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Abstract

When resources are divided among agents, the characteristics of the agents are taken into
consideration. A simple example is the bankruptcy problem, where the liquidation value
of a bankrupt firm is divided among the creditors based on their claims. We characterize
division rules under which no group of agents can increase the total amount they receive
by transferring their characteristics within the group. By allowing agents’ characteristics to
be multi-dimensional and choosing the meaning of variables appropriately, our model can
subsume a number of existing and new allocation problems, such as cost sharing, social choice
with transferable utilities, income redistribution, bankruptcy with multiple types of assets,
probability updating, and probability aggregation. A number of existing and new results in
specific problems are obtained as corollaries.
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1 Introduction

Resource allocation problems often take the following form. There is an amount of a homogeneous
and infinitely divisible good (e.g., money) to be divided among a set of agents, and each agent’s
relevant characteristics are summarized by a vector. For example, when the liquidation value of
a bankrupt firm is divided among its creditors, the relevant characteristics of each creditor are
the amount of his claim, possibly categorized by the type of assets. Similarly, when the cost
of a service is divided among its users, each user’s usage level will be taken into account. For
allocation problems of this kind, we study allocation rules that assign an allocation to each possible
problem in a way that is immune to strategic transfers of characteristics among agents. That is, we
search for allocation rules such that no group of agents can increase the total amount they receive
by reallocating their characteristic vectors within the group in advance. This non-manipulability
condition, introduced by Moulin [16], is calle@allocation-proofness

As an illustration, consider the standard bankruptcy problem (with a single type of assets)
studied by O’Neill [20] and Aumann and Maschler [2]Suppose that a bankrupt firm has 3
creditors and the amounts that the firm owes to these creditofs;aog, c3) = (1,3, 3). Suppose
also that the firm’s liquidation value is 6, which is not enough to pay off all the creditors in full. For
this specific problem, an allocation rule assigns an award vectpr, X3) with X3 + X2 + X3 = 6.

A well-known allocation rule in this context is theonstrained equal award rujewhich
chooses the award vector that is closest to equal division subject to the constraint that no cred-
itor gets more than his claimy < ¢; for eachi.? For the above problem, the rule chooses
(x1,X%2,X3) = (1,2.5,2.5). While this rule has great appeal and plays a prominent role in the lit-
erature, it is manipulable via transfers of claims among creditors. Indeed, if creditor 2 transfers
one unit of his claim to creditor 1, the claim vector change&ioc,, c;) = (2,2,3) and the con-
strained equal award rule choog&$, x5, X5) = (2,2,2). Thus the total award to creditors 1 and 2
increases to 4 from 3.5. With an appropriate side payment from 1 to 2, both creditors gain from
the manipulation.

An example of a reallocation-proof rule is theportional rule which divides the firm’s value
proportionally to claims. For the above example, this rule chopses,, x3) = (6/7,18/7,18/7).

The total awards to creditors 1 and@;+x2 = 6(c1+C2) /(€1 + C2+C3), depend or; andcy only
through the sune; 4 ¢z, which shows that the rule is reallocation-proof.

We consider a general class of allocation problems including bankruptcy problems as a special
case. Characteristics are allowed to be multi-dimensional, which enables us to deal with, for
example, social choice with transferable utilities (whgrdenoted’s valuation function) as well
as bankruptcy problems with multiple types of assets. Further, the amount to divide may depend
on characteristic vectors, as in the problems of cost sharing (whisriés usage level) and income
redistribution (where; isi’s income level).

The model can also formulate rather different sets of problems if we vary the meaning of vari-

1The class of bankruptcy problems with a single type of assets was introduced by O'Neill [20], and since then a
large literature has been developed. See Moulin [19] and Thomson [24, 26] for surveys.

2Formally, the rule assigng = min{A,c;} whereA is uniquely determined bz?:l min{A,c;} = E, whereE is the
liquidation value E = 6 in the example).



ables in the model. For example, by replacing “agents” with “states of the world” and “awards”
with “probabilities,” we can consider problems of probability updating (Rubinstein and Zhou [22]
and Majumdar [14)) and probability aggregation (McConway [15] and Rubinstein and Fishburn
[21]), where probabilities are allocated among the states. In the probability aggregation problem,
for instance, a set of forecasters have their own forecasts, or probabilistic beliefs over the states.
What an allocation rule does is to pool these forecasts as inputs and specifies a single forecast.
Thusc; is the vector of probabilities assigned to statey the forecasters. A well-known ag-
gregation scheme is to take a weighted average of the probability distributions, which is called
alinear opinion pool(McConway [15]) and is reallocation-proof. In this context, reallocation-
proofness means informational efficiency: when the forecasters are interested in an event but not
the individual states constituting it, they can treat the event as a single composite state without any
loss.

Our main result characterizes reallocation-proof rules. We show that any reallocation-proof
rule can be written as the sum of two parts: a “priority part,” which may treat agents differently
based on their identities but ignores differences among their characteristics, and an “additive part,”
which treats agents equally and depends on characteristics additively. If the rule satisfies a mild
boundedness condition, the additive part is proportional to characteristics. This class of rules
includes the proportional rule, equal division, and weighted versions of “equal-distance” type
rules, and is closed under convex combinations.

Several existing results in specialized contexts are obtained as corollaries. In particular, our
results generate the characterizations of the proportional rule in O’Neill [20], Chun [8], de Frutos
[9], Ching and Kakker [7], Chambers and Thomson [6], and Moulin [19]; some families of rules in
Chun [8] and Moulin [16, 17]; and linear opinion pools in McConway [15]. We also show that, for
the characterization of the proportional rule, reallocation-proofness can be weakened to a version
that considers only coalitions of size two.

