 (xq)

≥ (πr + πs)(
πr

πr+πs
u0(xr) + πs

πr+πs
u0(xs)) +

∑
q �=r,s u0 (xq)

= πru0(xr) + πsu0(xs) +
∑

q �=r,s u0(xq).

Hence, x̄ R0 x. Since x̄ is strictly below the hyperplane through x with normal

vector p, this contradicts to the assumption that p supports R0 at x.

Lemma 2. In the aggregate certainty case, if p ∈ R
S
++ supports R ∈ RN at

z ∈ Z, then for all r, s ∈ S and all i ∈ N, either zir = zis or pr/ps = πr/πs.

Proof. Suppose zir > zis. Then by aggregate certainty, there exists j ∈ N such

that zjr < zjs. Since zir > zis, then by Lemma 1, pr/ps ≤ πr/πs. Similarly, since

zjr < zjs, then by Lemma 1, ps/pr ≤ πs/πr. So pr/ps ≥ πr/πs.

In the aggregate certainty case, we establish the following simple characteri-

zation of efficient allocations.

Lemma 3. In the aggregate certainty case, a feasible allocation z ∈ Z is efficient

for R ∈ RN if and only if the common prior π supports R at z.

Proof. Clearly, if the common prior π supports R at z, then z is efficient. In

order to prove the converse, suppose that z is efficient for R. Since preferences

are represented in the expected utility form associated with π and are risk averse,

if z is a full insurance allocation, then π supports R at z. Suppose that z is not

a full insurance allocation. Let i ∈ N be such that zi /∈ FI0. Let s ∈ S be such

12



that zis 	= zi1. Let p ∈ R
S
++ be a vector supporting R at z.13 Then by Lemma 2,

ps/p1 = πs/π1. Let r ∈ S. Then either zir = zi1 or zir 	= zi1. We show, in both

cases, pr/p1 = πr/π1. When zir = zi1, zir 	= zis. By Lemma 2, pr/ps = πr/πs.

Since ps/p1 = πs/π1, pr/p1 = πr/π1. When zir 	= zi1, by Lemma 2, pr/p1 = πr/π1.

Therefore, p is parallel to the common prior π and so the common prior supports

R at z.

The following lemma is used to prove the uniqueness part of Theorem 1.

Lemma 4. For all x, y ∈ R
S
+ and all risk averse expected utility preferences R0

associated with belief π, if R0 is supported by π at x and π · y > π · x, then there

exists a risk averse expected utility preference R′
0 associated with belief π such that

(i) y P ′
0 x and (ii) for all x′ ∈ LC(R0, x) ∩ UC(R′

0, x), either x′ I ′
0 x or R′

0 is not

supported by π at x′.

Before proving Lemma 4, we consider a special case when x is a full insur-

ance bundle. Since π · y > π · x, there is a sufficiently less risk averse, yet,

strictly risk averse preference R′
0 for which y is preferred to x; so part (i) of the

lemma is met (see Figure 1). Note that x is the only full insurance bundle in

LC (R0, x)∩UC (R′
0, x). Hence by strict risk aversion of R′

0, x is the only bundle

in LC (R0, x) ∩ UC (R′
0, x), where R′

0 is supported by π (see Figure 1). So part

(ii) of the lemma is met. A difficulty arises when x is not a full insurance bundle.

Proof. The following claim is useful to construct a preference satisfying (i) and

(ii).

Claim 1. For all concave index functions u0 : R+ → R, all non-degenerate

probability vectors p ∈ R
S
++, and all x ∈ R

S
+, if

∑
s∈S psu0 (xs) = u0

(∑
s∈S psxs

)
,

then there exist m∗,m∗ ≥ 0 such that x1, · · · , xS ∈ [m∗,m∗] and u is linear

over [m∗,m∗], that is, for all λ ∈ [0, 1] , u0 (λm∗ + (1 − λ) m∗) = λu0 (m∗) +

(1 − λ) u0 (m∗) (see Figure 2).

Proof. Let u0 be a concave index function. We prove the following statement

S(k) with respect to k ∈ {1, · · · , S}, using an induction argument with respect

to k.

S(k): For all non-degenerate probability vectors p ∈ R
S
++ and all x ∈ R

S
+ with

|{x1, · · · , xS}| ≤ k and
∑

s∈S psu0 (xs) = u0

(∑
s∈S psxs

)
, there exist m∗,m∗ ≥ 0

13Under our assumptions on preferences, for every efficient allocation z for R, there exists a
vector p ∈ R

S
++ consisting of positive numbers, which supports R at z.

13
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Figure 1: When x is a full insurance bundle, find a strictly risk averse preference R′
0

that is sufficiently close to the risk neutral preference. Then y P ′
0 x and LC (R0, x) ∩

UC (R′
0, x) = {x}. Note that at each x′ ∈ LC (R0, x)∩UC (R′

0, x), R′
0 is supported by

a vector p′ that is not parallel to π.

such that x1, · · · , xS ∈ [m∗,m∗] and u0 is linear over [m∗,m∗], that is, for all

λ ∈ [0, 1] , u0 (λm∗ + (1 − λ) m∗) = λu0 (m∗) + (1 − λ) u0 (m∗) .

S(1) holds trivially. Let k ∈ {2, · · · , S}. Suppose S(k − 1).

In order to show S(k), consider p ∈ R
S
++ and x ∈ R

S
+ with |{x1, · · · , xS}| = k.

Assume
∑

s∈S psu0 (xs) = u0

(∑
s∈S psxs

)
. Without loss of generality, assume

x1 ≤ x2 ≤ · · · ≤ xS. Let r1, · · · , rk ∈ {1, · · · , S} be such that r1 = 1 < · · · < rk;

xr1 < · · · < xrk
; for all l ∈ {1, · · · , k} and all s ∈ S, if rl ≤ s < rl+1,

xs = xrl
. Let P1 ≡ pr1 + pr1+1 + · · · + pr2−1, P2 ≡ pr2 + · · · + pr3−1, · · · , Pk ≡

prk
+ · · · + pS. Let τ ≡ 1

P1+P2
(P1xr1 + P2xr2) . Let x′ ≡ (τ , · · · , τ , xr3 , · · · , xS) .

Note that
∑

s∈S psxs =
∑

s∈S psx
′
s. Then by risk aversion, u0

(∑
s∈S psxs

) ≥∑
s∈S psu0 (x′

s) ≥
∑

s∈S psu0 (xs) . Since
∑

s∈S psu0 (xs) = u0

(∑
s∈S psxs

)
,

u0

(∑
s∈S

psx
′
s

)
=

∑
s∈S

psu0 (x′
s) =

∑
s∈S

psu0 (xs) .

Since |{x′
1, · · · , x′

S}| = k − 1, then by the first equality and the induction hy-

pothesis, u0 is linear over [τ , xS]. On the other hand, from the second equality,

14



u0 (τ) = 1
P1+P2

(P1u0 (xr1) + P2u0 (xr2)) . Hence by concavity of u0, u0 is linear

over [xr1 , xr2 ] = [x1, xr2 ]. Since τ < xr2 , u0 is linear over [x1, xS]. Therefore, if we

let m∗ ≡ x1 and m∗ ≡ xS, then S(k) holds. �

Let x, y ∈ R
S
+. Let R0 be a risk averse expected utility preference with prior

π such that π · y > π · x and π supports R0 at x. We now construct a risk

averse expected utility preference R′
0 satisfying (i) and (ii) below. Let u0 be the

concave utility index for R0. Let µx ≡ π · x. Since π supports R0 at x, then

by risk aversion, x I0 (µx, · · · , µx) , that is,
∑

s∈S πsu0 (xs) = u0 (π · x) . Then

by Claim 1, there exist m∗,m∗ ≥ 0 such that x1, · · · , xS ∈ [m∗,m∗] and for all

λ ∈ [0, 1], u0 (λm∗ + (1 − λ) m∗) = λu0 (m∗) + (1 − λ) u0 (m∗) . Let u∗
0 : R+ → R

be a differentiable function such that
du∗

0

dm
is constant over [m∗,m∗] and strictly

decreasing over R+\[m∗,m∗] (see Figure 2). Let uneut
0 be a utility index for the

risk neutral preference. For each γ ∈ [0, 1], let uγ
0 ≡ γu∗

0 + (1 − γ) uneut
0 . Let Rγ

0

be the preference represented by uγ
0 in the expected utility form. Since both u∗

0

and uneut
0 are concave, then uγ

0 is also concave. So Rγ
0 is risk averse.

