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Abstract

When resources are divided among agents, the characteristics of the agents are taken into
consideration. A simple example is the bankruptcy problem, where the liquidation value
of a bankrupt firm is divided among the creditors based on their claims. We characterize
division rules under which no group of agents can increase the total amount they receive
by transferring their characteristics within the group. By allowing agents’ characteristics to
be multi-dimensional and choosing the meaning of variables appropriately, our model can
subsume a number of existing and new allocation problems, such as cost sharing, social choice
with transferable utilities, income redistribution, bankruptcy with multiple types of assets,
probability updating, and probability aggregation. A number of existing and new results in
specific problems are obtained as corollaries.
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1 Introduction

Resource allocation problems often take the following form. There is an amount of a homogeneous
and infinitely divisible good (e.g., money) to be divided among a set of agents, and each agent’s
relevant characteristics are summarized by a vector. For example, when the liquidation value of
a bankrupt firm is divided among its creditors, the relevant characteristics of each creditor are
the amount of his claim, possibly categorized by the type of assets. Similarly, when the cost
of a service is divided among its users, each user’s usage level will be taken into account. For
allocation problems of this kind, we study allocation rules that assign an allocation to each possible
problem in a way that is immune to strategic transfers of characteristics among agents. That is, we
search for allocation rules such that no group of agents can increase the total amount they receive
by reallocating their characteristic vectors within the group in advance. This non-manipulability
condition, introduced by Moulin [16], is calledreallocation-proofness.

As an illustration, consider the standard bankruptcy problem (with a single type of assets)
studied by O’Neill [20] and Aumann and Maschler [2].1 Suppose that a bankrupt firm has 3
creditors and the amounts that the firm owes to these creditors are(c1,c2,c3) = (1,3,3). Suppose
also that the firm’s liquidation value is 6, which is not enough to pay off all the creditors in full. For
this specific problem, an allocation rule assigns an award vector(x1,x2,x3) with x1 +x2 +x3 = 6.

A well-known allocation rule in this context is theconstrained equal award rule, which
chooses the award vector that is closest to equal division subject to the constraint that no cred-
itor gets more than his claim:xi ≤ ci for each i.2 For the above problem, the rule chooses
(x1,x2,x3) = (1,2.5,2.5). While this rule has great appeal and plays a prominent role in the lit-
erature, it is manipulable via transfers of claims among creditors. Indeed, if creditor 2 transfers
one unit of his claim to creditor 1, the claim vector changes to(c′1,c

′
2,c

′
3) = (2,2,3) and the con-

strained equal award rule chooses(x′1,x
′
2,x

′
3) = (2,2,2). Thus the total award to creditors 1 and 2

increases to 4 from 3.5. With an appropriate side payment from 1 to 2, both creditors gain from
the manipulation.

An example of a reallocation-proof rule is theproportional rule, which divides the firm’s value
proportionally to claims. For the above example, this rule chooses(x1,x2,x3) = (6/7,18/7,18/7).
The total awards to creditors 1 and 2,x1+x2 = 6(c1+c2)/(c1+c2+c3), depend onc1 andc2 only
through the sumc1 +c2, which shows that the rule is reallocation-proof.

We consider a general class of allocation problems including bankruptcy problems as a special
case. Characteristicsci are allowed to be multi-dimensional, which enables us to deal with, for
example, social choice with transferable utilities (whereci denotesi’s valuation function) as well
as bankruptcy problems with multiple types of assets. Further, the amount to divide may depend
on characteristic vectors, as in the problems of cost sharing (whereci is i’s usage level) and income
redistribution (whereci is i’s income level).

The model can also formulate rather different sets of problems if we vary the meaning of vari-

1The class of bankruptcy problems with a single type of assets was introduced by O’Neill [20], and since then a
large literature has been developed. See Moulin [19] and Thomson [24, 26] for surveys.

2Formally, the rule assignsxi = min{λ ,ci} whereλ is uniquely determined by∑3
i=1min{λ ,ci}= E, whereE is the

liquidation value (E = 6 in the example).
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ables in the model. For example, by replacing “agents” with “states of the world” and “awards”
with “probabilities,” we can consider problems of probability updating (Rubinstein and Zhou [22]
and Majumdar [14]3) and probability aggregation (McConway [15] and Rubinstein and Fishburn
[21]), where probabilities are allocated among the states. In the probability aggregation problem,
for instance, a set of forecasters have their own forecasts, or probabilistic beliefs over the states.
What an allocation rule does is to pool these forecasts as inputs and specifies a single forecast.
Thus ci is the vector of probabilities assigned to statei by the forecasters. A well-known ag-
gregation scheme is to take a weighted average of the probability distributions, which is called
a linear opinion pool(McConway [15]) and is reallocation-proof. In this context, reallocation-
proofness means informational efficiency: when the forecasters are interested in an event but not
the individual states constituting it, they can treat the event as a single composite state without any
loss.

Our main result characterizes reallocation-proof rules. We show that any reallocation-proof
rule can be written as the sum of two parts: a “priority part,” which may treat agents differently
based on their identities but ignores differences among their characteristics, and an “additive part,”
which treats agents equally and depends on characteristics additively. If the rule satisfies a mild
boundedness condition, the additive part is proportional to characteristics. This class of rules
includes the proportional rule, equal division, and weighted versions of “equal-distance” type
rules, and is closed under convex combinations.

Several existing results in specialized contexts are obtained as corollaries. In particular, our
results generate the characterizations of the proportional rule in O’Neill [20], Chun [8], de Frutos
[9], Ching and Kakker [7], Chambers and Thomson [6], and Moulin [19]; some families of rules in
Chun [8] and Moulin [16, 17]; and linear opinion pools in McConway [15]. We also show that, for
the characterization of the proportional rule, reallocation-proofness can be weakened to a version
that considers only coalitions of size two.

Our results together with the generality of the model generate new results as well. For ex-
ample, the multi-dimensional setting enables us to consider priorities among types of assets in
multi-dimensional bankruptcy problems: e.g., claims based on bonds should be reimbursed prior
to claims based on stocks. We characterize proportional rules that respect exogenously given pri-
orities. We also give a new characterization in income redistribution problems. We show that the
only way for an income redistribution scheme to satisfy reallocation-proofness and avoid a transfer
paradox is to use income tax with a flat tax rate and personalized lump-sum transfers.

The remainder of the paper is organized as follows. The next section introduces the model.
Section 3 defines axioms. Section 4 defines proportional rules and generalizations. Section 5
presents the main results. Section 6 gives applications of the results in specialized problems where
the set of agents is fixed. Section 7 considers problems where the set of agents is also variable; in
particular, we give a characterization of a closely related axiom calledmerging-splitting-proofness.
Section 8 discusses a few ways to extend the model and the robustness of our results.

3Belief updating is also studied by Gilboa and Schmeidler [10] in a preference-based framework with non-additive
probabilities and multiple priors, and by Stalnaker [23] in a theory of conditionals.
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2 Model

There is a finite setN = {1,2, . . . , |N|} of entities.4 Each entityi ∈ N is characterized by a finite
dimensional vectorci ≡ (cik)k∈K ∈RK

+ whereK = {1,2, . . . , |K|} is a finite set of issues.5 We refer
to ci as i’s characteristic vector. A profile of characteristic vectors is denoted byc≡ (ci)i∈N ∈
RN×K

+ and the sum of these vectors is denoted by

c̄≡ (c̄k)k∈K ≡ (∑
i∈N

cik)k∈K ∈ RK
+.

A problemis a pair(c,E)∈RN×K
+ ×R++, wherec∈RN×K

+ is a profile of characteristic vectors
andE ∈ R++ is the amount of a homogeneous and infinitely divisible good to be divided.6 To
avoid introducing uninteresting complication to the exposition, we only consider problems such
that c̄k > 0 for eachk∈ K.7

A domainis a non-empty set of problems and is denoted byD . A division rule, or briefly, a
rule over a domainD is a functionf associating with each problem(c,E) ∈D a vector of awards
f (c,E) ∈ RN. A domainD is rich if it is closed under reallocations of characteristic vectors: for
each problem(c,E) ∈ D and each profilec′ ∈ RN×K

+ such thatc̄′ = c̄, we have(c′,E) ∈ D . We
restrict our attention to rich domains.

Here are examples of rich domains.

Bankruptcy. As mentioned in the introduction, a bankruptcy problem deals with the division of
the liquidation valueE of a bankrupt firm among the set of its creditorsN. Here,K is the set of
assets andcik the claim that creditori holds in the form of assetk. Thus, the domain of bankruptcy
problems is given byD = {(c,E) ∈ RN×K

+ ×R++ : ∑k∈K c̄k ≥ E, andc̄k > 0 for all k∈ K}.
Bankruptcy problems with|K| = 1 can also be interpreted as problems of collecting income

tax, whereci is taxpayeri’s income level andE is the amount of tax revenues to be collected
(Young [27]).

In what follows, bankruptcy problems refer to the case of|K|= 1, unless stated otherwise.