Our results together with the generality of the model generate new results as well. For ex-
ample, the multi-dimensional setting enables us to consider priorities among types of assets in
multi-dimensional bankruptcy problems: e.g., claims based on bonds should be reimbursed prior
to claims based on stocks. We characterize proportional rules that respect exogenously given pri-
orities. We also give a new characterization in income redistribution problems. We show that the
only way for an income redistribution scheme to satisfy reallocation-proofness and avoid a transfer
paradox is to use income tax with a flat tax rate and personalized lump-sum transfers.

The remainder of the paper is organized as follows. The next section introduces the model.
Section 3 defines axioms. Section 4 defines proportional rules and generalizations. Section 5
presents the main results. Section 6 gives applications of the results in specialized problems where
the set of agents is fixed. Section 7 considers problems where the set of agents is also variable; in
particular, we give a characterization of a closely related axiom calérding-splitting-proofness
Section 8 discusses a few ways to extend the model and the robustness of our results.

SBelief updating is also studied by Gilboa and Schmeidler [10] in a preference-based framework with non-additive
probabilities and multiple priors, and by Stalnaker [23] in a theory of conditionals.



2 Model

There is a finite sell = {1,2,...,|N|} of entities* Each entityi € N is characterized by a finite
dimensional vectot; = (cix)kek € R whereK = {1,2,...,|K|} is a finite set of issuesWe refer
to ¢; asi’s characteristic vectar A profile of characteristic vectors is denoted by (Ci)ien €
RY*K and the sum of these vectors is denoted by

C= (Ck)kek = (_Zw Cik)kek € RY.
le

A problemis a pair(c, E) € RY*K xR, |, wherec € RY*K is a profile of characteristic vectors
andE € R, is the amount of a homogeneous and infinitely divisible good to be difidéal.
avoid introducing uninteresting complication to the exposition, we only consider problems such
that¢, > O for eachk € K.”

A domainis a non-empty set of problems and is denoted/byA division rule, or briefly, a
rule over a domair¥ is a functionf associating with each problefo,E) € & a vector of awards
f(c,E) € RN. A domainZ isrich if it is closed under reallocations of characteristic vectors: for
each problen{c,E) € 2 and each profile’ € RY*K such tha® = ¢, we have(c,E) € 2. We
restrict our attention to rich domains.

Here are examples of rich domains.

Bankruptcy. As mentioned in the introduction, a bankruptcy problem deals with the division of
the liquidation valuee of a bankrupt firm among the set of its credittts Here,K is the set of
assets andy the claim that creditorholds in the form of assét Thus, the domain of bankruptcy
problems is given by? = {(¢,E) € R® xR, : Tk & > E, and& > Ofor all k € K}.

Bankruptcy problems withK| = 1 can also be interpreted as problems of collecting income
tax, wherec; is taxpayeri’s income level ancE is the amount of tax revenues to be collected
(Young [27]).

In what follows, bankruptcy problems refer to the cas¢gkdf= 1, unless stated otherwise.

Surplus Sharing. The problem is to divide the profit from a project among contributors (Young
[27]). Here,|K| = 1, ¢ is the amount of the opportunity cost for contribuitoandE > i\ G is
the profit that the project generates. Thas= {(c,E) e RY xR, :0< TicnGi < E}.

Claim Problems. This domain is simply the union of the domains of (single-dimensional) bank-

4This rather neutral term is used because the meanihgwvairies with the context.

SWe use the following notation for vector inequalities: gives € RM, x > y means thaxy, > ym for eachm; x>y
means thax = y andx # y; andx > y means thaxny, > ym for eachm.

6For simplicity, we only consider non-negative characteristic vectors and positive amounts to divide. Our results
hold in more general settings, as we discuss in Section 8.

’Even if we allow for problems such thak = 0 for somek, the main results and proofs go through with no
technical difficulty. We just need to replace summatigisyk with 3 rkei:g>03- On the other hand, if we allow for
problems where, = 0 for all k, then reallocation-proofness has no bite and allows for any allocation for those problems.
However, for those problem, two basic axioms, efficiency and no award for null (to be defined later), are incompatible.



ruptcy and surplus-sharing problems (Moulin [17] and Chun§8[hat is, no inequality between
E andy ;oG is imposed. Thu® = {(c,E) € RN xRy, : Ticn G > 0}

Social Choice with Transferable Utilities. Let N be the set of agents akdbe the set of possible
public projects, one of which has to be chosen. Each dgehthas a quasi-linear utility function
ui(k,m) = cix +m (cik > 0) wherek € K denotes the chosen project ande R denotes the side-
payment to agerit A feasible allocation is a listk,m) € K x RN such thaty;cym = 0. Note
that iy Ui (k,m) = ¢. Under Pareto efficiency, a projelcte argmax ek Cy is chosen. Given
such a projeck, any utility allocationx € RN with YienX = Cg is attainable through monetary
transfers. Hence, in utility terms, the problem is to diviles max.k Cx among the agents. Thus
2 ={(c,E) e RNK xR, : E = maxcx G, andc > 0 for eachk € K}. This class of problems
is studied by Moulin [16]. It differs from the previous examples in tBatepends omw.

Cost Sharing. Let N be the set of agents amid| = 1. Each agenite N has a demand > 0 for

a service. For each profile of demarws R, the aggregate cost to be shared among the agents
is given byC(C), whereC: R, — R, is the cost function. Thef? = {(c,E) e RY xR, : E =
C(0)}.

Income Redistribution. Let N be the set of agents arfd| = 1. Each agent € N has income
¢ > 0. The problem is to redistribute the incomes among the agents. Zhud(c,E) € RY x

R++:E:@.