As γ converges to 0, uγ
0 converges to uneut

0 and Rγ
0 converges to the risk neutral

preference Rneut
0 . Since π · y > π · x, then there exists γ∗ > 0 such that y P γ∗

0 x

(see Figure 2). Clearly, Rγ∗
0 satisfies (i). We only have to show that Rγ∗

0 also

satisfies (ii). Let x′ ∈ LC (R0, x) ∩ UC(Rγ∗
0 , x). There are two cases.

Case 1. For all s ∈ S, x′
s ∈ [m∗,m∗]. Then since both uγ∗

0 and u0 are linear

over [m∗,m∗], x1, · · · , xS ∈ [m∗,m∗], and x′
1, · · · , x′

S ∈ [m∗,m∗], then both Rγ∗
0

and R0 order x and x′ in the same way. Therefore, since x′ ∈ LC (R0, x) ∩
UC(Rγ∗

0 , x), x′ Iγ∗
0 x.

Case 2. For some s ∈ S, x′
s 	∈ [m∗,m∗]. Let s ∈ S be such that x′

s /∈ [m∗,m∗].
Since x′ ∈ LC (R0, x)∩UC(Rγ∗

0 , x), there exists r ∈ S such that x′
r 	= x′

s. Without

loss of generality, suppose x′
r < x′

s. Then since duγ∗
0 /dm is strictly decreasing over

R+\[m∗,m∗], πr·duγ∗
0 (x′

r)/dm

πs·duγ∗
0 (x′

s)/dm
> πr

πs
. Hence Rγ∗

0 is not supported by the common

prior π at x′.

We next show that every efficient, individually rational, and strategy-proof

rule always gives each agent a bundle with the same expected value as his en-

dowment.

Lemma 5. In the aggregate certainty case, if a rule ϕ is efficient, individually

rational, and strategy-proof, then for all (R,ω) ∈ E and all i ∈ N, π ·ϕi (R,ω) =

π · ωi.

Proof. Let (R,ω) ∈ E and z ≡ ϕ (R,ω) . Suppose by contradiction that there

15
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Figure 2: Proof of Lemma 4. Construction of R′
0 satisfying (i) y P ′

0 x and (ii) for all
x′ ∈ LC(R0, x) ∩ UC(R′

0, x), either x′ I ′0 x or R′
0 is not supported by π at x′. Utility

index of R′
0, denoted by u′

0, is constructed in the bottom figure.
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exists i ∈ N such that π · zi < π · ωi. By Lemma 3, π supports R at z.

Then by Lemma 4, there exists R′
i ∈ R such that (i) ωi P ′

i zi and (ii) for all

x ∈ LC(Ri, zi)∩UC(R′
i, zi), either x I ′

i zi or R′
i is not supported by π at x. Let z′ ≡

ϕ((R′
i, R−i) , ω). By strategy-proofness, ϕi ((R

′
i, R−i) , ω) ∈ LC(Ri, zi) ∩ UC(R′

i, zi) .

On the other hand, by Lemma 3, π supports R′
i at z′i. Then by (ii), z′i I ′

i zi. Hence

by (i), ωi P ′
i z′i, contradicting individual rationality.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let ϕπ be a fixed price selection from the Walrasian cor-

respondence. Clearly, ϕπ is efficient. Since for all (R,ω) ∈ E and all i ∈ N,

ϕπ
i (R) ∈ Max[Ri, B (π, ωi)], then ϕπ

i (R) Ri ωi. So ϕπ is individually rational.

Note that under ϕπ, each agent i can attain only bundles in B (π, ωi) by mis-

representing his preference and that he attains a best bundle over B (π, ωi) by

truth-telling. Therefore, ϕπ is strategy-proof.

In order to show the converse, let ϕ be a rule satisfying the three requirements.

Let (R,ω) ∈ E and i ∈ N. By Lemma 5, π · ϕi (R,ω) = π · ωi. On the other

hand, by Lemma 3, π supports Ri at ϕi (R,ω). So ϕi (R,ω) ∈ Max[Ri, B(π, ωi)].

Therefore, ϕ (R,ω) is a Walrasian allocation with equilibrium price π. Since

this holds for all (R,ω) ∈ E , ϕ is a fixed price selection from the Walrasian

correspondence.

Remark 1. Proof of Theorem 1 relies only on the richness property of R, which is

established in Lemma 4. Hence the same characterization result as in Theorem 1

applies in any subdomain of R satisfying this property.

4.2 Proofs of Theorems 2 and 3

Throughout this section, we assume aggregate uncertainty, that is, for some r, s ∈
{1, · · · , S}, Ωr 	= Ωs. Without loss of generality, we assume Ω1 ≥ · · · ≥ Ωs ≥
· · · ≥ ΩS.

The following two lemmas are useful to prove Theorem 2. We first show

that under an efficient and individually rational rule, if there is an agent i with

sufficiently large individual endowment, then whenever agent i is risk neutral,

any other risk averse agent is always fully insured.

Lemma 6. Let ω ∈ W be such that for an agent i ∈ N , all zi ∈ Z0 with

π · zi ≥ π ·ωi are in the interior, that is, zi ∈ R
S
++. Then whenever agent i is risk

neutral, all efficient and individually rational rules fully insure all other strictly

risk averse agents.

17



Proof. Let i ∈ N and ω ∈ W be given as above. Let ϕ be efficient and indi-

vidually rational. Suppose that at R ∈ R, agent i is risk neutral and agent j

is strictly risk averse. Let z ≡ ϕ (R,ω) . Since Ri is risk neutral, then by in-

dividual rationality, π · zi ≥ π · ωi. So, by the assumption on ω, zi is in the

interior. Suppose by contradiction that zj is not fully insured. Then there ex-

ists a full insurance bundle z0 such that π · zj = π · z0. By strict risk aversion,

z0 Pj zj. Since zi is in the interior, there exists λ∗ ∈ (0, 1) sufficiently close to

1 such that zi − (1 − λ∗) (z0 − zj) is positive. Let z∗i ≡ zi − (1 − λ∗) (z0 − zj),

z∗j ≡ λzj + (1 − λ) z0, and for each h 	= i, j, z∗h ≡ zh. Clearly, z∗ ∈ Z. By risk

neutrality of Ri, z∗i Ii zi and by strict risk aversion of Rj, z∗j Pj zj. Since z∗ is

feasible, this contradicts efficiency.

We next show that under any efficient, individually rational, and strategy-

proof rule, whenever an agent i with sufficiently large individual endowment is

risk neutral and all others are strictly risk averse, the rule chooses an Walrasian

allocation.

Lemma 7. Let ω ∈ W be such that for an agent i ∈ N , all zi ∈ Z0 with

π · zi ≥ π · ωi are in the interior, that is, zi ∈ R
S
++. Consider an efficient,

individually rational, and strategy-proof rule ϕ. If agent i is risk neutral and all

others are strictly risk averse at R ∈ R, then for all h ∈ N, π· ϕh (R,ω) = π · ωh

and, moreover, ϕ (R,ω) is an Walrasian allocation supported by the common prior

π.

Proof. Let i ∈ N, ω ∈ W, ϕ, and R ∈ RN be given as above. Let z ≡ ϕ (R,ω) .

Since Ri is risk neutral, then by individual rationality, π · zi ≥ π · ωi. So, by the

assumption on ω, zi is in the interior. Clearly, π · ∑j �=i zj ≤ π ·
(∑

j �=i ωj

)
. By

efficiency, there exists p ∈ R
S
+ that supports Rh at zh for all h ∈ N. Then since

zi is an interior bundle and agent i is risk neutral, p is parallel to π. Therefore,

we only have to show that for all j 	= i, π · zj = π · ωj.