Surplus Sharing. The problem is to divide the profit from a project among contributors (Young
[27]). Here,|K|= 1, ci is the amount of the opportunity cost for contributori, andE ≥ ∑i∈N ci is
the profit that the project generates. ThusD = {(c,E) ∈ RN

+×R++ : 0 < ∑i∈N ci ≤ E}.
Claim Problems. This domain is simply the union of the domains of (single-dimensional) bank-

4This rather neutral term is used because the meaning ofN varies with the context.
5We use the following notation for vector inequalities: givenx,y∈ RM , x = y means thatxm≥ ym for eachm; x≥ y

means thatx = y andx 6= y; andx > y means thatxm > ym for eachm.
6For simplicity, we only consider non-negative characteristic vectors and positive amounts to divide. Our results

hold in more general settings, as we discuss in Section 8.
7Even if we allow for problems such that̄ck = 0 for somek, the main results and proofs go through with no

technical difficulty. We just need to replace summations∑k∈K with ∑{k∈K:c̄k>0}. On the other hand, if we allow for
problems wherēck = 0 for all k, then reallocation-proofness has no bite and allows for any allocation for those problems.
However, for those problem, two basic axioms, efficiency and no award for null (to be defined later), are incompatible.
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ruptcy and surplus-sharing problems (Moulin [17] and Chun [8]).8 That is, no inequality between
E and∑i∈N ci is imposed. ThusD = {(c,E) ∈ RN

+×R++ : ∑i∈N ci > 0}.
Social Choice with Transferable Utilities.Let N be the set of agents andK be the set of possible
public projects, one of which has to be chosen. Each agenti ∈N has a quasi-linear utility function
ui(k,mi) = cik +mi (cik ≥ 0) wherek∈ K denotes the chosen project andmi ∈ R denotes the side-
payment to agenti. A feasible allocation is a list(k,m) ∈ K×RN such that∑i∈N mi = 0. Note
that ∑i∈N ui(k,mi) = c̄k. Under Pareto efficiency, a projectk ∈ argmaxk′∈K c̄k′ is chosen. Given
such a projectk, any utility allocationx ∈ RN with ∑i∈N xi = c̄k is attainable through monetary
transfers. Hence, in utility terms, the problem is to divideE ≡maxk∈K c̄k among the agents. Thus
D = {(c,E) ∈ RN×K

+ ×R++ : E = maxk∈K c̄k, andc̄k > 0 for eachk∈ K}. This class of problems
is studied by Moulin [16]. It differs from the previous examples in thatE depends onc.

Cost Sharing. Let N be the set of agents and|K| = 1. Each agenti ∈ N has a demandci ≥ 0 for
a service. For each profile of demandsc∈ RN

+, the aggregate cost to be shared among the agents
is given byC(c̄), whereC: R+ → R+ is the cost function. ThenD = {(c,E) ∈ RN

+×R++ : E =
C(c̄)}.
Income Redistribution. Let N be the set of agents and|K| = 1. Each agenti ∈ N has income
ci ≥ 0. The problem is to redistribute the incomes among the agents. ThusD = {(c,E) ∈ RN

+×
R++ : E = c̄}.
Probability Updating. Let N∗ be the set of all states of the world. A person initially has a
probability distribution overN∗. We then consider a situation in which the person is informed that
eventN ⊆ N∗ has occurred. The problem is how to update the person’s probability distribution.
For each statei ∈N, ci ∈R+ denotes the probability that the person initially assigns to statei (thus
|K| = 1). SinceN ⊆ N∗, we have∑i∈N ci ≤ 1. Since the total probability to be allocated is1, we
always haveE = 1. ThusD = {(c,1) ∈ RN

+×{1} : 0 < ∑i∈N ci ≤ 1}.
Probability Aggregation. Here N is the set of possible states of the world, one of which is
realized in the future (e.g.,N is the set of possible weather conditions tomorrow). There is a
setK of forecasters, and each forecasterk ∈ K has a probability distribution overN, denoted by
(cik)i∈N ∈ ∆|N|−1. The problem is how to aggregate the set of probability distributions into a single
distribution. Since the total probability to be allocated over the states is 1, we haveE = 1. Thus
D = {(c,1) ∈ RN×K

+ ×{1} : c̄k = 1 for eachk∈ K}.

3 Axioms

This section defines a number of properties that might be satisfied by division rules.
We start with our main axiom, which states that no group of entities can change the total

amount of their awards by reallocating their characteristic vectors within the group.

8Moulin [17] interprets this problem as surplus sharing after all opportunity costs are returned to contributors.
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Reallocation-Proofness.For each(c,E)∈D , eachS⊆N, and eachc′ ∈RN×K
+ , if ∑i∈Sc′i = ∑i∈Sci ,

then

∑
i∈S

fi(c′S,cN\S,E) = ∑
i∈S

fi(c,E).

In the contexts of claim problems and their variants, if the left-hand side of the equation ex-
ceeds the right-hand side, then groupSwith claim profile(ci)i∈S can increase their total awards by
reallocating the members’ claims into(c′i)i∈S. If the reverse inequality holds, groupSwith claim
profile (c′i)i∈S can gain from the reverse arrangement. This axiom was introduced by Moulin [16]
in the context of social choice with transferable utilities.9

In the context of probability aggregation,reallocation-proofnesshas a meaning of informa-
tional efficiency. Given a set of statesS⊆ N, consider two profiles of beliefs(ck)k∈K and(c′k)k∈K

such that, for each forecasterk∈ K, ck andc′k differ only in probabilities assigned to the states in
S. So the probability of the eventS itself is the same underck andc′k. Then, anyreallocation-proof
aggregation rule assigns the same probability to the eventSas a whole under(ck)k∈K and(c′k)k∈K .
Thus, one can treat the eventSas a single composite state without any loss and does not have to
collect information about the forecasters’ beliefs over individual states inS.

Similarly, in the context of probability updating,reallocation-proofnessstates that the updated
probability of a given eventS depends on the initial belief over the states inS only through the
total probability that the initial belief puts onSas a whole.10

We also consider a pairwise version ofreallocation-proofness, which deals only with reallo-
cation of characteristics between two entities:

Pairwise Reallocation-Proofness.For each(c,E) ∈D , eachi, j ∈N with i 6= j, and eachc′i ,c
′
j ∈

RK
+, if c′i +c′j = ci +c j , then

fi(c′i ,c
′
j ,cN\{i, j},E)+ f j(c′i ,c

′
j ,cN\{i, j},E) = fi(c,E)+ f j(c,E).

The pairwise version is particularly relevant for problems in whichN is the set of agents (e.g.,
claim problems), since strategic reallocations of characteristics would be easier to implement for
smaller groups of agents.

The remainder of this section defines a number of basic axioms. The following axiom requires
that awards add up to the amount to divide:

Efficiency. For each(c,E) ∈D , ∑i∈N fi(c,E) = E.

For each problem(c,E) ∈D , let

D(c̄,E)≡ {(c′,E) ∈ RN×K
+ ×R++ : c̄′ = c̄}.

The following axiom basically excludes rules whose image of the compact setD(c̄,E) is un-
bounded above and below, but it is stated in a weak form:

9Moulin calls the axiom “no advantageous reallocation.”
10An axiom based on a similar idea can also be found in inductive probability theory (Carnap [5], Axiom C9).
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One-Sided Boundedness.For each(c,E) ∈ D , there existsi ∈ N such thatfi( · ,E) is bounded
from either above or below over a non-empty open subset ofD(c̄,E).

SinceD(c̄,E) is compact,one-sided boundednessis satisfied by any rule that is continuous in
claims. The following weak form of continuity is stronger thanone-sided boundedness.

Continuity. For each(c,E) ∈D , there existsi ∈ N such thatfi( · ,E) is continuous at least at one
point inD(c̄,E).

The following two axioms are also stronger thanone-sided boundedness. The first one requires
that awards be non-negative:

Non-Negativity. For each(c,E) ∈D and eachi ∈ N, fi(c,E)≥ 0.

Another axiom that impliesone-sided boundednessis no transfer paradox(Moulin [16]),
which states that no entity can increase its award by transferring part of its characteristic vector to
another entity:

No Transfer Paradox. For each(c,E) ∈ D , eachi, j ∈ N with i 6= j, and eacht ∈ RK such that
0 5 t 5 ci ,

fi(ci− t,c j + t,cN\{i, j},E)≤ fi(c,E).

The next axiom states that no amount is awarded to entities whose characteristic vectors are
zero:

No Award for Null. For each(c,E) ∈D and eachi ∈ N, if ci = 0, then fi(c,E) = 0.

For example, in the context of probability updating,no award for nullmeans that, if a state
initially receives no probability, so does it after updating.

The next axiom states that ifall entities have the same characteristic vector, then they all
receive the same amount:

Uniform Treatment of Uniforms. For each(c,E) ∈ D , if c1 = c2 = · · · = c|N|, then f1(c,E) =
f2(c,E) = · · ·= f|N|(c,E).

The next axiom, which is stronger thanuniform treatment of uniforms, says that for any pair
of entities, if they have the same characteristic vector, they receive the same amount:

Equal Treatment of Equals. For each(c,E) ∈ D and eachi, j ∈ N, if ci = c j , then fi(c,E) =
f j(c,E).

The next axiom, which is stronger thanequal treatment of equals, states that the names of
entities do not matter:

Anonymity. For each permutationτ : N → N, each(c,E) ∈ D , and eachi ∈ N, fi(cτ ,E) =
fτ(i)(c,E) wherecτ is defined bycτ

i ≡ cτ(i).

The next axiom, which is also stronger thanequal treatment of equals, states that ifi’s charac-
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teristic vector weakly dominatesj ’s in every dimension, theni receives at least as much asj:

Order Preservation in Gains. For each(c,E) ∈ D and eachi, j ∈ N, if ci = c j , then fi(c,E) ≥
f j(c,E).

4 Generalized proportional rules

For the case when characteristic vectors are single-dimensional (i.e.,|K|= 1), one of the simplest
and best-known rules is the proportional rule:

Definition 1 (Proportional Rule, |K| = 1). For each(c,E) ∈D and eachi ∈ N,

fi(c,E) =
ci

c̄
E.

The right-hand side is well-defined since we rule out problems for whichc̄ = 0. In the context
of probability updating, the proportional rule isBayes rule. In the context of cost sharing, it is the
average-cost rule.