Probability Updating. Let N* be the set of all states of the world. A person initially has a
probability distribution oveN*. We then consider a situation in which the person is informed that
eventN C N* has occurred. The problem is how to update the person’s probability distribution.
For each statec N, ¢; € R, denotes the probability that the person initially assigns to s(#es

|K| =1). SinceN C N*, we havey -y G < 1. Since the total probability to be allocatedliswe
always haveE = 1. ThusZ = {(c,1) e RY x {1} : 0 < TjenCi < 1}

Probability Aggregation. Here N is the set of possible states of the world, one of which is
realized in the future (e.gN is the set of possible weather conditions tomorrow). There is a
setK of forecasters, and each forecadter K has a probability distribution oveM, denoted by
(cik)ien € AINI=1, The problem is how to aggregate the set of probability distributions into a single
distribution. Since the total probability to be allocated over the states is 1, weEave Thus

2 ={(c,1) e RY*K x {1} : ¢ = 1 for eachk € K}.

3 Axioms

This section defines a number of properties that might be satisfied by division rules.
We start with our main axiom, which states that no group of entities can change the total
amount of their awards by reallocating their characteristic vectors within the group.

8Moulin [17] interprets this problem as surplus sharing after all opportunity costs are returned to contributors.



Reallocation-ProofnessFor each(c,E) € &, eachSC N, and eaclt’ € RﬂXK, if SicsC = YiesCi,

then
fi(cs,ens,E) =Y fi(c,E).
ggl S \ gsl

In the contexts of claim problems and their variants, if the left-hand side of the equation ex-
ceeds the right-hand side, then gra&apith claim profile(c;)ics can increase their total awards by
reallocating the members’ claims infd)ics. If the reverse inequality holds, grogwith claim
profile (¢)ics can gain from the reverse arrangement. This axiom was introduced by Moulin [16]
in the context of social choice with transferable utilitfes.

In the context of probability aggregatioreallocation-proofnessias a meaning of informa-
tional efficiency. Given a set of stat&_ N, consider two profiles of belief&y)kex and(c)kek
such that, for each forecastee K, ¢, andc, differ only in probabilities assigned to the states in
S So the probability of the evefitself is the same undex andc,. Then, anyeallocation-proof
aggregation rule assigns the same probability to the evasta whole unde(ty)kek and(cy)kek -

Thus, one can treat the eveiis a single composite state without any loss and does not have to
collect information about the forecasters’ beliefs over individual stat8&s in

Similarly, in the context of probability updatinggallocation-proofnesstates that the updated
probability of a given even$ depends on the initial belief over the statesSionly through the
total probability that the initial belief puts ddas a whole"?

We also consider a pairwise versionrefllocation-proofnesswhich deals only with reallo-
cation of characteristics between two entities:

Pairwise Reallocation-ProofnessFor each(c,E) € &, eachi, j € N with i # j, and each:{,c’j €
RK, if ¢/ +¢j =G +cj, then
fi(ci, €}, o i gy E) + fi(cf, €f, ongijy- E) = fi(C,E) + fi(c,E).

The pairwise version is particularly relevant for problems in wihiis the set of agents (e.g.,
claim problems), since strategic reallocations of characteristics would be easier to implement for
smaller groups of agents.

The remainder of this section defines a number of basic axioms. The following axiom requires
that awards add up to the amount to divide:

Efficiency. For each(c,E) € Z, i\ fi(C,E) = E.
For each problenic,E) € 2, let
2(CE)={(c,E) e RV xR, :T =¢}.

The following axiom basically excludes rules whose image of the compacv&eE) is un-
bounded above and below, but it is stated in a weak form:

9Moulin calls the axiom “no advantageous reallocation.”
10An axiom based on a similar idea can also be found in inductive probability theory (Carnap [5], Axiom C9).



One-Sided BoundednessFor each(c,E) € 2, there exists € N such thatfi(-,E) is bounded
from either above or below over a non-empty open subsét(cfE).

SinceZ(c,E) is compactpne-sided boundedneisssatisfied by any rule that is continuous in
claims. The following weak form of continuity is stronger thame-sided boundedness

Continuity. For each(c,E) € 2, there exists € N such thatfi(-,E) is continuous at least at one
pointin Z(c,E).

The following two axioms are also stronger thare-sided boundednesghe first one requires
that awards be non-negative:

Non-Negativity. For each(c,E) € 2 and each € N, fi(c,E) > 0.

Another axiom that implie®ne-sided boundedness no transfer paradoXMoulin [16]),
which states that no entity can increase its award by transferring part of its characteristic vector to
another entity:

No Transfer Paradox. For each(c,E) € 2, eachi, j € N with i # j, and each € R¥ such that
0<t=g,
fi(ci —t,cj +t,cni iy, E) < fi(c,E).

The next axiom states that no amount is awarded to entities whose characteristic vectors are
Zero:

No Award for Null. For each(c,E) € Z and each € N, if ¢; =0, thenfi(c,E) = 0.

For example, in the context of probability updatimm award for nullmeans that, if a state
initially receives no probability, so does it after updating.

The next axiom states that &l entities have the same characteristic vector, then they all
receive the same amount:

Uniform Treatment of Uniforms. For each(c,E) € 2, if ¢y =c; = --- = )|, then fy(c,E) =
fZ(Ca E) == f\N|(C> E)

The next axiom, which is stronger thaniform treatment of uniformsays that for any pair
of entities, if they have the same characteristic vector, they receive the same amount:

Equal Treatment of Equals. For each(c,E) € Z and each, j € N, if ¢, = ¢;j, thenfi(c,E) =
fj(C,E).

The next axiom, which is stronger thagual treatment of equalstates that the names of
entities do not matter:

Anonymity. For each permutatiom: N — N, each(c,E) € 2, and each € N, fj(c',E) =
fri)(c,E) wherec' is defined byc| = cj.

The next axiom, which is also stronger thegual treatment of equalstates that ii’'s charac-



teristic vector weakly dominatgss in every dimension, thenreceives at least as much gs

Order Preservation in Gains. For each(c,E) € 2 and each, j € N, if ¢; 2 ¢j, thenfi(c,E) >
fj(C,E).