Suppose by contradiction that there exists j 	= i such that π · zj < π · ωj.
14

Then there exists R′
j such that ωj P ′

j zj and R′
j is strictly risk averse. By

Lemma 6, agent j is fully insured at both (R,ω) and
((

R′
j, R−j

)
, ω

)
, that is, both

ϕj (R,ω) = zj and ϕj

((
R′

j, R−j

)
, ω

)
are on the monotonic path FI0. Hence, by

strategy-proofness, they should be identical; ϕj

((
R′

j, R−j

)
, ω

)
= zj. Therefore,

ωj P ′
j ϕj

((
R′

j, R−j

)
, ω

)
, contradicting individual rationality.

Using Lemmas 6 and 7, we prove Theorem 2.

14Since π · zi ≥ π · ωi, then if we deny that for all j 	= i, π · zj = π · ωj , then there must exist
j 	= i such that π · zj < π · ωj .
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Figure 3: Let R0 be homothetic and strictly risk averse. Let R1 ≡ R0 and R̄−1 ≡
(R0, · · · , R0). Note that P1

(
R1, R̄−1

)
= 0, Ω and P1

(
R1, R̄−1

) ∩ UC (R1, ω1) = ẑ0
1 , Ω.

Proof of Theorem 2. Suppose by contradiction that there exists an efficient, indi-

vidually rational, and strategy-proof rule ϕ. We derive a contradiction considering

the endowment profile and preferences constructed in the following claim.

Claim 1. There exist ω ∈ W, R̄ ∈ RN , and R1 ∈ R such that (i) every

bundle z1 ∈ Z0 with π · z1 ≥ π · ω1 is in the interior ; (ii) R̄1 is risk neutral ;

(iii) for all i 	= 1, R̄i is strictly risk averse; (iv) for all efficient allocation for(
R1, R̄−1

)
, if z1 R1 ω1, π · z1 > π · ω1.

Proof. Throughout the proof, see Figure 3 for illustration. Let R0 be a strictly

risk averse and homothetic preference.15 Let ω0 ∈ W be a profile of individual

endowments satisfying part (i). Let z0
1 be the intersection of {z1 ∈ Z0 : π · z1 =

π · ω0
1} and 0, Ω. Let µ0 ≡ π · z0

1 . Since z0
1 ∈ 0, Ω, by aggregate uncertainty,

z0
1 	= (µ0, · · · , µ0). Let λ∗ ∈ (0, 1) and z∗1 ≡ λ∗z0

1 +(1 − λ∗) (µ0, · · · , µ0) . Then by

strict risk aversion, z∗1 P0 z0
1 . Therefore, there exists ẑ0

1 ∈ 0, Ω such that ẑ0
1 I0 z∗1

and ẑ0
1 > z0

1 . Clearly, for all z1 ∈ ẑ0
1 , Ω, π · z1 > π · z0

1 = π · z∗1 .
Let ω ∈ W be such that ω1 = z∗1 . Let R̄ be such that R̄1 is risk neutral and

for all i 	= 1, R̄i ≡ R0. Let R1 ≡ R0. We only have to show part (iv). Since R0 is

15Let α ∈ (0, 1) and uα be such that uα (m) ≡ mα for all m ≥ 0. Let R0 be the expected
utility preference with utility index uα.
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homothetic, P1 (R0, · · · , R0)
(
= P1

(
R1, R̄−1

))
= 0, Ω. Hence if z1 is efficient for(

R1, R̄−1

)
, then z1 ∈ 0, Ω. So, if, in addition, z1 R1 ω1 (= z∗1) I1 ẑ0

1 , then z1 ≥ ẑ0
1 .

Hence π · z1 > π · ω1 = π · z∗1 . �

Let ω, R̄, and R1 be given as in Claim 1. Let z̄ ≡ ϕ
(
R̄, ω

)
. Then by

Lemma 7, for all h ∈ N, π · z̄h = π · ωh. By efficiency and individual ratio-

nality, ϕ
((

R1, R̄−1

)
, ω

)
is efficient for (R1, R̄−1) and ϕ1

((
R1, R̄−1

)
, ω

)
R1 ω1.

Hence by part (iv), π · ϕ1

((
R1, R̄−1

)
, ω

)
> π · ω1 = π · z̄1. Therefore, since

R̄1 is risk neutral, ϕ1

((
R1, R̄−1

)
, ω

)
P̄1 z̄1 = ϕ1

((
R̄1, R̄−1

)
, ω

)
, contradicting

strategy-proofness.

In what follows, we considers the two agents case. In order to prove Theorem 3,

we first study how each strategy-proof and efficient rule behaves over the following

subdomain of preference profiles. For all γ0 ≥ 0, let u
γ0
CARA : R+ → R be defined

as follows: for all m ∈ R+,

u
γ0
CARA (m) ≡

{
−e−γ0m, if γ0 > 0;

m, if γ0 = 0.

For each γ0 ≥ 0, utility index u
γ0
CARA exhibits constant “Arrow-Pratt coefficient

of absolute risk aversion” equal to γ0, that is, for all m ∈ R+, −d2u
γ0
CARA(m)/dm2

du
γ0
CARA(m)/dm

=

γ0.
16 Let RCARA be the family of all preferences represented by u

γ0
CARA for some

γ0 ≥ 0. For each (γ1, γ2) ∈ R
2
+, let R (γ1, γ2) be the preference profile in RN

CARA

consisting of two preferences, R
γ1
1 and R

γ2
2 , with utility indices, u

γ1
CARA and u

γ2
CARA,

respectively. Let ECARA ≡ RN
CARA × W. Then a rule ϕ is strategy-proof over

ECARA if and only if for all i ∈ N , all ω ∈ W, all
(
γi, γ−i

) ∈ R
2
+, and all γ′

i ∈ R+,

ϕi

(
R

(
γi, γ−i

)
, ω

)
R

γi
i ϕi

(
R

(
γ′

i, γ−i

)
, ω

)
.

Let C� be the monotonic path from 0 to Ω defined as follows: for all x ∈ R
S
+

with 0 ≤ x ≤ Ω, x ∈ C� if and only if there exists s ∈ {1, · · · , S} such that (i)

s = S and x1 = · · · = xS or (i) s < S, x1 = · · · = xs ≥ Ωs+1, and xs′ = Ωs′ for all

s′ ≥ s+1. Similarly, let C� be the monotonic path from 0 to Ω defined as follows:

for all x ∈ R
S
+ with 0 ≤ x ≤ Ω, x ∈ C� if and only if there exists s ∈ {1, · · · , S}

such that (i) s = S and Ω1 − x1 = · · · = ΩS − xS or (ii) s < S, Ω1 − x1 = · · · =

Ωs −xs ≥ Ωs+1, and xs′ = 0 for all s′ ≥ s+1. For example, in the two states case

with Ω1 > Ω2, C� = {x ∈ R
2
+ : x1 = x2 or x2 = Ω2} is the upper piecewise linear

path of the Edgeworth box in Figure 4 and C� = {x ∈ R
2
+ : Ω1 − x1 = Ω2 − x2 or

16CARA stands for constant absolute risk aversion.

20



x2 = 0} is the lower piecewise linear path.

The following three lemmas are used to prove Theorem 3.

Lemma 8. Let N ≡ {1, 2}. For all (γ1, γ2) ∈ R
2
+, (i) P1 (R (γ1, γ2)) = C� if and

only if γ1 > 0 and γ2 = 0; (ii) P1 (R (γ1, γ2)) = C� if and only if γ1 = 0 and

γ2 > 0.

Proof. We prove part (i) (the proof of part (ii) is the same).

Let γ1 > 0 and γ2 = 0. In order to prove P1 (R (γ1, γ2)) ⊆ C�, suppose x /∈ C�.