We now extend the definition of the proportional rule to the case in which characteristic vectors
are multi-dimensional. Let us define aweight functionas a functionW : RK

++×R++ → ∆|K|−1,
which assigns a vector of weightsW(c̄,E) overK as a function of(c̄,E). With this definition, we
define proportional rules in the multi-dimensional case as follows:

Definition 2 (Proportional Rule). There exists a weight functionW such that, for each(c,E)∈D

and eachi ∈ N,
fi(c,E) = ∑

k∈K

cik

c̄k
Wk(c̄,E)E. (1)

Let PW denote the proportional rule associated withW.

This rulePW first applies the proportional rule to each single-dimensional sub-problem(ck,E)
whereck≡ (cik)i∈N and then takes the weighted average of the solutions to the sub-problems using
the vector of weightsW(c̄,E). The weights depend on the problem being considered but depend
only on (c̄,E). Proportional rules areefficientsince∑k∈K Wk(c̄,E) = 1. They also satisfy all the
other axioms defined in Section 3. Evidently, if|K|= 1, Definition 2 reduces to Definition 1.

In the context of probability aggregation,E = 1 and c̄k = 1 for eachk ∈ K. Thus a weight
function reduces to a single weight vectorw≡W((1, . . . ,1),1). A proportional rule then simply
takes a weighted average of individual probability distributions using a fixed weight vector. This
rule is called alinear opinion pool(McConway [15]).

We now introduce what we callgeneralized proportional rules. These rules are characterized
by two functionsA: RK

++×R++ → RN andW : RK
++×R++ → RK , and the award toi is given

by the sum of the following two terms. The first term isAi(c̄,E), which is independent ofi’s
characteristic vector but may treati differently from others based oni’s identity. The second term
is proportional toi’s characteristic vector and treats entities symmetrically. This term, on the other
hand, may treat issues asymmetrically, and the degree of importance attached to each issuek∈ K
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is given byWk(c̄,E). Formally,

Definition 3 (Generalized Proportional Rule). There exist two functionsA: RK
++×R++ →RN

andW : RK
++×R++ → RK such that, for each(c,E) ∈D and eachi ∈ N,

fi(c,E) = Ai(c̄,E)+ ∑
k∈K

cik

c̄k
Wk(c̄,E)E. (2)

Note thatW is not required to be a weight function, i.e., neitherWk(c̄,E)≥0nor∑k∈K Wk(c̄,E)=
1 is required. Proportional rules are a special case whereAi = 0 andW is a weight function.

Since, given(c̄,E), the second term on the right-hand side of (2) is linear incik, generalized
proportional rules satisfyreallocation-proofnessandone-sided boundedness. On the other hand,
these rules do not necessarily satisfy other axioms in Section 3. We will specify necessary and
sufficient conditions for(A,W) to satisfy each of those axioms.

An example of a generalized proportional rule that is not a proportional rule is theequal
division rule, which simply dividesE equally among entities:fi(c,E) = E/|N|. This rule is a
generalized proportional rule withAi(c̄,E) = E/ |N| andWk(c̄,E) = 0.

Another example, in the case of|K| = 1, is a weighted rights egalitarian rule(Bergantiños
and Vidal-Puga [4]), which first awardsci to eachi and then distributes the differenceE−∑i∈N ci

among the entities according to a weight vector(λ1, . . . ,λn)∈ int(∆|N|−1): fi(c,E) = ci +λi(E− c̄).
This rule is a generalized proportional rule withAi(c̄,E) = λi(E− c̄) andW(c̄,E) = c̄/E. If the
weights are equal (λi = 1/ |N| for eachi), the rule is what is called therights egalitarian rulein
Herrero, Maschler, and Villar [11].

5 Main results

Our first main result is a characterization ofreallocation-proofrules.

Theorem 1. Assume|N| ≥ 3. A rule f on a rich domainD is reallocation-proof if and only if
there exist two functionsA: RK

++×R++ → RN andŴ : R+×RK
++×R++ → RK such that, for

each(c,E) ∈D and eachi ∈ N,

fi(c,E) = Ai(c̄,E)+ ∑
k∈K

Ŵk(cik, c̄,E),

and for eachk∈ K, Ŵk( · , c̄,E) is additive.

Proof. Since the “if” part is straightforward, we prove the “only if” part. Letf be areallocation-
proof rule defined on a rich domainD . We fix (d,E) ∈ RK

++×R++ and consider problems(c,E)
such that̄c = d. Let C ≡ {c∈ RK×N

+ : c̄ = d}.
Step 1.We first show thatreallocation-proofnessimplies the following property: for eachc,c′ ∈
C and eachS⊆ N, if ∑i∈Sci = ∑i∈Sc′i , then∑i∈S fi(c,E) = ∑i∈S fi(c′,E). Indeed, by applying

9



reallocation-proofnessto S, N, andN\S, we obtain

∑
i∈S

fi(c,E) = ∑
i∈S

fi(c′S,cN\S,E) = ∑
i∈N

fi(c′S,cN\S,E)− ∑
i∈N\S

fi(c′S,cN\S,E)

= ∑
i∈N

fi(c′,E)− ∑
i∈N\S

fi(c′,E) = ∑
i∈S

fi(c′,E).

Step 2. For eachi ∈ N, let Ai(d,E) ≡ fi(c,E) wherec ∈ C andci = 0. That is,Ai(d,E) is the
amount thati receives whenever its characteristic vector is zero, given(d,E). By Step 1 with
S= {i}, Ai(d,E) is uniquely determined. By applying the same observation to coalitionsS( N,
we can also define a functionw: (2N \{ /0,N})×∏K

k=1[0,dk]→ R by

w(S,x)≡∑
i∈S

fi(c,E)−∑
i∈S

Ai(d,E) (3)

wherec∈ C is such that∑i∈Sci = x. For brevity, the dependence ofw(S,x) on (d,E) is omitted.

Step 3. We show that for eachx ∈ ∏K
k=1[0,dk] and eachS,S′ ( N, w(S,x) = w(S′,x). We first

consider the case whenS′ ⊆ S. Let c∈ C be such that∑i∈Sci = x andci = 0 for eachi ∈ S\S′.
Since fi(c,E)−Ai(d,E) = 0 for eachi ∈ S\S′,

w(S,x) = ∑
i∈S′

fi(c,E)−∑
i∈S′

Ai(d,E) = w(S′,x),

as desired. Now, consider the case in which no inclusion holds betweenS andS′. Let i ∈ S and
j ∈ S′. The result just obtained impliesw(S,x) = w({i},x) = w({i, j},x) = w({ j},x) = w(S′,x).

This step enables us to writew(S,x) asw∗(x).

Step 4. We show that for eachx,y∈ ∏K
k=1[0,dk] such thatx+ y∈ ∏K

k=1[0,dk], w∗(x)+ w∗(y) =
w∗(x+y). Let i, j ∈N (i 6= j) andc∈ C be such thatci = x andc j = y; althoughx+y≤ d, such a
c∈ C exists since there are 3 or more entities. Then

w∗(x)+w∗(y) = w({i},x)+w({ j},y)
= fi(c,E)−Ai(d,E)+ f j(c,E)−A j(d,E)

= w({i, j},x+y) = w∗(x+y).

Step 5.For eachi ∈ N, eachk∈ K, and eachcik ∈ [0,dk], let

Ŵk(cik,d,E)≡ w∗(0, . . . ,0,cik,0, . . . ,0)

wherecik appears in thekth entry. Then for eachc∈ C and eachi ∈ N,

fi(c,E) = Ai(c̄,E)+w({i},ci)

= Ai(c̄,E)+ ∑
k∈K

Ŵk(cik, c̄,E).

10



The additivity ofŴk( · , c̄,E) follows from Step 4.11

This and the subsequent results require at least three entities. However, the same results hold
even in the two-entity case in an extended framework where the set of entities is variable, as we
discuss in Section 7.

The following result shows thatreallocation-proofnesstogether withone-sided boundedness
characterizes generalized proportional rules:

Theorem 2. Assume|N| ≥ 3. A rule on a rich domain satisfies reallocation-proofness and one-
sided boundedness if and only if it is a generalized proportional rule.

Proof. The “if” part has been discussed. The “only if” part holds sinceWk( · , c̄,E) is additive
over [0, c̄k] and bounded either above or below over a non-empty open subset, which implies that
Wk( · , c̄,E) is linear [1, Corollary 2.5]. Therefore,̂Wk(cik, c̄,E) = (cik/c̄k)Ŵk(c̄k, c̄,E). Letting
Wk(c̄,E)≡ Ŵk(c̄k, c̄,E)/E completes the proof.

The two axioms in Theorem 2 are independent. Indeed, a number of rules in the literature
satisfyone-sided boundednessbut notreallocation-proofness. A rule that satisfiesreallocation-
proofnessbut notone-sided boundednesscan be constructed using an additive nonlinear function
[1, Theorem 2.2.10].

We can obtain necessary and sufficient conditions on(A,Ŵ) under which thereallocation-
proof rules characterized in Theorem 1 satisfy additional basic axioms. We omit the proof since it
is straightforward.

Theorem 3. Assume|N| ≥ 3. Let f be a reallocation-proof rule on a rich domainD , and(A,Ŵ)
be the list of associated functions. Then

1. Rule f satisfies no award for null if and only if, for each(c,E) ∈D and eachi ∈ N,

Ai(c̄,E) = 0. (4)

2. Rule f satisfies uniform treatment of uniforms if and only if, for each(c,E) ∈D ,

A1(c̄,E) = A2(c̄,E) = · · ·= A|N|(c̄,E), (5)

which holds if and only iff satisfies anonymity. Hence, for reallocation-proof rules, anonymity,
equal treatment of equals, and uniform treatment of uniforms are all equivalent. By(4) and
(5), if f satisfies no award for null, thenf satisfies anonymity.