4 Generalized proportional rules

For the case when characteristic vectors are single-dimensionalKj.e-,1), one of the simplest
and best-known rules is the proportional rule:

Definition 1 (Proportional Rule, | K| = 1). For each(c,E) € Z and each € N,
C.
fi(c,E) = ELE.

The right-hand side is well-defined since we rule out problems for whiel®. In the context
of probability updating, the proportional ruleBsayes rule In the context of cost sharing, it is the
average-cost rule

We now extend the definition of the proportional rule to the case in which characteristic vectors
are multi-dimensional. Let us definenaight functionas a functionW: RK | x R, — AKI7L,
which assigns a vector of weighté(c, E) overK as a function ofc, E). With this definition, we
define proportional rules in the multi-dimensional case as follows:

Definition 2 (Proportional Rule). There exists a weight functioif such that, for eacft,E) €
and each € N, o
fiCE)= Y ZW(CEE. (1)
keK Ck

Let PV denote the proportional rule associated With

This rulePY first applies the proportional rule to each single-dimensional sub-prafule )
whereck = (ci)ien and then takes the weighted average of the solutions to the sub-problems using
the vector of weight$V(c,E). The weights depend on the problem being considered but depend
only on(c,E). Proportional rules arefficientsincey .k Wk(C,E) = 1. They also satisfy all the
other axioms defined in Section 3. Evidently|Kfl = 1, Definition 2 reduces to Definition 1.

In the context of probability aggregatioR,= 1 andck = 1 for eachk € K. Thus a weight
function reduces to a single weight vectoe= W((1,...,1),1). A proportional rule then simply
takes a weighted average of individual probability distributions using a fixed weight vector. This
rule is called dinear opinion pool(McConway [15]).

We now introduce what we cadieneralized proportional rulesThese rules are characterized
by two functionsA: R, x R, — RN andwW: R, x R, — RX, and the award tois given
by the sum of the following two terms. The first termAgc, E), which is independent afs
characteristic vector but may traalifferently from others based adis identity. The second term
is proportional ta’s characteristic vector and treats entities symmetrically. This term, on the other
hand, may treat issues asymmetrically, and the degree of importance attached to edch issue



is given byW(c, E). Formally,

Definition 3 (Generalized Proportional Rule). There exist two functionA.: ]RﬁJr xR, — RN
andwW: Rf, x R, — RK such that, for eactc,E) € 2 and each € N,

fi(c,E) = A(GE) + gk‘gkwk(aae )

KEK “k

Note thawV is not required to be a weight function, i.e., neitiMgfc, E) > Onor ¥ ,.x Wk(C,E) =
lis required. Proportional rules are a special case where0 andW is a weight function.

Since, given(c,E), the second term on the right-hand side of (2) is lineasingeneralized
proportional rules satisfyeallocation-proofnesandone-sided boundednes®n the other hand,
these rules do not necessarily satisfy other axioms in Section 3. We will specify necessary and
sufficient conditions fofA,W) to satisfy each of those axioms.

An example of a generalized proportional rule that is not a proportional rule isgbel
division rule which simply dividesE equally among entitiesfi(c,E) = E/|N|. This rule is a
generalized proportional rule with (c,E) = E/|N| andWk(c,E) = 0.

Another example, in the case pf| = 1, is aweighted rights egalitarian ruléBergantids
and Vidal-Puga [4]), which first awardsto eachi and then distributes the differenEe- ¥y Ci
among the entities according to a weight ve¢iar, . . ., An) € int(ANI=1): fi(c,E) = ¢+ A (E —C).

This rule is a generalized proportional rule wah(c,E) = A;(E — c) andW(c,E) = c/E. If the
weights are equall = 1/ |N| for eachi), the rule is what is called theghts egalitarian rulein
Herrero, Maschler, and Villar [11].

5 Main results

Our first main result is a characterizationreéllocation-proofrules.

Theorem 1. AssumgN| > 3. A rule f on a rich domainZ is reallocation-proof if and only if
there exist two functiond: RK, xR, , — RN andW: R, x RK, x R, — RX such that, for
each(c,E) € 7 and each € N,

fi(c.E) = A(GE) + Y Wk(ck,CE),
keK

and for eactk € K, W( -, C,E) is additive.

Proof. Since the “if” part is straightforward, we prove the “only if” part. LEbe areallocation-
proof rule defined on a rich domai#. We fix (d,E) € R, x R, and consider problents, E)
such that =d. Let% = {c e RX*N : ¢=d}.

Step 1. We first show thateallocation-proofnesgnplies the following property: for eachc’ €
¢ and eaclSC N, if JicsC = YicsCl, thenYicsfi(C,E) = Jicsfi(C,E). Indeed, by applying



reallocation-proofnes® S, N, andN \ S, we obtain

f'(ch): f'(C,aCN S fC,CN S f(dacN S )
2,(0E)= 2 e ans B = 5 Hes s >N

eN\S

_wacE ch zngE
ieN

Step 2. For eachi € N, let A(d,E) = fi(c,E) wherec € ¥ andc; = 0. That is,Ai(d,E) is the
amount thai receives whenever its characteristic vector is zero, giee&). By Step 1 with
S={i}, A(d,E) is uniquely determined. By applying the same observation to coaliSgn,
we can also define a functiom: (2N\ {0,N}) x [1k_,[0,dy] — R by

WSX) =3 H(GE) 3 A(E) 3)

wherec € % is such thafyjcsci = x. For brevity, the dependencew(S, x) on (d, E) is omitted.

Step 3. We show that for eack € [1K_;[0,di] and eact§ S C N, w(S x) = w(S,x). We first
consider the case whe®iC S. Letc € ¢ be such thaf;csci = x andc; = 0 for eachi € S\ S.
Sincefi(c,E) — A(d,E) = O for eachi € S\' S,

X)= % fi(c.E)— Y A(d,E)=w(S,x),

ieS ieS

as desired. Now, consider the case in which no inclusion holds bet®apdS. Leti € Sand

j € S. The result just obtained implie®(S x) = w({i},x) = w({i, j },x) = w({j},X) = w(S,X).
This step enables us to writg S x) asw*(X).