Then there exists s∗ ∈ {2, · · · , S − 1} such that x1 = · · · = xs∗−1 	= xs∗ . When

xs∗−1 < xs∗ , consider the bundle x′ that is obtained by changing incomes at states

s∗−1 and s∗ in x to
πs∗−1

πs∗−1+πs∗
xs∗−1+

πs∗
πs∗−1+πs∗

xs∗ , preserving all other components

of x.17 Note that each agent has the same expected income in the new allocation

(x′, Ω − x′) as in (x, Ω − x). Then by risk aversion, agent 1 is better off and by

risk neutrality, agent 2 is indifferent. Hence (x, Ω − x) is not efficient. When

xs∗−1 > xs∗ , since x /∈ C�, then there exists s ≥ s∗ such that xs < Ωs and for all

r ∈ {s∗, · · · , s−1}, xr = Ωr. Consider the bundle x′ that is obtained by changing

incomes at states s∗ − 1 and s in x to
πs∗−1

πs∗−1+πs
xs∗−1 + πs

πs∗−1+πs
xs, preserving all

other components of x. Let xδ ≡ (1 − δ) x + δx′, where δ ∈ (0, 1). Note that

since xs∗−1 > xs, x 	= x′ and x 	= xδ for all δ ∈ (0, 1) and that since xs < Ωs,

for sufficiently small δ ∈ (0, 1),
(
xδ, Ω − xδ

)
is feasible. Note that by strict risk

aversion, agent 1 prefers x′ to x and so prefers xδ to x. Since the expected income

of xδ is the same as that of x, risk neutral agent 2 is indifferent between Ω − xδ

and Ω − x. Hence (x, Ω − x) is not efficient.

In order to prove C� ⊆ P1 (R (γ1, γ2)), let x ∈ C�. Let s∗ ∈ S and α ∈ R+ be

such that α ≥ Ωs∗ and x ≡ (α, · · · , α, Ωs∗ , · · · , ΩS). Let u (·) ≡ u
γ1
1 (·) be the util-

ity index of agent 1. Let π̂ ≡ (u′ (α) π1, · · · , u′ (α) πs∗−1, u
′ (Ωs∗) πs∗ , · · · , u′ (ΩS) πS).

Then π̂ supports agent 1’s preference at x. In order to show efficiency of

(x, Ω − x), we only have to show that π̂ also supports agent 2’s preference at

Ω− x, that is, by risk neutrality, for all x′ ∈ R
S
+ with π · x′ ≤ π · x, π̂ · x′ ≤ π̂ · x.

Let x′ ∈ R
S
+ be such that π ·x′ ≤ π ·x. Since α ≥ Ωs∗ ≥ · · · ≥ ΩS and u is strictly

concave, u′(Ωs∗)
u′(α)

≥ 1, · · · , u′(ΩS)
u′(α)

≥ 1. Hence
1

u′(α)
(π̂ · x′ − π̂ · x)

= π1 (x′
1 − α)+· · ·+πs∗−1

(
x′

s∗−1 − α
)
+u′(Ωs∗)

u′(α)
πs∗ (x′

s∗ − Ωs∗)+· · ·+u′(ΩS)
u′(α)

πS (x′
S − ΩS)

≤ π1 (x′
1 − α) + · · · + πs∗−1

(
x′

s∗−1 − α
)

+ πs∗ (x′
s∗ − Ωs∗) + · · · + πS (x′

S − ΩS)

= π · x′ − π · x ≤ 0.

Therefore π̂ · x′ ≤ π̂ · x.

17Such a change is feasible, since xs∗−1 < xs∗ ≤ Ωs∗ ≤ Ωs∗−1.
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Remaining is to prove the opposite direction, which is evident so omitted.

Lemma 9. Let N ≡ {1, 2}. Let ϕ be efficient and strategy-proof. Then for all

γ, γ′ ∈ R
2
+ and all ω ∈ W,

P (R (γ1, γ2)) = P (R (γ′
1, γ

′
2)) = C� ⇒ ϕ (R (γ1, γ2) , ω) = ϕ (R (γ′

1, γ
′
2) , ω) ;

P (R (γ1, γ2)) = P (R (γ′
1, γ

′
2)) = C� ⇒ ϕ (R (γ1, γ2) , ω) = ϕ (R (γ′

1, γ
′
2) , ω) .

Proof. Let ω ∈ W. Let (γ1, γ2) , (γ′
1, γ

′
2) ∈ R

2
+ be such that P (R (γ1, γ2)) =

P (R (γ′
1, γ

′
2)) = C�. Let z ≡ ϕ (R (γ1, γ2) , ω) and z′ ≡ ϕ (R (γ′

1, γ
′
2) , ω) . Then

by Lemma 8, γ2 = γ′
2 = 0.

Suppose to the contrary that z1 	= z′1. Then since C� is a monotone increas-

ing path from 0 to Ω, either z1 ≤ z′1 or z1 ≥ z′1. Hence, ϕ1 (R (γ1, 0) , ω) ≤
ϕ1 (R (γ′

1, 0) , ω) or ϕ1 (R (γ1, 0) , ω) ≥ ϕ1 (R (γ′
1, 0) , ω) . In either case, we have a

contradiction to strategy-proofness.

Lemma 10. Let N ≡ {1, 2}. Let ϕ be efficient and strategy-proof. Then for all

ω ∈ W, all i ∈ N, and all (γ1, γ2) , (γ′
1, γ

′
2) ∈ R

2
+, if P1 (R (γ1, γ2)) = C� and

P1 (R (γ′
1, γ

′
2)) = C�, then π · ϕi (R (γ1, γ2) , ω) = π · ϕi (R (γ′

1, γ
′
2) , ω) .

Proof. Let ω ∈ W. Let (γ1, γ2) , (γ′
1, γ

′
2) ∈ R

2
+ be such that P (R (γ1, γ2)) =

C� and P (R (γ′
1, γ

′
2)) = C�. Then γ1, γ

′
2 > 0 and γ2 = γ′

1 = 0. Let z ≡
ϕ (R (γ1, γ2) , ω) , z′ ≡ ϕ (R (γ′

1, γ
′
2) , ω) , and z̄ ≡ ϕ (R (0, 0) , ω) . We only have

to show that π · z̄1 = π · z1 and π · z̄2 = π · z′2. By strategy-proofness, z̄1 =

ϕ1 (R(0, 0) , ω) R0
1 ϕ1 (R(γ1, 0), ω) = z1. Therefore, π · z̄1 ≥ π ·z1. Suppose π · z̄1 >

π · z1. Then there exists γ′′
1 > 0 such that z̄1 P

γ′′
1

1 z1. Clearly, P (R(γ′′
1, 0)) = C�.

Hence, by Lemma 9, ϕ(R(γ′′
1, 0), ω) = z. Hence, ϕ1 (R(0, 0), ω) P

γ′′
1

1 ϕ1(R(γ′′
1, 0), ω),

contradicting strategy-proofness. Therefore, π · z̄1 = π · z1. Similarly, we can show

π · z̄2 = π · z′2.
Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let ϕ : E → Z be efficient and strategy-proof. Throughout

the proof, we fix ω ∈ W and so we omit this notation. We assume without loss

of generality that Ω1 ≥ Ω2 ≥ · · · ≥ ΩS. Let z� ∈ C� and z� ∈ C� be such that

for all (γ1, γ2) ∈ R
2
+,

P (R (γ1, γ2)) = C� ⇒ ϕ (R (γ1, γ2)) = z� ;

P (R (γ1, γ2)) = C� ⇒ ϕ (R (γ1, γ2)) = z� .
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Figure 4: Pareto sets for CES preference economies in the two states case. When
γ1, γ2 > 0, P1 (R (γ1, 0)) = C�, P1 (R (0, γ2)) = C�, and P1 (R (γ1, γ2)) is the dotted
path depicted above between C� and C�. We show in Step 1 of Proof of Theorem 3 that
when ϕ is efficient and strategy-proof, ϕ (R (γ1, γ2)) is the intersection z of P (R (γ1, γ2))
and the hyperplane that passes through z� and that is normal to π. Note that z�

1 P
γ1
1 z1.

By Lemma 9, such allocations z� and z� are well-defined. Our proof is com-

posed of the following five steps.