3. Rule f satisfies no transfer paradox if and only if, for each(c,E)∈D , eachk∈K, and each
i ∈ N,

Ŵk(cik, c̄,E)≥ 0, (6)

11We definedŴk(cik, c̄,E) only for cik ≤ c̄k and Step 4 shows only thatŴk( · , c̄,E) is additive over[0, c̄k]. But we can
easily extend the definition and the additivity toR+.
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which is the case if and only if, for eachk∈ K, Ŵk( · , c̄,E) is non-decreasing incik.

4. Rule f satisfies order preservation in gains if and only iff satisfies uniform treatment of
uniforms and no transfer paradox (i.e.,f satisfies(5) and (6)).

5. Rule f satisfies one-sided boundedness (hencef is a generalized proportional rule) if and
only if, for eachk ∈ K and each(c,E) ∈ D , Ŵk( · , c̄,E) is monotonic, i.e., either non-
decreasing or non-increasing.

6. Rule f satisfies continuity if and only if it satisfies one-sided boundedness.

7. Rule f satisfies non-negativity if and only iff satisfies one-sided boundedness and, for each
(c,E) ∈D ,

min
j∈N

A j(c̄,E)+ ∑
k∈K

min{0,Ŵk(c̄k, c̄,E)} ≥ 0. (7)

A necessary condition for(7) is

Ai(c̄,E)≥ 0 for eachi ∈ N. (8)

8. Rule f satisfies efficiency if and only if, for each(c,E) ∈D ,

∑
k∈K

Ŵk(c̄k, c̄,E) = E−∑
i∈N

Ai(c̄,E). (9)

Therefore, when|K| = 1, f satisfies efficiency and one-sided boundedness if and only iff
takes the following form:

fi(c,E) = Ai(c̄,E)+
ci

c̄

[
E−∑

i∈N

Ai(c̄,E)
]
. (10)

Thus f first allocatesAi(c̄,E) to eachi and then divides the remainder among the entities
proportionally to their characteristics. This rule satisfies non-negativity if and only if, for
each(c,E) ∈D and eachi ∈ N,

Ai(c̄,E)≥max{0, ∑
j∈N

A j(c̄,E)−E}.

The following result is a characterization of proportional rules. We omit the proof since it
follows easily from Theorem 3.

Corollary 1. Assume|N| ≥ 3. A rule on a rich domain satisfies reallocation-proofness, efficiency,
no award for null, and non-negativity (or no transfer paradox) if and only if it is a proportional
rule.

The following result is a characterization of another subfamily of generalized proportional
rules. We again omit the proof since it also follows easily from Theorem 3.
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Corollary 2. Assume|N| ≥ 3. A rule f on a rich domainD satisfies reallocation-proofness,
efficiency, uniform treatment of uniforms, and one-sided boundedness if and only if there exists a
functionW : RK

++×R++ → RK such that for each(c,E) ∈D and eachi ∈ N,

fi(c,E) =
E
|N|

[
1− ∑

k∈K

Wk(c̄,E)
]
+ ∑

k∈K

cik

c̄k
Wk(c̄,E)E. (11)

This rule satisfies non-negativity and no transfer paradox if and only if, for each(c,E) ∈ D ,
W(c̄,E) = 0 and∑k∈K Wk(c̄,E)≤ 1.

Moulin [17, Lemma 2] considers (single-dimensional) claim problems and obtains the func-
tional form (11) usingreallocation-proofness, efficiency, uniform treatment of uniforms, non-
negativity, “homogeneity” (f being linear in(c,E)), “claim monotonicity,” and “resource monotonic-
ity.” Chun [8, Theorem 1] also considers claim problems and obtains (11) usingreallocation-
proofness, efficiency, anonymity, andcontinuity.

We now show that, for the characterization of proportional rules in Corollary 1,reallocation-
proofnesscan be weakened to its pairwise version.

Theorem 4. Assume|N| ≥ 3. A rule on a rich domain satisfies pairwise reallocation-proofness,
efficiency, no award for null, and non-negativity (or no transfer paradox) if and only if it is a
proportional rule.

Proof. Let f be a rule on a rich domainD with |N| ≥ 3 satisfying all the axioms. For eachS⊆N,
let DS≡ {(c,E) ∈D : ci = 0 for all i /∈ S}. By no award for null, we can treat problems inDS as
those in which only entities inSare present.

On DS such that|S| = 3, pairwise reallocation-proofnessandefficiencyimply reallocation-
proofness. Corollary 1 then implies that, onDS, f coincides with a proportional rule. LetWS

denote the associated weight function. For eachS,T ⊆ N such that|S|= |T|= 3 and|S∩T| ≥ 2,
sinceDS∩DT 6= /0, we haveWS = WT . Thus, weight functions for all triples are identical and
we can write them simply byW. Hence, on∪|S|≤3DS, f coincides with the proportional rule
associated withW.

To prove thatf is the proportional rule on the entire domain, we use an induction argument.
Givenk≥ 3, suppose that, on∪|S|≤kDS, f coincides with the proportional rule associated with a
weight functionW, and letS⊆ N containk+ 1 entities. To prove thatf also coincides with the
proportional rule onDS, let (c,E) ∈DS. Consider a pair{i, j} ⊆ S, and letc′ ∈ RS×K

+ be such that
(c′i ,c

′
j) = (ci +c j ,0) andc′h = ch for eachh /∈ {i, j}. Then bypairwise reallocation-proofnessand

no award for null, fi(c,E)+ f j(c,E) = fi(c′,E)+ f j(c′,E) = fi(c′,E). Since(c′,E) ∈DS\{ j}, the
induction hypothesis impliesfi(c′,E) = PW

i (c′,E) = PW
i (c,E)+ PW

j (c,E). Thereforefi(c,E)+
f j(c,E) = PW

i (c,E)+ PW
j (c,E). Since this holds for every pair{i, j} ⊆ S, we obtain f (c,E) =

PW(c,E).

A similar result is obtained by replacingnon-negativity(or no transfer paradox) in Theorem 4
with one-sided boundedness. Indeed, one can easily show that, for any rulef that satisfies the
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modified list of axioms, there exists a functionW : RK
++×R++ → RK such that, for each(c,E) ∈

D and eachi ∈N, ∑k∈K Wk(c̄,E)= 1and (1) holds. This family of rules is strictly larger than that of
proportional rules sinceW is allowed to take negative values. However, if|K|= 1, thenWk(c̄,E) =
1 and hence any rule that satisfies the modified list of axioms also satisfiesnon-negativityand
no transfer paradox. This implies that if|K| = 1, non-negativity(andno transfer paradox) in
Theorem 4 can be replaced withone-sided boundedness. Thus we obtain

Corollary 3. Assume|N| ≥ 3 and|K|= 1. A rule on a rich domain satisfies pairwise reallocation-
proofness, efficiency, no award for null, and one-sided boundedness if and only if it is the propor-
tional rule.

A few papers consider the case when|K|= 1 and prove results similar to Corollary 3. Chun [8,
Theorem 2] considers claim problems in the framework where the set of agents is variable, and
characterizes the proportional rule usingreallocation-proofness, efficiency, anonymity, continuity,
and “null consistency” (defined later in Section 7.1). We will strengthen the result in Section 7.1:
see the equivalence between (ii) and (iii) in Corollary 11. Ching and Kakkar [7, Corollary 3]
consider bankruptcy problems and characterize the proportional rule usingreallocation-proofness,
efficiency, no award for null, andnon-negativity, thereby showing thatanonymity, continuity, and
“null consistency” in Chun’s result can be replaced withno award for nullandnon-negativity.12

As we observe below,no award for null is weaker than “null consistency” in the presence of
efficiency. Our Corollary 3 strengthens Ching and Kakkar’s result by showing that it holds for
any rich domain,non-negativitycan be weakened toone-sided boundedness, and reallocation-
proofnesscan be weakened to its pairwise version.

6 Application I: Fixed set of entities

6.1 Claim problems and variants

This subsection presents applications of our results in the contexts of bankruptcy, surplus sharing,
and claim problems.

We consider the following three additional axioms. The first one says that if the amount to
divide is split into two parts and the award vector is computed separately for each part, then the
sum of the award vectors should coincide with the award vector obtained from a single calculation
applied to the total amount to divide:

Resource Additivity. For each(c,E) ∈ D and each(c,E′) ∈ D such that(c,E + E′) ∈ D ,
f (c,E)+ f (c,E′) = f (c,E +E′).

The next axiom says that division should be independent of the unit with which the data of the
problems are measured. That is, the rule should be linear in(c,E) jointly:

Homogeneity.For each(c,E) ∈D and eachλ > 0, f (λc,λE) = λ f (c,E).

12The comparison between Chun and Ching–Kakkar is not precise since Chun considers a variable-population model
and covers the two-agent case.
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The next axiom says that no agent loses when his claim increases:

Claim Monotonicity. For each(c,E) ∈ D , eachi ∈ N, and eachc′i ≥ ci , if (c′i ,c−i ,E) ∈ D , then
fi(c′i ,c−i ,E)≥ fi(c,E).

We begin by characterizing a subfamily of generalized proportional rules that satisfyresource
additivity.

Theorem 5. Assume thatD is any of the three domains— bankruptcy, surplus sharing, or claim
problems—with at least 3 agents. A rulef on D satisfies reallocation-proofness, efficiency, non-
negativity, and resource additivity if and only if there exists a functionA: R++ → RN

+ such that,
for each(c,E) ∈D and eachi ∈ N,

fi(c,E) = E
[
Ai(c̄)+

ci

c̄

[
1− ∑

j∈N

A j(c̄)
]]

.