Step 4. We show that for eack,y € [1K_;[0,d] such thaix+y € [k_4[0, dy], W*(X) +w*(y) =

w*(x+Y). Leti, j € N (i # j) andc € ¢ be such that; = x andc; =y, althoughx+y < d, such a

C € ¥ exists since there are 3 or more entities. Then

W (x) +w(y) = w({i},x) +w({j}.y)
= fi(C’E)*Ai(daE)+ fj(ch)iAj(dvE)
W({i, j},x+Yy) =W (x+y).

Step 5.For eachi € N, eachk € K, and eaclty € [0,dy], let
Wk(cik,d,E) = w*(0,...,0,C,0,...,0)

whereci, appears in th&th entry. Then for each e ¢ and each € N,

fi(c,E) = A(C,E) +w({i},c)
Al C_ + ZM Clk7C E)
keK

10



The additivity of( - , ¢, E) follows from Step 4! O

This and the subsequent results require at least three entities. However, the same results hold
even in the two-entity case in an extended framework where the set of entities is variable, as we
discuss in Section 7.

The following result shows thatallocation-proofnessogether withone-sided boundedness
characterizes generalized proportional rules:

Theorem 2. AssumégN| > 3. A rule on a rich domain satisfies reallocation-proofness and one-
sided boundedness if and only if it is a generalized proportional rule.

Proof. The “if” part has been discussed. The “only if” part holds sigg -, c,E) is additive
over [0, cy] and bounded either above or below over a non-empty open subset, which implies that
Wk(-,C,E) is linear [1, Corollary 2.5]. Thereforal(ci,C,E) = (ci/C)Wk(Ck,C,E). Letting

Wk (¢, E) =Wk(c, ¢, E)/E completes the proof. O

The two axioms in Theorem 2 are independent. Indeed, a number of rules in the literature
satisfy one-sided boundednebat notreallocation-proofnessA rule that satisfieseallocation-
proofnesdiut notone-sided boundednesan be constructed using an additive nonlinear function
[1, Theorem 2.2.10].

We can obtain necessary and sufficient conditiongAV) under which theeallocation-
proof rules characterized in Theorem 1 satisfy additional basic axioms. We omit the proof since it
is straightforward.

Theorem 3. AssuméN| > 3. Let f be a reallocation-proof rule on a rich domai#, and (A, W)
be the list of associated functions. Then

1. Rulef satisfies no award for null if and only if, for ea¢b E) € & and each € N,
A(EE) =0. @)
2. Rulef satisfies uniform treatment of uniforms if and only if, for e&clE) € 7,
AL(EE) = Ao(EE) = - = Ay (GE), (5)

which holds if and only if satisfies anonymity. Hence, for reallocation-proof rules, anonymity,
equal treatment of equals, and uniform treatment of uniforms are all equivalerid) Bpd
(5), if f satisfies no award for null, thef satisfies anonymity.

3. Rulef satisfies no transfer paradox if and only if, for edchE) € 2, eachk € K, and each
i €N,

Wi (cik, ¢, E) > 0, (6)

e defined (cik, €, E) only for ¢y < ¢, and Step 4 shows only thék( - ,c, E) is additive ove0, ¢,]. But we can
easily extend the definition and the additivityRq .
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which is the case if and only if, for ea&he K, \M( -,C,E) is non-decreasing igi.

. Rule f satisfies order preservation in gains if and onlyfikatisfies uniform treatment of
uniforms and no transfer paradox (i.€. satisfieq5) and (6)).

. Rule f satisfies one-sided boundedness (heintea generalized proportional rule) if and
only if, for eachk € K and each(c,E) € 2, \M(',C_,E) is monotonic, i.e., either non-
decreasing or non-increasing.

. Rulef satisfies continuity if and only if it satisfies one-sided boundedness.

. Rulef satisfies non-negativity if and onlyfifsatisfies one-sided boundedness and, for each
(c,E) € 2,
minA; (C,E)+ S min{0,W(cx,C,E)} > 0. 7
mIA|(EE) + 5 min{0.W (GG E)} )
A necessary condition fdi7) is

Ai(c,E) >0 foreachi € N. (8)

. Rulef satisfies efficiency if and only if, for eath E) € 2,

> k(G CE) =E~ 3 A(GE). ©

kekK

Therefore, whenK| = 1, f satisfies efficiency and one-sided boundedness if and ofily if
takes the following form:

_ Ci _
fi(c,E) = A(CE)+ =[E - Z‘Ai(C,E)]. (10)
c i€
Thusf first allocatesA;(c, E) to eachi and then divides the remainder among the entities

proportionally to their characteristics. This rule satisfies non-negativity if and only if, for
each(c,E) € Z and each € N,

A(CE) > 0, Y A(CE)—E}.
(C,E) > max{ ,-gm j(C.E)—E}

The following result is a characterization of proportional rules. We omit the proof since it

follows easily from Theorem 3.

Corollary 1. AssuméN| > 3. A rule on a rich domain satisfies reallocation-proofness, efficiency,
no award for null, and non-negativity (or no transfer paradox) if and only if it is a proportional

The following result is a characterization of another subfamily of generalized proportional

rules. We again omit the proof since it also follows easily from Theorem 3.
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Corollary 2. AssumeN| > 3. A rule f on a rich domainZ satisfies reallocation-proofness,
efficiency, uniform treatment of uniforms, and one-sided boundedness if and only if there exists a
functionW: RK, x R, — RX such that for eaclic,E) € 2 and eachi € N,

E _ G _
fi(cE)=y[1- Y W(EE)]+ Y 2K\ (CE)E. (11)
‘ ’ keK keK Ck
This rule satisfies non-negativity and no transfer paradox if and only if, for éadh) ¢ 2,

W(GE) 2 0and 3k Wk(GE) < 1.