Step 1. For all (γ1, γ2) ∈ R
2
++, π · ϕ1 (R (γ1, γ2)) = π · z�

1 (see Figure 4).

Let z ≡ ϕ (R (γ1, γ2)) . Since ϕ (R(γ1, 0)) = z�, then when agent 2 has pref-

erence R0
2, by strategy-proofness, π · z�

2 ≥ π · z2. Hence, π · z�
1 ≤ π · z1. On the

other hand, since ϕ (R(0, γ2)) = z�, then when agent 1 has preference R0
1, by

strategy-proofness, π · z�
1 ≥ π · z1. Therefore, since by Lemma 10, π · z�

1 = π · z�
1 ,

then π · z�
1 ≥ π · z1.

Step 2. Suppose that γ1, γ2 > 0. Then the projection, P1 (R (γ1, γ2)), of the

Pareto set for CES preference profile R (γ1, γ2) to agent 1’s consumption space is

the monotonic path connecting 0 and Ω, defined as follows (see Figure 4 for the

illustration in the two states case): for all x ∈ P1 (R (γ1, γ2)).

(i) if for some r ∈ S, xr = 0, then there exists the minimal index s ∈ S such

that (i-1) x = (x1, · · · , xs−1, 0, · · · , 0) and for all r = 1, · · · , s − 1, 0 < xr < Ωr

and (i-2) for all r = 1, · · · , s − 2, xr = xs−1 + γ2

γ1+γ2
(Ωr − Ωs−1) and xs−1 ≤
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γ2

γ1+γ2
(Ωs−1 − Ωs);

(ii) if for some r ∈ S, xr = Ωr, then there exists the minimal index s ∈ S

such that (ii-1) x = (x1, · · · , xs−1, Ωs, · · · , ΩS) and for all r = 1, · · · , s − 1,

0 < xr < Ωr and (ii-2) for all r = 1, · · · , s − 2, xr = xs−1 + γ2

γ1+γ2
(Ωr − Ωs−1)

and xs−1 ≥ Ωs + γ2

γ1+γ2
(Ωs−1 − Ωs);

(iii) if for all r ∈ S, 0 < xr < Ωr, then for all r = 1, · · · , S − 1, xr = xS +
γ2

γ1+γ2
(Ωr − ΩS).

First note that if γ1, γ2 > 0 and an allocation (x, Ω − x) is efficient for the

CES preference profile R (γ1, γ2), that is, x ∈ P1 (R (γ1, γ2)), then18

x1 ≥ x2 ≥ · · · ≥ xS; (1)

Ω1 − x1 ≥ Ω2 − x2 ≥ · · · ≥ ΩS − xS. (2)

Let x ∈ P1 (R (γ1, γ2)). Consider case (i). By (1), xs = xs+1 = · · · = xS = 0. By

the minimality of s, for all r ≤ s − 1, xr > 0. Since Ωs − xs = Ωs, then by (2),

for all r ≤ s − 1, xr < Ωr. So we obtain (i-1). By efficiency and (i-1), for all

r = 1, · · · , s − 2, agent 1’s marginal rate of substitution of state-r consumption

with state-(s − 1) consumption at x is the same as agent 2’s marginal rate of

substitution at Ω − x. Hence xr = xs−1 + γ2

γ1+γ2
(Ωr − Ωs−1). Since xs = 0,

agent 1’s marginal rate of substitution of state-(s − 1) consumption with state-s

consumption at x is greater than or equal to agent 2’s marginal rate of substitution

at Ω− x. So xs−1 ≤ γ2

γ1+γ2
(Ωs−1 − Ωs). Proofs of the other two cases are similar.

It can be shown using (i)-(iii) that P1 (R (γ1, γ2)) is a monotonic path from 0 to

Ω.

Step 3. Suppose that γ1, γ2 > 0. Then the projection of the Pareto set for

the CES economy R (γ1, γ2) to agent 1’s consumption space, P1 (R (γ1, γ2)), con-

verges to C� as agent 1’s degree of risk aversion γ1 increases infinitely and agent

2’s degree of risk aversion γ2 is fixed. Similarly, the projection P1 (R (γ1, γ2))

converges to C� as agent 2’s degree of risk aversion γ2 increases infinitely and

agent 1’s degree of risk aversion γ2 is fixed.

18Suppose to the contrary that for some r, s ∈ S with r < s, xr < xs. Then since Ωr ≥ Ωs,
Ωr−xr > Ωs−xs. Therefore since both agents are strictly risk averse, then by increasing state-
r consumption and decreasing state-s consumption from x, not changing the expected value
of x, and making the opposite change in Ω − x, we can make both better off than (x,Ω − x),
contradicting efficiency.
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Let x ∈ P1 (R (γ1, γ2)). If x satisfies part (i) of Step 2, then by (i-2),

||x − 0|| ≤ γ2

γ1 + γ2

√√√√ s−2∑
r=1

(Ωs−1 − Ωs + Ωr − Ωs−1)
2

≤ γ2

γ1 + γ2

√√√√ s−2∑
r=1

(Ωr − Ωs)
2. (3)

If x satisfies part (ii) of Step 2, then by (ii-1) and (ii-2),

||x − (xs−1, · · · , xs−1, Ωs, Ωs+1, · · · , ΩS) || =
γ2

γ1 + γ2

√√√√ s−2∑
r=1

(Ωr − Ωs−1)
2. (4)

Finally if x satisfies part (iii) of Step 2, then

||x − (xS, xS, · · · , xS) || =
γ2

γ1 + γ2

√√√√S−1∑
r=1

(Ωr − ΩS)2. (5)

Since three bundles 0, (xs−1, · · · , xs−1, Ωs, Ωs+1, · · · , ΩS), and (xS, xS, · · · , xS) in

(3)-(5) are all in C�, then for all x ∈ P1 (R (γ1, γ2)),

inf
y∈C�

||x − y|| ≤ γ2

γ1 + γ2

√√√√S−1∑
r=1

(Ωr − ΩS)2. (6)

Note that the right hand side of (6) is independent of x ∈ P1 (γ1, γ2) and converges

to zero as γ1 increases infinitely and γ2 is fixed. Therefore the Hausdorff distance

between the two sets P1 (R (γ1, γ2)) and C� converges to zero.19

Step 4. z�
1 ∈ {0, Ω}.

Suppose, by contradiction, z�
1 /∈ {0, Ω}. Let H

(
π, z�

1

) ≡ {x ∈ R
2
+ : π · x =

π · z�}. Let γ1, γ2 > 0. Since P1 (R (γ1, γ2)) converges to C� as γ2 increases

infinitely and γ1 is fixed, then by aggregate uncertainty, we can make z�
1 not to

be in P1 (R (γ1, γ2)) by choosing sufficiently large γ2 > 0 (see Figure 4). Let z1

be the intersection between P1 (R (γ1, γ2)) and H
(
π, z�

1

)
(since P1 (R (γ1, γ2)) is

a monotonic path and π > 0, the intersection is a singleton). Then by Step 1,

19limγ1→∞ supx∈P1(R(γ1,γ2))
infy∈C� ||x − y|| ≤ limγ1→∞

γ2
γ1+γ2

√∑S−1
r=1 (Ωr − ΩS)2 = 0.

Similarly, we can show limγ1→∞ supx∈C� infy∈P1(R(γ1,γ2))
||x − y|| = 0.
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Figure 5: Although z�
1 is not a full insurance bundle, z�

1 attains the highest welfare
level for R

γ1
1 among feasible allocations that guarantee agent 2 the same expected value

(or income) as in z� (the set of such allocations is depicted as the gray area). Hence
z�
1 P

γ1
1 z1.

z1 = ϕ1 (R (γ1, γ2)). When z�
1 is a full insurance bundle, since both z�

1 and z1

have the same expected value, then by strict risk aversion, z�
1 P

γ1
1 z1. This re-

lation holds, although z�
1 is not a full insurance bundle. To explain this, note

that z� is an efficient allocation for the economy R (γ1, 0) where agent 1 has the

same strictly risk averse CES preference R
γ1
1 and agent 2 has the risk neutral

preference R0
2. Hence z�

1 attains the highest welfare level for R
γ1
1 among feasible

allocations that guarantee agent 2 the same expected value as in z�. Since al-

location (z1, Ω − z1) satisfies this constraint and R
γ1
1 is strictly risk averse, then

z�
1 P

γ1
1 z1 (see Figure 5).