This rule satisfies no transfer paradox if and only if∑ j∈N A j(c̄)≤ 1.

Proof. Let D be the class of bankruptcy problems with|N| ≥ 3 (proofs for the other classes are
similar). Let f be a rule onD satisfying the axioms. By Theorem 3 (equations (8) and (10)), there
exists a functionA: R2

++ → RN
+ such that, for each(c,E) ∈D and eachi ∈ N,

fi(c,E) = Ai(c̄,E)+
ci

c̄

[
E− ∑

j∈N

A j(c̄,E)
]
.

Let c∈ RN
+ andi ∈ N. We shall show thatAi(c̄, ·) is linear on[0, c̄]. To prove this, we can assume

ci = 0. Thenresource additivityimplies that, for eachE,E′ ∈ [0, c̄], we haveAi(c̄,E)+Ai(c̄,E′) =
Ai(c̄,E + E′) as long as0≤ E + E′ ≤ c̄; i.e., Ai(c̄, ·) is additive on[0, c̄]. Since f satisfiesnon-
negativity, a standard argument of Cauchy’s equation yields (as in the proof of Theorem 2) that
Ai(c̄, ·) is linear on[0, c̄]. Thus, for eachE ∈ [0, c̄], we can writeAi(c̄,E) asAi(c̄)E.

It is easy to show that ifhomogeneityis added,Ai(·) in Theorem 5 is constant for eachi ∈ N,
and for these rules,no transfer paradoxis equivalent toclaim monotonicity. Thus we obtain

Corollary 4. Assume thatD is any of the three domains—bankruptcy, surplus sharing, or claim
problems—with at least 3 agents. A rulef on D satisfies reallocation-proofness, efficiency, uni-
form treatment of uniforms, non-negativity, no transfer paradox (or claim monotonicity), homo-
geneity, and resource additivity if and only if there existsα ∈ [0,1] such that, for each(c,E) ∈D ,

fi(c,E) = α
1
|N|E +(1−α)

ci

c̄
E, (12)

i.e., f is a convex combination of the proportional rule and equal division.

Moulin [17, Theorem 3] characterizes the same family of rules for claim problems. Corollary 4
strengthens his result by removing “resource monotonicity” from his characterization and making
it applicable to other domains.
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The family of rules characterized in Corollary 4 is indexed byα ∈ [0,1]. The axiom to be
considered next, calledcomposition down, further contracts this family. To motivate this axiom,
consider a problem(c,E) and suppose that, after an award vectorx is agreed upon, it is revealed
that the amount to divide is actually less than expected, i.e.,E′ < E. There are at least two ways
to adjust the award vector. One is to re-calculate the award vector for the problem with the right
amount to divide,(c,E′). Another is to consider the previous agreementx as the relevant claim
vector and calculate the award vector for the problem(x,E′). The axiom states that in either way,
we reach the same award vector.13

Composition Down.For each(c,E)∈D and eachE′ < E with (c,E′)∈D , f (c,E′)= f ( f (c,E),E′).

Corollary 5. Assume thatD is the class of either bankruptcy problems or claim problems, with
at least 3 agents. A rule onD satisfies all the axioms in Corollary 4 and composition down if and
only if it is either the proportional rule or equal division.

Proof. The “if” part follows since the proportional rule and equal division satisfycomposition
down. To prove the converse, letf be a rule satisfying the axioms. By Corollary 4,f is a convex
combination of the proportional rule and equal division with a weightα ∈ [0,1] on equal division.
Let (c,E) ∈ D andE′ ∈ (0,E). Notice that(c,E′) ∈ D and( f (c,E),E′) ∈ D . By composition
down, f (c,E′) = f ( f (c,E),E′), which implies

α
|N| +(1−α)

ci

c̄
=

α
|N| +(1−α)

E[ α
|N| +(1−α)ci

c̄ ]

E
.

Hence(1−α)α[ 1
|N| − ci

c̄ ] = 0. Sincec was chosen arbitrarily,α = 0 or α = 1.

Moulin [17, Theorem 2] also characterizes the pair of the proportional rule and equal division,
in the context of claim problems, using “path independence” instead ofcomposition down. “Path
independence” is also a condition of dynamic consistency in calculating awards, but it is not well-
defined in the class of bankruptcy problems.

6.2 Bankruptcy with multiple types of assets

We now give an application of Theorem 4 in the context of bankruptcy problems with multiple
types of assets. There are often exogenously determined priorities among different types of assets.
For example, the standard legal code states that claims based on bonds should be reimbursed prior
to claims based on stocks.14 Without loss of generality, suppose that assets of typek have priority
over assets of typek′ for all k′ > k. Given the priorities, we consider a requirement that if there
exists a creditor whose claim based on the firstk types of assets is not fully reimbursed, then
there should not exist a creditor who gets strictly more than his claim for thesek types of assets.

13This axiom, introduced by Moulin [19], is well-defined underefficiencyandnon-negativityin the classes of bank-
ruptcy and claim problems (but not surplus sharing).

14Priorities of the United States Code, Title 11 (Bankruptcy), are stated in Sections 507 (Priorities) and 726 (Distri-
bution of property of the estate).
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Formally, a rulef conforms toasset prioritiesif for each(c,E)∈D and eachk∈K, if there exists
a creditori ∈ N such thatfi(c,E) < ∑k

h=1cih, then f j(c,E)≤ ∑k
h=1c jh for each j ∈ N.15 The next

result characterizes the proportional rule that conforms toasset priorities, by identifying the exact
form of its weight function.

Theorem 6. For the class of bankruptcy problems with multiple assets with at least 3 agents, a
rule satisfies pairwise reallocation-proofness, efficiency, non-negativity, and asset priorities if and
only if it is the proportional rule with the weight functionW defined as follows: for each possible
(c̄,E), if k∗ ∈ K is the minimum index such that∑k∗

k=1 c̄k ≥ E, then for eachk∈ K,

Wk(c̄,E) =





c̄k
E if k < k∗,

1−∑k<k∗
c̄k
E if k = k∗,

0 if k > k∗.

(13)

Proof. Let f be a rule satisfying the axioms. Byasset priorities, no creditor gets more than his
total claim (∑k∈K cik) and therefore, bynon-negativity, the rule satisfiesno award for null. Thus by
Theorem 4,f is a proportional rule with some weight functionW. To show thatW satisfies (13),
consider any possible(c̄,E) and letk∗ be defined as above. Let(c,E) ∈D(c̄,E). If there exists a
creditori such thatfi(c,E) > ∑k∗

h=1cih, then byefficiency, there exists another creditorj such that
f j(c,E) < ∑k∗

h=1c jh, but thenf violatesasset priorities. This shows that for eachi ∈ N,

fi(c,E)≤
k∗

∑
h=1

cih. (14)

Now, given anyk ∈ K and anyi ∈ N, consider a problem(c,E) ∈ D(c̄,E) such thatcik = c̄k

andcih = 0 for eachh 6= k. Then fi(c,E) = Wk(c̄,E)E. Since this value should not exceedi’s
total claim, we haveWk(c̄,E)≤ c̄k/E. If k > k∗, (14) impliesfi(c,E)≤ 0 and henceWk(c̄,E) = 0.
If k < k∗, we claimWk(c̄,E) = c̄k/E. Indeed, ifWk(c̄,E) < c̄k/E, then fi(c,E) < c̄k = ∑k

h=1cih.
Thus, byasset priorities, ∑ j∈N f j(c,E) < ∑k

h=1 c̄h < E, contradictingefficiency.

6.3 Income redistribution

For income redistribution problems, by using Theorem 3, we can characterize the family of
income-tax schedules with a flat tax rate and personalized lump-sum transfers:

Theorem 7. For the class of income redistribution problems with at least 3 agents, a rulef
satisfies reallocation-proofness, efficiency, non-negativity, and no transfer paradox if and only if
there exist two functionsT : R++ → [0,1] andR: R++ → RN

+ such that, for each(c,E) ∈ D and

15In the context of bankruptcy problems with|K|= 1, Moulin [18] shows that a certain set of independence axioms
characterizes a family of rules that conform to exogenously given priorities amongagents. Our priorities, on the other
hand, pertain to assets, not agents.
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eachi ∈ N,
fi(c,E) = (1−T(c̄))ci +Ri(c̄) and ∑

j∈N

Rj(c̄) = T(c̄)c̄.

In these rules,T determines the flat tax rateT(c̄) as a function of the size of the economy,c̄,
while Rdetermines the reallocation scheme(R1(c̄),R2(c̄), . . . ,R|N|(c̄)) as a function of individuals’
identities subject to the budget balance:∑ j∈N Rj(c̄) = T(c̄)c̄. It is easy to see that these rules also
satisfyhomogeneityif and only if T is constant and eachRi is linear.

6.4 Social choice with transferable utilities

In social choice problems with transferable utilities, the vectorci denotes agenti’s valuations for
alternatives. Thus it is immaterial how the vector is normalized. This motivates the following
axiom. Let1∈ RK denote the vector consisting of1 only.

Translation Invariance. For each(c,E) ∈D , eachi ∈ N, and eachλ ∈ R+,

fi((ci +λ1,c−i),E +λ ) = fi(c,E)+λ and f−i((ci +λ1,c−i),E +λ ) = f−i(c,E).