Moulin [17, Lemma 2] considers (single-dimensional) claim problems and obtains the func-
tional form (11) usingreallocation-proofnessefficiency uniform treatment of uniformsnon-
negativity “homogeneity”  being linear in(c, E)), “claim monotonicity,” and “resource monotonic-
ity.” Chun [8, Theorem 1] also considers claim problems and obtains (11) vsaligcation-
proofnessefficiency anonymity andcontinuity.

We now show that, for the characterization of proportional rules in Corollargallocation-
proofnesgan be weakened to its pairwise version.

Theorem 4. AssuméN| > 3. A rule on a rich domain satisfies pairwise reallocation-proofness,
efficiency, no award for null, and non-negativity (or no transfer paradox) if and only if it is a
proportional rule.

Proof. Let f be a rule on a rich domai# with [N| > 3 satisfying all the axioms. For ea&C N,
let Zs={(c,E) € 2 :ci=0foralli ¢ S}. By no award for nul] we can treat problems i#¥s as
those in which only entities i§are present.

On Zs such that§ = 3, pairwise reallocation-proofnesand efficiencyimply reallocation-
proofness Corollary 1 then implies that, ofs, f coincides with a proportional rule. L&S
denote the associated weight function. For é8@hC N such tha{S| = |T| =3 and|SNT| > 2,
since ZsN 21 # 0, we havewS = WT. Thus, weight functions for all triples are identical and
we can write them simply byV. Hence, onUg<3%s, f coincides with the proportional rule
associated withv.

To prove thatf is the proportional rule on the entire domain, we use an induction argument.
Givenk > 3, suppose that, on|g<kZs, f coincides with the proportional rule associated with a
weight functionW, and letSC N containk 4 1 entities. To prove that also coincides with the
proportional rule orZs, let (c,E) € Zs. Consider a paifi, j} C S, and letc’ € R3*K be such that
(ci,cj) = (ci +¢j,0) andg, = ¢y for eachh ¢ {i, j}. Then bypairwise reallocation-proofnesand
no award for null fi(c,E) + fj(c,E) = fi(c',E) + fj(c',E) = fi(C',E). Since(c’,E) € Zgyj, the
induction hypothesis implie§(c’,E) = P"(c/,E) = P"(c,E) + P/"(c,E). Thereforefi(c,E) +
fi(c,E) = BY(c,E) + P(c,E). Since this holds for every pafi, j} C S, we obtainf(c,E) =
PWV(c,E). O

A similar result is obtained by replacimgpn-negativity(or no transfer paradoxin Theorem 4
with one-sided boundednesideed, one can easily show that, for any réiléhat satisfies the
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modified list of axioms, there exists a functidh: RKH xRy — RK such that, for eaclc,E) €

2 and eache N, 3, Wk(C,E) =1and (1) holds. This family of rules is strictly larger than that of
proportional rules sincé is allowed to take negative values. Howevelkif = 1, thenW(C,E) =

1 and hence any rule that satisfies the modified list of axioms also satisfieaegativityand
no transfer paradox This implies that if|K| = 1, non-negativity(and no transfer paradoxin
Theorem 4 can be replaced withe-sided boundednesehus we obtain

Corollary 3. AssuméN| > 3and|K| = 1. Arule on arich domain satisfies pairwise reallocation-
proofness, efficiency, no award for null, and one-sided boundedness if and only if it is the propor-
tional rule.

A few papers consider the case whin= 1 and prove results similar to Corollary 3. Chun [8,
Theorem 2] considers claim problems in the framework where the set of agents is variable, and
characterizes the proportional rule usiegllocation-proofnessefficiency anonymity continuity;
and “null consistency” (defined later in Section 7.1). We will strengthen the result in Section 7.1:
see the equivalence between (ii) and (iii) in Corollary 11. Ching and Kakkar [7, Corollary 3]
consider bankruptcy problems and characterize the proportional rulerasilacation-proofness
efficiency no award for nul] andnon-negativity thereby showing thanonymity continuity, and
“null consistency” in Chun’s result can be replaced withaward for nullandnon-negativity*?

As we observe belowpo award for nullis weaker than “null consistency” in the presence of
efficiency Our Corollary 3 strengthens Ching and Kakkar's result by showing that it holds for
any rich domainnon-negativitycan be weakened tone-sided boundednessndreallocation-
proofnessan be weakened to its pairwise version.

6 Application I: Fixed set of entities

6.1 Claim problems and variants

This subsection presents applications of our results in the contexts of bankruptcy, surplus sharing,
and claim problems.

We consider the following three additional axioms. The first one says that if the amount to
divide is split into two parts and the award vector is computed separately for each part, then the
sum of the award vectors should coincide with the award vector obtained from a single calculation
applied to the total amount to divide:

Resource Additivity. For each(c,E) € Z and each(c,E’) € 2 such that(c,E+ E’) € 2,
f(c,E)+ f(c,E') = f(c,E+F).

The next axiom says that division should be independent of the unit with which the data of the
problems are measured. That is, the rule should be lindat i) jointly:

Homogeneity.For eachc,E) € 2 and each\ >0, f(Ac,AE) = A f(c,E).

12The comparison between Chun and Ching—Kakkar is not precise since Chun considers a variable-population model
and covers the two-agent case.
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The next axiom says that no agent loses when his claim increases:

Claim Monotonicity. For each(c,E) € 2, eachi € N, and eaclt] > ¢, if (¢/,c_i,E) € 2, then
fi (C|/a C,i,E) > fi (Cv E)

We begin by characterizing a subfamily of generalized proportional rules that sagsiyrce
additivity.