Since P1 (R (γ1, γ2)) converges to C� as γ1 increases to infinity and γ2 is

fixed, then the intersection between P1 (R (γ1, γ2)) and H
(
π, z�

1

)
converges to

z�
1 . Therefore, since z�

1 P
γ1
1 z1, then for sufficiently large value of γ1, denoted

by γ′
1, the intersection between P1 (R (γ′

1, γ2)) and H
(
π, z�

1

)
, denoted by z′1,

is preferred to z1 by agent 1 with preference R
γ1
1 (see Figure 6). Since, by
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Figure 6: Proof of Step 4 in Proof of Theorem 3. When agent 1 increases his degree of
risk aversion sufficiently to γ′

1, the outcome changes to z′, that is, ϕ (R (γ′
1, γ2)) = z′,

which is better than the truthful outcome z = ϕ (R (γ1, γ2)).

Step 1, z′1 = ϕ (R (γ′
1, γ2)), ϕ violates strategy-proofness, contradicting the ini-

tial assumption.

Step 5. There exists i ∈ {1, 2} such that for all R ∈ RN , ϕi (R) = Ω.

By Step 4, z�
1 = 0 or z�

1 = Ω. In the first case, consider an arbitrary profile

R ∈ RN . If (γ1, γ2) is such that P (R (γ1, γ2)) = C�, then ϕ (R (γ1, γ2)) = (0, Ω).

Hence by strategy-proofness, when agent 1 has preference R
γ1
1 , he cannot avoid the

worst bundle 0 reporting R1, given the report R
γ2
2 by agent 2. So ϕ (R1, R

γ2
2 ) =

(0, Ω). Next by strategy-proofness, when agent 2 has preference R2, he still gets

the best bundle Ω, given the report R1 by agent 1. So ϕ (R) = (0, Ω). Therefore

ϕ is dictatorial. We apply the same argument for the other case with z�
1 = Ω.

Remark 2. Proof of Theorem 3 shows that every efficient and strategy-proof

rule defined over ECARA is dictatorial. Therefore, since preferences are strictly

monotonic, the same impossibility result applies in every restricted domain in-

cluding ECARA.
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4.3 Proof of Theorem 4

Throughout this section, we assume that N ≡ {1, 2} and Ω ≡ (ς, · · · , ς), where

ς > 0 and that each agent i ∈ N has a fixed non-degenerate belief πi ∈ ∆S−1. The

following subfamilies of preferences are useful. For each i ∈ N , let RB,πi be the

family of strictly risk averse EU preferences associated with πi, of which utility

indices are differentiable with derivatives nowhere equal to 0 or ∞ over [0, ς ].

Let DB ≡ RB,π1 × RB,π2 × W be the family of all economies with preference

profiles in RB,π1 × RB,π2 . Note that for all Ri ∈ RB,πi represented by utility

index ui and for all s, t ∈ S, {MRSs,t (x; Ri) : x ∈ Z0} = [πi
sDui(ς)

πi
tDui(0)

, πi
sDui(0)

πi
tDui(ς)

],

where Dui (·) is the first order derivative of ui and MRSs,t (x; Ri) ≡ πi
sDui(xs)

πi
tDui(xt)

is

the “marginal rate of substitution” of state s income with state t income at x. So

MRSs,t (·; Ri) is maximized at x with (xs, xt) = (0, ς) and minimized at x with

(xs, xt) = (ς, 0). Thus, for all z ∈ Z, MRSs,t (z1; R1) ≥ MRSs,t (z2; R2) if and

only if π1
sDu1(ς)

π1
t Du1(0)

≥ π2
sDu2(0)

π2
t Du2(ς)

.

In most of our proofs below, we will assume, without loss of generality,20 that

the ratio of two agents’ probabilities of each state is decreasing in state index,

that is, π1
1/π

2
1 > · · · > π1

S/π2
S. Under this assumption, there are economies of

which Pareto sets can be described by the following set. Let Clr ≡ {x ∈ Z0 : x ≡
(ς, · · · , ς, α, 0, · · · , 0) where α ∈ [0, ς] is the s-th component of x for some s ∈ S}
be the “lower right corner” of the Edgeworth box.

Lemma 11. Assume that N ≡ {1, 2} and Ω ≡ (ς, · · · , ς), where ς > 0, and that

π1
1/π

2
1 > · · · > π1

S/π2
S. For all R ∈ DB, P1 (R) = C lr if and only if for all s ∈ S

and all t > s, π1
sDu1(ς)

π1
t Du1(0)

≥ π2
sDu2(0)

π2
t Du2(ς)

.

Proof. For simplicity, we prove the lemma in the two states case. However, our

argument can be extended straightforwardly. Let R ∈ RB,π1 × RB,π2 . Suppose

P1 (R) = C lr. Then if
π1

1Du1(ς)

π1
2Du1(0)

<
π2

1Du2(0)

π2
2Du2(ς)

, then ((ς, 0) , (0, ς)) is not efficient,

contradicting P1 (R) = C lr. Hence
π1

1Du1(ς)

π1
2Du1(0)

≥ π2
1Du2(0)

π2
2Du2(ς)

. In order to prove the

converse, suppose
π1

1Du1(ς)

π1
2Du1(0)

≥ π2
1Du2(0)

π2
2Du2(ς)

. Then by strict risk aversion, for all z ∈ Z,

if z1 /∈ C lr,
π1

1Du1(z11)

π1
2Du1(z12)

>
π2

1Du2(z21)

π2
2Du2(z22)

. Therefore we can make both agents better

off moving toward C lr and so z is not efficient. Hence P1 (R) ⊆ C lr. The

opposite inclusion is evident, since for all z ∈ Z with z1 ∈ C lr, MRS1,2 (z1; R1) ≥
MRS1,2 (z2; R2) .

20If π1
s/π2

s = π1
s+1/π2

s+1, then at every efficient allocation for economies with strict risk
aversion, each agent gets the same amount in state s as in state s + 1. Otherwise, a Pareto
improvement exists because of aggregate certainty and strict risk aversion. Therefore, as long
as we are interested in efficiency, we can regard both states as a single composite state.
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Lemma 12. Assume that N ≡ {1, 2} and Ω ≡ (ς, · · · , ς), where ς > 0, and

that π1
1/π

2
1 > · · · > π1

S/π2
S. If ϕ is efficient and strategy-proof, then for all

(R,ω) , (R′, ω′) ∈ DB with P1 (R) = P1 (R′) = C lr and ω = ω′, ϕ (R,ω) =

ϕ (R′, ω′).

Proof. For simplicity, we prove the lemma in the two states case. However, our

argument can be extended straightforwardly. Let ϕ and (R,ω) , (R′, ω′) ∈ DB be

given as above. By Lemma 11,
π1

1Du1(ς)

π1
2Du1(0)

≥ π2
1Du2(0)

π2
2Du2(ς)

and
π1

1Du′
1(ς)

π1
2Du′

1(0)
≥ π2

1Du′
2(0)

π2
2Du′

2(ς)
.

Let R′′
1 be one of R1 and R′

1, which has greater MRS at (ς, 0) (or equiva-

lently, R′′
1 solves max{Du1(ς)

Du1(0)
,

Du′
1(ς)

Du′
1(0)

}). Let R′′
2 be one of R2 and R′

2, which has

smaller MRS at (0, ς) (or equivalently, R′′
2 solves min{Du2(0)

Du2(ς)
,

Du′
2(0)

Du′
2(ς)

}). Then by

Lemma 11, P1 (R′′
1, R2) = P1 (R′′

1, R
′
2) = C lr and so P1 (R′′

1, R
′′
2) = C lr. Now by

efficiency, both ϕ1 ((R1, R2) , ω) and ϕ1 ((R′′
1, R2) , ω) are in C lr. Since C lr is a

monotonic path and preferences are strictly monotonic, by strategy-proofness,

ϕ1 ((R1, R2) , ω) = ϕ1 ((R′′
1, R2) , ω). Hence ϕ ((R1, R2) , ω) = ϕ ((R′′

1, R2) , ω).