For eachc ∈ RN×K
+ , let c̄max≡ maxk∈K c̄k. SinceE = c̄max, we suppressE throughout this

subsection. Moulin [16] introduced the following family of rules:

Definition 4 (Equal Sharing Above a Convex Decision, ESCD).There exists a functionρ : RK
++→

∆|K|−1 such that, for each̄c∈ RK
+ and eachλ ≥ 0,

ρ(c̄+λ1) = ρ(c̄), (15)

and, for eachc∈ RN×K
+ and eachi ∈ N,

fi(c) =
1
|N|

[
c̄max− ∑

k∈K

c̄kρk(c̄)
]
+ ∑

k∈K

cikρk(c̄). (16)

Let ESρ denote the ESCD rule associated withρ .

It is easy to see thatESρ is efficientand translation invariant. Note thatESρ is the gener-
alized proportional rule associated withA: RK

++ → RN andW : RK
++ → RK defined byWk(c̄) ≡

c̄kρk(c̄)/c̄max andAi(c̄)≡ c̄max
|N| [1−∑k∈K Wk(c̄)].

Moulin [16, Theorem 1] characterizes the family of ESCD rules byreallocation-proofness,
efficiency, no transfer paradox, translation invariance, andanonymity. The next result, which
relies on Corollary 2, shows that his characterization remains valid ifanonymityis weakened to
uniform treatment of uniforms. The proof is in Appendix.

Corollary 6. For the class of social choice problems with transferable utilities with at least 3
agents, a rule satisfies reallocation-proofness, efficiency, no transfer paradox, translation invari-
ance, and uniform treatment of uniforms if and only if it is an ESCD rule.
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Moulin [16] also introduced the following subfamily of ESCD rules.

Definition 5. A utilitarian rule is an ESCD rule whose weight functionρ : RK
++ → ∆|K|−1 is such

that, for eachc∈ RN×K
+ , (15) is satisfied and

ρk(c̄) = 0 for eachk∈ K with c̄k < c̄max. (17)

Let Uρ denote this rule. By (17), the first term of (16) is zero. Thus

Uρ
i (c) = ∑

k∈K

cikρk(c̄) = ∑
k∈K

cik

c̄k
ρk(c̄)c̄max.

Utilitarian rules are proportional rules that assign zero weights on inefficient alternatives. Un-
der these rules, each agent receives a weighted average of his valuations for efficient alternatives.
Thus, when agents have expected utility preferences, utilitarian rules can be considered as rules
that simply select an efficient alternative randomly without side-payments.

Among ESCD rules, only utilitarian rules satisfyno award for null. This suggests a char-
acterization of utilitarian rules in the manner of Theorem 4. Indeed, Moulin [16, Theorem 3]
characterizes utilitarian rules usingno award for null together withreallocation-proofness, ef-
ficiency, non-negativity, andanonymity. However, the characterization holds withoutanonymity
sinceanonymityis implied byreallocation-proofnessandno award for nullby Theorem 3 (Item 2).
Furthermore,reallocation-proofnesscan be weakened to the pairwise version, andnon-negativity
can be replaced withno transfer paradox, as the following result shows. The proof is in Appendix.

Corollary 7. For the class of social choice problems with transferable utilities with at least
3 agents, a rule satisfies pairwise reallocation-proofness, efficiency, no award for null, non-
negativity (or no transfer paradox), and translation invariance if and only if it is a utilitarian
rule.

Although Corollaries 6–7 are shown onRN×K
+ , translation invarianceenables us to extend

these results toRN×K , which is in fact the domain considered in Moulin [16].

6.5 Probability updating and aggregation

For probability updating problems, Theorem 4 and Corollary 1 give a characterization of Bayes
rule.

Corollary 8. For the class of probability updating problems with at least 3 states (i.e.,|N| ≥ 3), a
rule satisfies pairwise reallocation-proofness, efficiency, no award for null, and non-negativity if
and only if it is Bayes rule.

For probability aggregation, McConway [15] considers the following axiom. A rulef satisfies
the strong setwise function propertyif there is a functionh: [0,1]K → [0,1] such that, for each
(c,E) ∈ D and eachS⊆ N, ∑i∈S fi(c,E) = h(∑i∈Sci). Since functionh is independent ofS, this
axiom is stronger thanreallocation-proofness. SinceS= /0 is allowed in the definition, the axiom
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also impliesno award for null. Hence, we obtain the following result of McConway as a corollary.

Corollary 9 (McConway [15], Theorem 3.3). For the class of probability aggregation problems
with at least 3 states, a rule satisfies the strong setwise function property, efficiency, and non-
negativity if and only if it is a linear opinion pool.

7 Application II: Variable set of entities

We extend the model in the previous sections to allow the set of entities to vary. LetI ⊆ {1,2, . . .}
be the set ofpotentialentities, which may be finite or infinite. LetN be the set of all non-empty
finite subsets ofI . For eachN∈N , letA N be the class of all division problems associated withN.
We retain our simplifying assumption that for eachk∈ K, c̄k > 0. For eachN ∈N , letDN ⊆A N

andD ≡∪N∈N DN. A rule is now a functionf that associates with eachN∈N and each problem
(c,E) ∈ DN an award vectorf (c,E) ∈ RN. We say thatD is rich* if for eachN,N′ ∈N , each
(c,E) ∈ DN, and eachc′ ∈ RN′

+ , if ∑i∈N′ c
′
i = ∑i∈N ci , then(c′,E) ∈ DN′

. Note that ifD is rich*,
DN is rich for all N ∈N . The axioms and notions defined in the previous sections can be easily
redefined in this extended setup by simply adding “for eachN ∈N ” in the definitions.

7.1 Merging-splitting-proofness

This subsection considers an axiom,merging-splitting-proofness, which is closely related toreallocation-
proofness. In the context of claim problems, a rule ismerging-splitting-proofif no group of agents
can increase their total awards by merging their claims and, conversely, no single agent can in-
crease his award by creating dummy agents and splitting his claim among those dummy agents
and himself. This axiom was introduced by O’Neill [20] in the context of bankruptcy problems.

Merging-Splitting-Proofness.For eachN ∈N , each(c,E) ∈DN, each non-emptyS⊆ N, each
i ∈ S, and eachc′i ∈ RK

+, if c′i = ∑ j∈Sc j , then

fi(c′i ,cN\S,E) = ∑
j∈S

f j(c,E).

Note that the problem on the left-hand side is well-defined sinceD is rich*. We also consider
a pairwise version of the axiom:16

Pairwise Merging-Splitting-Proofness.For eachN ∈N , each(c,E) ∈DN, each pair{i, j} ⊆N
with i 6= j, and eachc′i ∈ RK

+, if c′i = ci +c j , then

fi(c′i ,cN\{i, j},E) = fi(c,E)+ f j(c,E). (18)

The following axiom, introduced by O’Neill [20], states that, ifci = 0 for an entity i, the
awards to the other entities are independent of whether entityi is present:

16Banker [3] considers a stronger version ofpairwise merging-splitting-proofnessrequiring that the merger of a pair
should not affect the award for anyone else.
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Null Consistency. For eachN ∈N , each(c,E) ∈ DN, and eachi ∈ N, if ci = 0, then for each
j ∈ N\{i}, f j(cN\{i},E) = f j(c,E).

This axiom differs fromno award for null. If ci = 0, no award for nullsays fi(c,E) = 0 but
allows the other entitiesj ∈ N\{i} to receive different amounts at(c,E) and(cN\{i},E).

We first usenull consistencyto extend the characterization of generalized proportional rules
in Theorem 2 to the current variable-population framework. The definition of generalized propor-
tional rules, which is given below, is the same as before but it should be noted that the pair of
functions(A,W) is independent of the setN of entities.

Corollary 10. Assume|I | ≥ 3 and let f be a rule on a rich* domainD . A rule f satisfies
reallocation-proofness, one-sided boundedness, and null consistency if and only if it is a general-
ized proportional rule, i.e., there exist two functionsA: RK

++×R++ →RI andW : RK
++×R++ →

RK such that, for eachN ∈N , each(c,E) ∈DN, and eachi ∈ N,

fi(c,E) = Ai(c̄,E)+ ∑
k∈K

cik

c̄k
Wk(c̄,E)E.

Proof. Let f be a rule onD satisfying the axioms. Theorem 2 andnull consistencyimply that, for
eachN ∈N , f coincides with a generalized proportional rule onDN. Let (AN,WN) denote the
associated pair. Bynull consistency, (AN,WN) is independent ofN.

The next result characterizesmerging-splitting-proofrules. The result also gives a relation
betweenmerging-splitting-proofnessand reallocation-proofness: merging-splitting-proofnessis
equivalent to the combination ofreallocation-proofness, no award for null, andnull consistency.

Theorem 8. Assume|I | ≥ 3 and let f be a rule on a rich* domainD . Then the following three
statements are equivalent: (i)f satisfies merging-splitting-proofness; (ii)f satisfies reallocation-
proofness, no award for null, and null consistency; (iii) there exists a functionŴ : R+×RK

++×
R++ → RK such that, for eachN ∈N , each(c,E) ∈DN, and eachi ∈ N,

fi(c,E) = ∑
k∈K

Ŵk(cik, c̄,E),

and, for eachk∈ K, Ŵk( · , c̄,E) is additive.

Intuitively, merging-splitting-proofnessimplies reallocation-proofnesssince a reallocation of
claims within a group can be done in two steps: merge the claims first and then split them among
the members. Bymerging-splitting-proofness, the total awards stay the same in each step, and
hencereallocation-proofnessis satisfied. The fact thatreallocation-proofness, no award for null,
andnull consistencyimply merging-splitting-proofnessis obtained as follows. Byreallocation-
proofnessandno award for null, the rule is given by the sum of̂Wk. By null consistency, Ŵk is
independent of the set of agents. This independence and the additivity ofŴk imply that merging
or splitting claims does not affect the total awards.