Theorem 5. Assume tha® is any of the three domains— bankruptcy, surplus sharing, or claim
problems—uwith at least 3 agents. A rulen 2 satisfies reallocation-proofness, efficiency, non-
negativity, and resource additivity if and only if there exists a funciol®R, . — Rﬂ such that,

for each(c,E) € 2 and each € N,

fi(c,E) = E[A(E+ 2[1 ZNAJa}

This rule satisfies no transfer paradox if and onlyifey Aj(C) < 1.

Proof. Let & be the class of bankruptcy problems wijh > 3 (proofs for the other classes are
similar). Letf be a rule onZ satisfying the axioms. By Theorem 3 (equations (8) and (10)), there
exists a functiorA: RZ, — R such that, for eaclc,E) € 2 and eachi € N,

fi(c,E) = Ai(GE ; ZVAJ (CE)]

Letc € RY andi € N. We shall show tha#(C, - ) is linear on[0,c[. To prove this, we can assume

¢ = 0. Thenresource additivitymplies that, for eack,E’ € [0, c], we haveAi(C,E) +Ai(C,E') =
A(C,E+E')aslong ad <E+E’' <c; ie. A(c,-) is additive on[0,c]. Sincef satisfiesnon-
negativity a standard argument of Cauchy’s equation yields (as in the proof of Theorem 2) that
A(c, -) is linear on[0, ¢]. Thus, for eacE € [0,c], we can writeA (C,E) asAi(C)E. O

It is easy to show that ifiomogeneitys addedA(-) in Theorem 5 is constant for eack N,
and for these rulesio transfer paradois equivalent taclaim monotonicity Thus we obtain

Corollary 4. Assume tha®Z is any of the three domains—bankruptcy, surplus sharing, or claim
problems—uwith at least 3 agents. A ruieon Z satisfies reallocation-proofness, efficiency, uni-
form treatment of uniforms, non-negativity, no transfer paradox (or claim monotonicity), homo-
geneity, and resource additivity if and only if there exists [0, 1] such that, for eaclic,E) € 2,

fi(c,E)=a—E+(1—a)=E, (12)

i.e., f is a convex combination of the proportional rule and equal division.

Moulin [17, Theorem 3] characterizes the same family of rules for claim problems. Corollary 4
strengthens his result by removing “resource monotonicity” from his characterization and making
it applicable to other domains.
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The family of rules characterized in Corollary 4 is indexedd¥ [0,1]. The axiom to be
considered next, callecbmposition downfurther contracts this family. To motivate this axiom,
consider a problenic, E) and suppose that, after an award veat® agreed upon, it is revealed
that the amount to divide is actually less than expected H'e<, E. There are at least two ways
to adjust the award vector. One is to re-calculate the award vector for the problem with the right
amount to divide(c,E’). Another is to consider the previous agreemeas the relevant claim
vector and calculate the award vector for the prob{gnt’). The axiom states that in either way,
we reach the same award vectdr.

Composition Down. For each(c,E) € 2 and eaclt’ < E with (c,E") € 2, f(c,E') = f(f(c,E),E’).

Corollary 5. Assume tha¥ is the class of either bankruptcy problems or claim problems, with
at least 3 agents. A rule of7 satisfies all the axioms in Corollary 4 and composition down if and
only if it is either the proportional rule or equal division.

Proof. The “if” part follows since the proportional rule and equal division satisfynposition
down To prove the converse, létbe a rule satisfying the axioms. By Corollary f4is a convex
combination of the proportional rule and equal division with a weakt [0, 1] on equal division.
Let (c,E) € 2 andE’ € (0,E). Notice that(c,E’) € 2 and(f(c,E),E’) € 2. By composition
down f(c,E’) = f(f(c,E),E’), which implies

: E[&+(1—a)%]
a c a N c
— t(l-a)2=—+(1— .
,Nﬁ( a)= |N,+( a) S
Hence(1— or)or[‘i| — 4] = 0. Sincec was chosen arbitrarily =0ora = 1. O

Moulin [17, Theorem 2] also characterizes the pair of the proportional rule and equal division,
in the context of claim problems, using “path independence” insteadraposition down“Path
independence” is also a condition of dynamic consistency in calculating awards, but it is not well-
defined in the class of bankruptcy problems.

6.2 Bankruptcy with multiple types of assets

We now give an application of Theorem 4 in the context of bankruptcy problems with multiple
types of assets. There are often exogenously determined priorities among different types of assets.
For example, the standard legal code states that claims based on bonds should be reimbursed prior
to claims based on stock$ Without loss of generality, suppose that assets of kjpave priority

over assets of typk for all K > k. Given the priorities, we consider a requirement that if there
exists a creditor whose claim based on the fir$ypes of assets is not fully reimbursed, then

there should not exist a creditor who gets strictly more than his claim for #gges of assets.

13This axiom, introduced by Moulin [19], is well-defined undsfficiencyandnon-negativityin the classes of bank-
ruptcy and claim problems (but not surplus sharing).

14priorities of the United States Code, Title 11 (Bankruptcy), are stated in Sections 507 (Priorities) and 726 (Distri-
bution of property of the estate).
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Formally, a rulef conforms taasset prioritiesf for each(c,E) € & and eactk € K, if there exists
a creditori € N such thatfi(c,E) < $K_; cin, thenfj(c,E) < $K_; cjn for eachj € N.1® The next
result characterizes the proportional rule that confornastet prioritiesby identifying the exact
form of its weight function.

Theorem 6. For the class of bankruptcy problems with multiple assets with at least 3 agents, a
rule satisfies pairwise reallocation-proofness, efficiency, non-negativity, and asset priorities if and
only if it is the proportional rule with the weight functioil defined as follows: for each possible
(C,E), if k* € K is the minimum index such thgf_, ¢, > E, then for eaclk € K,

& if k <k,
W(CE) = 1- Sy & ifk=Kk, (13)
0 if k > k.