Again by efficiency, ϕ1 ((R′′
1, R

′′
2) , ω) ∈ C lr. Applying strategy-proofness for

agent 2, ϕ2 ((R′′
1, R

′′
2) , ω) = ϕ2 ((R′′

1, R2) , ω). Therefore, ϕ ((R1, R2) , ω) = ϕ ((R′′
1, R

′′
2) , ω).

We can show ϕ ((R′
1, R

′
2) , ω) = ϕ ((R′′

1, R
′′
2) , ω), using the same argument as

above.

Lemma 13. If π1
1/π

2
1 > · · · > π1

S/π2
S and x ∈ C lr\{0, Ω}, then π1 · x > π2 · x.

Proof. Suppose π1
1/π

2
1 > · · · > π1

S/π2
S. We show that for all s = 0, · · · , S − 1 and

all α ∈ [0, ς ], if (i) s 	= S − 1 or α < ς and (ii) s 	= 0 or α > 0,

π1
1ς + · · · + π1

sς + π1
s+1α > π2

1ς + · · · + π2
sς + π2

s+1α.

Note that π1
1/π

2
1 > 1 > π1

S/π2
S. We first show that for all s = 1, · · · , S − 1,

π1
1 + · · · + π1

s > π2
1 + · · · + π2

s. (∗)

When s = 1 or S − 1, the inequality (∗) follows from π1
1/π

2
1 > 1 > π1

S/π2
S.

Now let s ≡ S − 2. Note that for all a, b, c, d > 0, if a/b > c/d, then a/b >

(a + c) / (b + d) > c/d. Using this fact, we obtain
π1

1+···+π1
S−2

π2
1+···+π2

S−2
>

π1
S−1

π2
S−1

and also

π1
1 + · · · + π1

S−2

π2
1 + · · · + π2

S−2

>
π1

1 + · · · + π1
S−2 + π1

S−1

π2
1 + · · · + π2

S−2 + π2
S−1

>
π1

S−1

π2
S−1

.

Since
π1

1+···+π1
S−2+π1

S−1

π2
1+···+π2

S−2+π2
S−1

> 1, then
π1

1+···+π1
S−2

π2
1+···+π2

S−2
> 1, establishing the inequality (∗)

for s = S − 2. Proceeding this way, we can establish the inequality (∗) for all
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s = 1, · · · , S − 1.

Now we complete the proof using the above inequality (∗). Let α ∈ [0, ς] and

s = 2, · · · , S − 2. Then

π1
1ς + · · · + π1

sς + π1
s+1α

= (ς − α) (π1
1 + · · · + π1

s) + α
(
π1

1 + · · · + π1
s + π1

s+1

)
> (ς − α) (π2

1 + · · · + π2
s) + α

(
π2

1 + · · · + π2
s + π2

s+1

)
= π2

1ς + · · · + π2
sς + π2

s+1α.

Remaining is the proof for s = 1 and s = S − 1, which is the same.

Proof of Theorem 4. Let Ω ≡ (ς, · · · , ς), where ς > 0. By Theorem 1, if π1 = π2,

there exist efficient, individually rational, and strategy-proof rules. We prove the

converse by showing that when π1 	= π2, there exists no rule satisfying the three

requirements. For simplicity, we prove the non-existence in the two states case.

However, our argument can be extended straightforwardly.

Suppose by contradiction that there is a rule ϕ satisfying the three require-

ments. In what follows, we will fix ω1 = ω2 = Ω/2 and, therefore, we will

skip notation ω. In what follows, we suppose, without loss of generality, that

π1
1/π

2
1 > · · · > π1

S/π2
S. By Lemma 12, there is zlr ∈ Z such that for all R ∈ DB, if

P1 (R) = C lr, then ϕ (R) = zlr. Note that by individual rationality, zlr
1 /∈ {0, Ω}.

For each i ∈ N , let Rneut
i be the risk neutral preference with belief πi. We derive

a contradiction through the following three steps.

Step 1. For all i ∈ N and all Ri ∈ RB with belief πi, if P1

(
Ri, R

neut
−i

)
= C lr,

then ϕ
(
Ri, R

neut
−i

)
= zlr.

Without loss of generality, let i = 2. Let R2 be a preference in RB with

belief π2 such that P1 (Rneut
1 , R2) = C lr. Thus, MRS1,2 of R2 at (0, ς) is less than

or equal to π1
1/π

1
2. Note that using Lemma 11, we can find R1 such that (R1, R2) ∈

DB and P1 (R1, R2) = C lr.21 Then by strategy-proofness, ϕ1 (Rneut
1 , R2) = ϕ1 (R1, R2) =

zlr
1 . Therefore ϕ (Rneut

1 , R2) = zlr.

Step 2. For all i ∈ N , there is a preference R∗
i ∈ RB with belief πi such that

P1

(
R∗

i , R
neut
−i

)
= C lr and the certainty equivalent of zlr

i , denoted by CE
(
zlr

i ; R∗
i

)
,

is less than
(
µ

(
zlr

i ; π1
)

+ µ
(
zlr

i ; π2
))

/2, where µ
(
zlr

i ; πj

)
= πj · zlr

i for all j =

i,−i.

Without loss of generality, let i = 2. Since zlr
1 ∈ C lr\{0, Ω}, then by Lemma 13,

µ
(
zlr
1 ; π1

)
> µ

(
zlr
1 ; π2

)
and so µ

(
zlr
2 ; π1

)
< µ

(
zlr
2 ; π2

)
. Let û2 be the piecewise

21This is possible, since we assume π1
1

π2
1

> · · · >
π1

S

π2
S
.
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linear index function defined as follows: for all m ≥ 0,

û2 (m) ≡
{

αm, if m ≤ µ
(
zlr
2 ; π1

)
;

βm, if m > µ
(
zlr
2 ; π1

)
,

where α > β > 0 and
π2

1α

π2
2β

=
π1

1

π1
2
. Let R̂2 be represented by û2 and π2. Then

R̂2 is risk averse and CE(zlr
2 , R̂2) = µ

(
zlr
2 ; π1

)
. For each δ ∈ (0, 1), smoothen

û2 over
(
µ

(
zlr
2 ; π1

) − δ, µ
(
zlr
2 ; π1

)
+ δ

)
and preserve û2 outside this area. Then

we obtain a concave and differentiable index function ûδ
2. Note that ûδ

2 converges

to û2 as δ goes to 0 and that the slope of ûδ
2 is between α and β. Let ū2 be a

differentiable and strictly concave index function of which slope is bounded above

by α and below by β. For each δ ∈ (0, 1) , let uδ
2 ≡ (1 − δ) ûδ

2 + δū2. Then as δ

goes to 0, uδ
2 converges to û2 and moreover for all δ and all x ∈ Z0,

π2
1Duδ

2(x1)

π2
2Duδ

2(x2)
≤

π2
1α

π2
2β

=
π1

1

π1
2
. Therefore, if we let Rδ

2 be the preference represented by uδ
2 and π2, then

P1

(
Rneut

1 , Rδ
2

)
= C lr and CE

(
zlr
2 , Rδ

2

)
converges to CE(zlr

2 ; R̂2) = µ
(
zlr
2 ; π1

)
as

δ goes to 0. Therefore, for sufficiently small δ∗ > 0, P1

(
Rneut

1 , Rδ∗
2

)
= C lr and

CE
(
zlr
2 , Rδ∗

2

)
<

(
µ

(
zlr
2 ; π1

)
+ µ

(
zlr
2 ; π2

))
/2. So if we let R∗

2 ≡ Rδ∗
2 , the desired

property is met.