Proof. Let f be a rule on a rich* domainD with |I | ≥ 3. Clearly, (iii) implies (i). The fact that (ii)
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implies (iii) follows from Theorem 1 as in the proof of Corollary 10. To show that (i) implies (ii),
let f bemerging-splitting-proof.

We first show thatf is reallocation-proof. Let N ∈N , S⊆N, i ∈ S, (c,E) ∈DN, andc′i ∈R+

be such thatc′i = ∑ j∈Sc j . By merging-splitting-proofness, fi(c′i ,cN\S,E) = ∑ j∈S f j(c,E). This
equality implies that∑ j∈S f j(c,E) is invariant under any reallocation of characteristic vectors
within S.

We now show thatf satisfiesno award for nullandnull consistency. Let N ∈N and(c,E) ∈
DN be such thatch = 0 for someh∈ N.

We first consider the case when|N| ≥ 3. Let x≡ f (c,E) andy≡ f (cN\{h},E). Let j ∈N\{h}
and letα = f j(ĉ j ,E) be the award to entityj in the single-entity problem wherêc j = ∑i∈N ci . By
applyingmerging-splitting-proofnessto each of(c,E) and(cN\{h},E), we obtain∑i∈N xi = α and

∑i∈N\{h} yi = α. On the other hand, for eachi ∈ N \{h}, merging-splitting-proofnessfor the pair
{i,h} impliesxi +xh = yi . Hence∑i∈N xi +(|N|−2)xh = ∑i∈N\{h} yi . Since∑i∈N xi = ∑i∈N\{h} yi

and|N| ≥ 3, we obtainxh = 0, which provesno award for null. This in turn impliesxi = yi for
eachi ∈ N\{h}, which provesnull consistency.

We now considerN such that|N|= 2, sayN = {1,2}. Let (c1,c2,E)∈DN be such thatc2 = 0,
and lety≡ f (c1,c2,E). Consider the three-entity problem(c1,c2,c3,E) wherec3 = 0, and letx≡
f (c1,c2,c3,E). Since the result in the previous paragraph applies to the three-entity problem,null-
consistencyimplies (y1,y2) = (x1,x2) andno award for nullimpliesx2 = 0. Thusy2 = 0, which
provesno award for null. Finally, merging-splitting-proofnessimplies f1(c1,E) = y1 + y2 = y1,
which provesnull-consistency.

The following result characterizes proportional rules as in Theorem 4. The definition of pro-
portional rules is the same as in the previous sections but the vector of weightsW(c̄,E) is inde-
pendent of the set of entitiesN.

Theorem 9. Assume|I | ≥ 3 and let f be a rule on a rich* domainD . Then the following three
statements are equivalent: (i)f satisfies pairwise merging-splitting-proofness, efficiency, and non-
negativity (or no transfer paradox); (ii)f satisfies pairwise reallocation-proofness, efficiency, non-
negativity (or no transfer paradox), and null consistency; (iii)f is a proportional rule, i.e., there
exists a weight functionW : RK

++×R++ → ∆|K|−1 such that, for eachN ∈N , each(c,E) ∈DN,
and eachi ∈ N, (1) holds.

Proof. Clearly, (iii) implies (i) and (ii).
(ii) ⇒ (iii). Let f satisfy the axioms in (ii). Note thatefficiencyandnull consistencyimply no

award for null. Theorem 4 andnull consistencythen imply that, onDN for a givenN ∈N , f is a
proportional rule for some weight functionWN. By null consistency, WN is identical for allN.

(i) ⇒ (ii). Let f satisfy the axioms in (i). To prove thatf is pairwise reallocation-proof,
we can use the argument in the proof of Theorem 8 ((i)⇒ (ii)) for S such that|S| = 2. To
show thatf satisfiesnull consistency, let N ∈N and(c,E) ∈ DN be such thatch = 0 for some
h ∈ N. Let x≡ f (c,E) andy≡ f (cN\{h},E). In the proof of Theorem 8 ((i)⇒ (ii)), we used
merging-splitting-proofnesswith respect to coalitions with more than two entities only to obtain
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∑i∈N xi = ∑i∈N\{h} yi . This equality now holds byefficiency. We can use the remaining argument
in the proof of Theorem 8 ((i)⇒ (ii)) to show thatf satisfiesnull consistency.

If |K|= 1, the same argument that led us to Corollary 3 also implies thatnon-negativity(or no
transfer paradox) in Theorem 9 can be weakened toone-sided boundedness.

Corollary 11. Assume|I | ≥ 3 and |K| = 1 and let f be a rule on a rich* domain. Then the
following three statements are equivalent: (i)f satisfies pairwise merging-splitting-proofness,
efficiency, and one-sided boundedness; (ii)f satisfies pairwise reallocation-proofness, efficiency,
one-sided boundedness, and null consistency; (iii)f is the proportional rule.

Several papers consider the case where|K| = 1 and prove results similar to Corollary 11.
O’Neill [20, Theorem C.1] considers bankruptcy problems and characterizes the proportional rule
usingmerging-splitting-proofness, efficiency, anonymity, continuity, andnull consistency. Chun
[8, Theorem 3] considers claim problems and shows thatnull consistencyin O’Neill’s result is
redundant. de Frutos [9, Theorem 1] considers bankruptcy problems and characterizes the propor-
tional rule usingmerging-splitting-proofness, efficiency, andnon-negativity, thereby showing that
anonymityandcontinuityin Chun’s result can be replaced withnon-negativity. Our result [(i)⇔
(iii)] strengthens de Frutos’s by weakeningnon-negativityto one-sided boundednessand showing
that the pairwise version ofmerging-splitting-proofnesssuffices. As we mentioned after Corol-
lary 3, Chun [8, Theorem 2] also characterizes the proportional rule usingreallocation-proofness,
efficiency, anonymity, continuity, andnull consistency. Our result [(ii)⇔ (iii)] strengthens Chun’s
Theorem 2 by removinganonymity, weakeningcontinuityto one-sided boundedness, and showing
that the pairwise version ofreallocation-proofnesssuffices. Ju [12] considers bankruptcy problems
and shows that for rules that satisfyefficiency, non-negativity, and “claim boundedness” (requiring
fi(c,E) ≤ ci), pairwise merging-splitting-proofnessis equivalent to the combination ofpairwise
reallocation-proofnessandnull consistency. Our result [(i)⇔ (ii)] strengthens Ju’s by removing
“claim boundedness” and weakeningnon-negativityto one-sided boundedness. All the existing
results mentioned above are proved under the assumption that there exist an infinite number of
potential agents (|I |= ∞).

7.2 Equal treatment of equal groups

This subsection considers another axiom that is also closely related toreallocation-proofness. The
axiom, calledequal treatment of equal groups, extends the idea ofequal treatment of equalsto
groups, requiring that two groups with the same aggregate claims should receive the same amount.
The axiom was introduced by Chambers and Thomson [6] and Ching and Kakkar [7] in the context
of bankruptcy problems.

Equal Treatment of Equal Groups. For eachN ∈N , eachN′,N′′ ⊆ N, and each(c,E) ∈ DN,
if ∑i∈N′ ci = ∑i∈N′′ ci , then∑i∈N′ fi(c,E) = ∑i∈N′′ fi(c,E).

In this subsection, we focus on the classes of bankruptcy, surplus sharing, and claim problems.
We say that a rule isregular if it satisfiesefficiency, non-negativity, no award for null, and the
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following condition ofclaim boundedness:17





f (c,E) 5 c for bankruptcy problems,

f (c,E) = c for surplus sharing problems,

no condition for claim problems.

We also consider what is calledconsistencyor the reduced-game property. Suppose that,
after awards are determined by a rule, a subset of agents “leave the scene” with their awards.
Thenconsistencysays that reapplying the rule to the problem with the remaining agents and the
remaining amount to divide does not change the award vector for those agents.

Consistency. For eachN ∈ N , each(c,E) ∈ DN, and eachN′ ⊆ N, fN′(c,E) = f (cN′ ,E−
∑i∈N\N′ fi(c,E)).18

The next result shows a relation amongconsistency, equal treatment of equal groups, and
reallocation-proofness. The relation in turn yields an alternative characterization of the propor-
tional rule.

Theorem 10. Assume thatD is any of the three domains—bankruptcy, surplus sharing, or claim
problems—with at least 6 potential agents. If a regular rulef on D satisfies equal treatment of
equal groups and consistency, then for eachN ∈N with 3≤ |N| ≤ |I |/2, the restriction off on
DN is reallocation-proof; in fact,f is necessarily the proportional rule over the entire domain.
Therefore, the proportional rule is the only regular rule that satisfies equal treatment of equal
groups and consistency.

Proof. Let f be aregular rule satisfying the axioms on any of the three domains with at least
6 potential agents. We first prove thatf is reallocation-proof for eachN ∈ N such that3≤
|N| ≤ |I |/2. Without loss of generality, assumeN = {1,2, . . . ,n}, wheren≡ |N|. Let (c,E) ∈DN,
N′ ⊆ N, andĉ ∈ RN

+ be such that∑i∈N′ ĉi = ∑i∈N′ ci and ĉi = ci for all i ∈ N \N′. Without loss
of generality, assumeN′ = {1,2, . . . ,n′}, wheren′ ≡ |N′|. To show∑i∈N′ fi(ĉ,E) = ∑i∈N′ fi(c,E),
let M ≡ {n+1,n+2, . . . ,2n}, M′ ≡ {n+1,n+2, . . . ,n+n′}, andc′ ∈ RM

+ be such that∑i∈M c′i =
∑i∈N ci and∑i∈M′ c′i = ∑i∈N′ ci . Consider the problem forN∪M, (c,c′,2E). By equal treatment
of equal groupsandefficiency, ∑i∈N fi(c,c′,2E) = ∑i∈M fi(c,c′,2E) = E and∑i∈N′ fi(c,c′,2E) =
∑i∈M′ fi(c,c′,2E). By consistency, fN(c,c′,2E) = f (c,E) and fM(c,c′,2E) = f (c′,E). The last
three equalities imply∑i∈N′ fi(c,E) = ∑i∈M′ fi(c′,E). By replacingc with ĉ, the same argument
yields∑i∈N′ fi(ĉ,E) = ∑i∈M′ fi(c′,E). Hence∑i∈N′ fi(c,E) = ∑i∈N′ fi(ĉ,E). This shows thatf is
reallocation-proofonDN.

It remains to show thatf is the proportional rule. By Corollary 1,f coincides with the pro-
portional rule onDN for all N ∈ N such that3≤ |N| ≤ |I |/2. By consistency, f is also the

17Note that for bankruptcy problems,claim boundednessandnon-negativityimply no award for null.
18If E−∑i∈N\N′ fi(c,E) = 0, the last term is not well-defined because of our simplifying assumption thatE > 0 for

all problems. Thus we complete the definition by saying that, ifE−∑i∈N\N′ fi(c,E) = 0, then fN′(c,E) = 0. Given
this, the last term is always well-defined for regular rules because ofefficiencyandclaim boundedness. Thomson [25]
surveys the large literature of the consistency principle.
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proportional rule on two-agent problems. To show thatf is the proportional rule on the entire do-
main, take anyN ∈N and let(c,E) ∈DN andx≡ f (c,E). Since the rule is the proportional rule
on two-agent problems,consistencyfor a given pair{i, j} ⊆ N impliesxic j = cix j . Aggregating
this equation for allj ∈ N yieldsxi ∑ j∈N c j = ci ∑ j∈N x j = ciE by efficiency. This shows thatf is
the proportional rule on the entire domain.

Chambers and Thomson [6, Theorem 5] show that, in the class of bankruptcy problems with
|I | ≥ 3, the proportional rule is the onlyregular rule satisfyingequal treatment of equal groups,
consistency, andcontinuity. It has been known that if|I | = ∞, continuity is redundant in their
characterization. Indeed, as they show,equal treatment of equal groupsandconsistencyimply
merging-splitting-proofnessif |I | = ∞ (Chambers and Thomson [6, Theorem 7]). This and the
result of de Frutos [9] (or our Corollary 11) imply that, if|I |= ∞, the proportional rule is the only
regular rule that satisfiesequal treatment of equal groupsandconsistency. It has been an open
question whether, when|I | is finite, their result holds withoutcontinuity. Theorem 10 shows that
continuityis in fact redundant if|I | ≥ 6.19

Theorem 10 also holds even if we weakenequal treatment of equal groupsby requiring the
equal treatment condition only to a pair ofdisjoint groups of the samesize: N′ andN′′ such that
N′ ∩N′′ = /0 and|N′| = |N′′|. It is easy to see that the proof of Theorem 10 also works with this
axiom. We remark that, on a rich* domain with|I |= ∞, the weaker version ofequal treatment of
equal groups, no award for null, andnull consistencytogether imply the original version ofequal
treatment of equal groups. We leave the easy proof to the reader.

8 Extensions

We conclude the paper by discussing a few ways to extend our model. First, the model can be
extended to allow(c,E) to take negative values. For example, there may be debtors as well as
creditors, and the surplus to divide may be sometimes negative. Theorem 1 extends to the case
where the domain isD = RN×K ×R. For general domainsD ⊆ RN×K ×R, Appendix gives a
generalized condition of richness. Second, the proof of Theorem 1 also extends to the model
where all values are restricted to integers. However, if awards have to be integers too, proportional
rules are not admissible and an impossibility result obtains. Third, one might want to extend the
model to allow for multi-dimensional resources (multiple goods). Doing so, however, requires one
to introduce entities’ preferences over different types of resources and generalizereallocation-
proofness. Finally, we assumed that any subset or pair of agents can form a coalition. Ju [13]
extends our results to the case where there are exogenously given restrictions on what coalitions
can form.

19Actually, we can show thatcontinuity is redundant if|I | ≥ 4. The proof, however, does not usereallocation-
proofnessand hence is not given here; it is available from the authors upon request.

25



Acknowledgements

We are grateful to two anonymous referees, Youngsub Chun, Lars Ehlers, Hervé Moulin, Yusuke
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Appendix

Proof of Corollary 6. Let f be a rule satisfying the axioms. Then by Corollary 2,f is given by (11)
for some non-negative valued functionW : RK

++×R++→RK
+. Defineρ by ρk(c̄)≡Wk(c̄)c̄max/c̄k.

With this definition andE = c̄max, (11) reduces to (16). It remains to show thatρ satisfies (15) and

∑k∈K ρk(c̄) = 1.
We first prove thatρ satisfies (15). Letd∈RK

++ andλ > 0. Pickh∈K and j, `∈N arbitrarily,
and letc∈ RK×N

+ be such that̄c = d, c jh > 0, c jk = 0 for eachk ∈ K\{h}, andc`k = 0 for each
k∈K. Since|N| ≥ 3, there exists another agentm∈N\{ j, `}. Letc′ ∈RK×N

+ be the profile defined
by c′ ≡ (cm+λ1,c−m). By translation invariance, f j(c′) = f j(c) and f`(c′) = f`(c). By definition
of c and (16), f j(c) = f`(c) + c jhρh(c̄) and f j(c′) = f`(c′) + c jhρh(c̄+ λ1). Sincec jh > 0, we
obtainρh(c̄+λ1) = ρh(c̄).

We now prove that∑k∈K ρk(d) = 1 for all d. By the previous paragraph, it suffices to prove the
result ford such thatdk > 1 for all k ∈ K. Pick two agentsj, ` ∈ N arbitrarily, and letc∈ RK×N

+

be such that̄c = c` = d. Let c′ ∈ RK×N
+ be defined byc′ ≡ (c j +1,c`−1,cN\{ j,`}). Thenc̄′ = c̄,

andtranslation invarianceimplies f j(c′) = f j(c)+1. Since f j(c) and f j(c′) differ only in the last
term of (16),

1 = f j(c′)− f j(c) = ∑
k∈K

(c jk +1−c jk)ρk(c̄) = ∑
k∈K

ρk(c̄).

Proof of Corollary 7. Let f be a rule satisfying the axioms in the corollary. By Theorem 4,f
is a proportional rule with some weight functionW. Defineρ by ρk(c̄) = Wk(c̄)c̄max/c̄k. Then
fi(c) = ∑k∈K ρk(c̄)cik.

We first show thatρ satisfies (15). Letd ∈ RK
++ andλ > 0. Pick j ∈ N andh∈ K arbitrarily,

and letc ∈ RN×K
+ be such that̄c = d, c jh > 0, andc jk = 0 for all k ∈ K \ {h}. Let ` ∈ N \ { j}

andc′ ≡ (c` + λ1,c−`). By translation invariance, f j(c′) = f j(c). Since f j(c) = ρh(c̄)c jh and
f j(c′) = ρh(c̄+λ1)c jh, we obtainρh(c̄+λ1) = ρh(c̄).

The same argument in the proof of Corollary 6 shows that∑k∈K ρk(d) = 1 for all d.
It remains to show thatρ(c̄) satisfies (17). Byefficiency, c̄max = ∑i∈N fi(c) = ∑k∈K ρk(c̄)c̄k.

Sinceρk(c̄)≥ 0 and∑k∈K ρk(c̄) = 1, the equality holds if and only ifρ(c̄) satisfies (17).

Generalized richness.We here define a generalized condition of richness that enables us to extend
our results to division problems that involve negative values. Intuitively, instead of using0 as the
origin, we can have any numberbik as the relevant origin for agenti’s claim in issuek.
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Definition 6. A domainD ⊆RN×K×R satisfiesgeneralized richnessif for each(d,E) ∈RK×R
with D(d,E) 6= /0, there existsb = (bi)i∈N ∈ RN×K such that if a setX ⊆ RK is defined by

X ≡
{

∑
i∈S

ci−∑
i∈S

bi : (c,E) ∈D(d,E) and /0 6= S⊆ N
}
,

then
(i) (0, . . . ,0) ∈ X,
(ii) For eachx∈ X and eachk∈ K, (0, . . . ,0,xk,0, . . . ,0) ∈ X,
(iii) For each pairx,y∈X with x+y∈X and each pair of disjoint subsetsS,T ⊆N with S∪T (N,
there exists(c,E) ∈D(d,E) such that

∑
i∈S

ci−∑
i∈S

bi = x, ∑
i∈T

ci−∑
i∈T

bi = y,

(iv) For eachS⊆N and each pair(c,E),(c′,E)∈D(d,E), if ∑i∈Sc′i = ∑i∈Sci , then((c′S,cN\S),E)∈
D .

Generalized richness is indeed weaker than richness; richness implies that generalized richness
can be satisfied by settingb = 0 for any(d,E). On the other hand, there are a number of domains
that satisfy generalized richness but not richness: e.g.,RN×K ×R (settingb = 0), RN×K

− ×R−
(settingb = 0), and for anyb∈RK×N, {(c,E) ∈RN×K×R : c≥ b} and{(c,E) ∈RN×K×R : c≤
b}.

For any domain that satisfies generalized richness, Theorem 1 extends and characterizes rules
of the following form:

fi(c,E) = Ai(c̄,E)+ ∑
k∈K

Ŵk(cik−bik, c̄,E),

wherebik depends on(c̄,E) andŴk is additive incik−bik for a given(c̄,E). Since the proof of
this extension is essentially the same as before, we omit it.20
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