Step 3. We now complete the proof. Let R∗
1 and R∗

2 be the two preferences de-

scribed in Step 2. Since ϕ (Rneut
1 , R∗

2) = zlr, then by individual rationality of agent

2 with R∗
2, ς/2 ≤ CE

(
zlr
2 ; R∗

2

)
(note that both agents have the same individual

endowment (ς/2, ς/2)). Therefore, ς/2 <
(
µ

(
zlr
2 ; π1

)
+ µ

(
zlr
2 ; π2

))
/2. Applying

the same argument for (R∗
1, R

neut
2 ), ς/2 <

(
µ

(
zlr
1 ; π1

)
+ µ

(
zlr
1 ; π2

))
/2, that is,

ς/2 >
(
µ

(
zlr
2 ; π1

)
+ µ

(
zlr
2 ; π2

))
/2, which contradicts the previous inequality.

4.4 Proof of Theorem 5

Consider the multiple goods domain El-goods with l ≥ 2. In what follows, we focus

on the family of economies with fixed aggregate endowment Ω ≡ (Ωs)s∈S ∈ R
l×S

and fixed individual endowments (ωi)i∈N ∈ R
l×n. Since both endowments and

the common prior π are fixed, we can skip endowments and denote preferences

by their utility indices, when describing an economy. To distinguish notation in

the multiple goods model from the single good model, we use ϕ to denote rules

over El-goods, z to denote allocations, and zi to denote i’s bundle at z. We first

establish a useful lemma.

Lemma 14. Suppose that there exist l ≥ 2 goods and Ω1 = · · · = ΩS. For all

agent i ∈ N , let fi be a continuous, monotonic, and concave real valued function
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over R and let ui ∈ U be a concave utility index function over R
l
+. If there is an

agent i ∈ N such that fi or ui is strictly concave, then for all efficient allocations

z for the economy with preferences (fj ◦ uj)j∈N , we have ui (zi1) = · · · = ui (ziS).

Proof. Let i ∈ N be the agent for whom fi or ui is strictly concave. Suppose to

the contrary that for some r, s ∈ S, ui (zir) 	= ui (zis). Let z′ be such that for all

j ∈ N, z′j ≡
∑

s∈S πszjs. Then by aggregate certainty, z′ is also feasible. For all

j ∈ N, by concavity and monotonicity of fj and uj,

fj

(
uj

(∑
s∈S

πszis

))
≥ fj

(∑
s∈S

πsuj (zjs)

)
≥

∑
s∈S

πsfj (uj (zjs)) .

If fi is strictly concave, then the second inequality is strict for j = i, since

ui (zir) 	= ui (zis). If ui is strictly concave, then the first inequality is strict for

j = i. Therefore, z′ is a Pareto improvement upon z, contradicting efficiency.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Suppose that ϕ is efficient and strategy-proof. We will show

that ϕ is dictatorial, applying a result by Ju (2001) and also Theorem 3. Note

first that for all u ∈ UN , ϕ (u) is “ex post efficient”, that is, for all s ∈ S,

ϕs (u) is efficient for the ex post exchange economy with preference profile u and

endowment Ωs. Our proof is divided into two cases.

Case 1. Aggregate certainty case, that is, Ω1 = · · · = ΩS.

Let U0 be a family of concave utility functions u in U of the following quasi-

linear form: for all x ∈ R
l
+, u (x) ≡ a x1

Ωs1
+

∑l
k=2

(
xk

Ωsk
+ 1

)ρ

, where a > 0 and

ρ ∈ (0, 1). Note that the projection of Pareto set of the ex post economy (u,Ωs)

to agent 1’s consumption space is a monotonic path from 0 to Ωs. Fix a strictly

concave function f over R. Let U∗ be the family of utility functions v ≡ f ◦ u,

where u ∈ U0. We show that ϕ is “ex post strategy-proof over UN
∗. ”, that is,

for all u ∈ UN
∗. and all u′

i ∈ U∗, ui (ϕsi (ui, u−i)) ≥ ui (ϕsi (u
′
i, u−i)). To show

this, suppose by contradiction that ui (ϕsi (ui, u−i)) < ui (ϕsi (u
′
i, u−i)). Then by

strategy-proofness, there exists another state r 	= s such that ui (ϕri (ui, u−i)) >

ui (ϕri (u
′
i, u−i)). By aggregate certainty, both ϕsi (u

′
i, u−i) and ϕri (u

′
i, u−i) are

efficient for the ex post economy ((u′
i, u−i) ,Ωs). Since the Pareto set for the

ex post economy is a monotonic path, then u′
i (ϕsi (u

′
i, u−i)) 	= u′

i (ϕri (u
′
i, u−i)),

contradicting the previous lemma.

It is shown by Ju (2001) (see Proof of Proposition 5 in Ju (2001)) that if a

rule over the domain UN
∗ of ex post economies is efficient and strategy-proof, then
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it is dictatorial. Therefore, ϕ is “ex post dictatorial over UN
∗ ”, that is, for all

s ∈ S, ϕs is dictatorial over UN
∗ . By the previous lemma, we conclude that ϕ is

dictatorial over UN
∗ . Finally, using the same argument as in the final paragraph of

the proof of Theorem 3, we can show that ϕ is dictatorial over the entire domain

UN .

Case 2. Aggregate uncertainty case.

By aggregate uncertainty, there are at least two states, r, s ∈ S, with different

endowments, that is, Ωr 	= Ωs. Then there exists a vector ū ∈ R
l
++ such that

ū ·Ωr 	= ū ·Ωs. Consider the linear function ū : R
l
+ → R defined as follows: for all

x ∈ R
l
+, ū (x) ≡ ū ·x. Now for each monotonic and concave function f : R+ → R,

let uf ≡ f ◦ ū be the concave transformation of ū by f . Let Uū be the collection of

all such concave transformations of ū and Eū,l-goods ≡ Uū×W. Then we can embed

the restricted domain Eū,l-goods in the single good model as follows. With each

l-goods problem
((

ufi
)

i∈N
, (ωi)i∈N

)
∈ Eū,l-goods, we associate the single good

problem (fi, ωi)i∈N , where fi is i’s utility index and ωi ≡ ū · ωi. For each single

good problem (fi, ωi)i∈N and each j ∈ N, let ϕj

(
(fi)i∈N

) ≡ ū·ϕj(
(
ufi

)
i∈N

). Then

since ϕ is efficient and strategy-proof, so is ϕ over the single good domain. Now

applying Theorem 3, ϕ is dictatorial. Hence ϕ is also dictatorial over Eū,l-goods.

Finally, using the same argument as in the final paragraph of the proof of Theorem

3, we can show that ϕ is dictatorial over the entire domain.

5 Concluding remarks

We showed that the well-known conflict between efficiency and strategy-proofness

in exchange economies prevails also in risk sharing problems when aggregate un-

certainty holds (Theorems 2 and 3). The conflict disappears when aggregate

certainty holds. In this case, rules selecting from the Walrasian equilibrium allo-

cations based on a fixed price are shown to be the only rules satisfying the two

requirements as well as individual rationality (Theorem 1).

In our model, the profile of individual endowments is variable. Such a fea-

ture does not play an essential role in our results except Theorem 2. Proof of

Theorem 2 crucially relies on the admissibility of individual endowments profiles

in which the endowment of an agent is sufficiently large. We leave the proof of

the same impossibility result for fixed individual endowments economies for the

future research.

In the aggregate uncertainty case, dropping individual rationality, we showed

that when there are only two agents, dictatorial rules are the only efficient and
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strategy-proof rules (Theorem 3). It remains as an open question whether a

similar result holds for the case of arbitrary number of agents.

It is also left for the future research to investigate strategy-proofness, apart

from efficiency, however, in conjunction with several auxiliary requirements such

as individual rationality, “non-bossiness” (Satterthwaite and Sonnenschein, 1981),

“symmetry”, “continuity”, etc. In exchange economies, Barberà and Jackson (1995)

establish several characterization results in this regard. They identify certain in-

teresting families of strategy-proof rules violating efficiency. These rules continue

to be strategy-proof in risk sharing problems. However, it remains as an open

question whether the same uniqueness results can be obtained.
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