Proof. Let f be a rule satisfying the axioms. BEasset priorities no creditor gets more than his
total claim (5w Cik) and therefore, byion-negativitythe rule satisfieso award for null Thus by
Theorem 4. is a proportional rule with some weight functigvi. To show thawV satisfies (13),
consider any possible, E) and letk* be defined as above. L&t E) € Z(c,E). If there exists a
creditori such thatfi(c,E) > zﬁ;lcih, then byefficiency there exists another creditpsuch that
fi(c,E) < TK_; cjn, but thenf violatesasset priorities This shows that for eadhe N,

"
fi(c,E) < > Cin. (14)
=1

Now, given anyk € K and anyi € N, consider a problenic,E) € Z(c,E) such thaty = ¢k
andci, = 0 for eachh # k. Then fi(c,E) = W(C,E)E. Since this value should not excegsl
total claim, we hav&\k(C,E) < ¢/E. If k> k*, (14) impliesfi(c,E) < 0and henc&\(c,E) = 0.
If k < k*, we claimW(C,E) = ¢/E. Indeed, if\k(C,E) < &/E, thenfi(c,E) < & = TK_; Cih.
Thus, byasset prioritiesy oy fj(C,E) < zﬁzlt?h < E, contradictingefficiency O

6.3 Income redistribution

For income redistribution problems, by using Theorem 3, we can characterize the family of
income-tax schedules with a flat tax rate and personalized lump-sum transfers:

Theorem 7. For the class of income redistribution problems with at least 3 agents, a frule
satisfies reallocation-proofness, efficiency, non-negativity, and no transfer paradox if and only if
there exist two function§: R, — [0,1] andR: R;; — RN such that, for eaclic,E) €  and

15In the context of bankruptcy problems wii| = 1, Moulin [18] shows that a certain set of independence axioms
characterizes a family of rules that conform to exogenously given priorities aagergs Our priorities, on the other
hand, pertain to assets, not agents.
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eachi € N,

f(eE)=(1-T@E)a+R(E and 3 R(6)=T(EE
je

In these rulesT determines the flat tax rafie(c) as a function of the size of the economy,
while Rdetermines the reallocation sche(fg(c),Rx(C), .. .,Rn(C)) as a function of individuals’
identities subject to the budget balan§g:y R;j(C) = T(C)c. Itis easy to see that these rules also
satisfyhomogeneityf and only if T is constant and eadR) is linear.

6.4 Social choice with transferable utilities

In social choice problems with transferable utilities, the vectalenotes agerits valuations for
alternatives. Thus it is immaterial how the vector is normalized. This motivates the following
axiom. Letl € RK denote the vector consisting bbnly.

Translation Invariance. For each'c,E) € &, eachi € N, and eachA € R,
fi((Ci —l—/\l,C,i),E—l—)\) = fi(C,E)+/\ and f,i((Ci +A 1,C,i),E—|—/\) = f,i(C,E).

For eachc RﬁXK, let Cnax = MaXek Ck. SINCEE = Cmax, We suppres& throughout this
subsection. Moulin [16] introduced the following family of rules:

Definition 4 (Equal Sharing Above a Convex Decision, ESCD)There exists a functiop: RL
AIXI=1 such that, for eache RK and each\ > 0,

p(E+1) = p(d), (15)

and, for eaclt € RY>*X and each ¢ N,

fi(c) = Cmax Z CkPx( 6) + z Cik Pk (C) (16)

l
INJ| KEx KEK

Let ES’ denote the ESCD rule associated with

It is easy to see thdES’ is efficientandtranslation invariant Note thatES is the gener-
alized proportional rule associated with RX | — RN andw: RX, — RK defined bywk(c) =
CiPk(C) /Cmax @ndAy (€) = C\"ﬂj\ [1— Tkek Wk(C)].

Moulin [16, Theorem 1] characterizes the family of ESCD rulesdmsllocation-proofness
efficiency no transfer paradoxtranslation invariance andanonymity The next result, which
relies on Corollary 2, shows that his characterization remains va#idaohymityis weakened to
uniform treatment of uniformd he proof is in Appendix.

Corollary 6. For the class of social choice problems with transferable utilities with at least 3
agents, a rule satisfies reallocation-proofness, efficiency, no transfer paradox, translation invari-
ance, and uniform treatment of uniforms if and only if it is an ESCD rule.
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Moulin [16] also introduced the following subfamily of ESCD rules.

Definition 5. A utilitarian rule is an ESCD rule whose weight functipn RK — AKI=1is such
that, for eactc € RY*K, (15) is satisfied and

pk(€) =0 for eachk € K with ¢k < Cmax- a7)

LetUP denote this rule. By (17), the first term of (16) is zero. Thus
CELELICE gk‘ikpk@c—max.
K ke Ck

Utilitarian rules are proportional rules that assign zero weights on inefficient alternatives. Un-
der these rules, each agent receives a weighted average of his valuations for efficient alternatives.
Thus, when agents have expected utility preferences, utilitarian rules can be considered as rules
that simply select an efficient alternative randomly without side-payments.

Among ESCD rules, only utilitarian rules satisfy award for null This suggests a char-
acterization of utilitarian rules in the manner of Theorem 4. Indeed, Moulin [16, Theorem 3]
characterizes utilitarian rules usimgp award for nulltogether withreallocation-proofnessef-
ficiency non-negativity andanonymity However, the characterization holds with@utonymity
sinceanonymityis implied byreallocation-proofnesandno award for nullby Theorem 3 (Item 2).
Furthermorereallocation-proofnessan be weakened to the pairwise version, aod-negativity
can be replaced witho transfer paradoxas the following result shows. The proof is in Appendix.

Corollary 7. For the class of social choice problems with transferable utilities with at least
3 agents, a rule satisfies pairwise reallocation-proofness, efficiency, no award for null, non-
negativity (or no transfer paradox), and translation invariance if and only if it is a utilitarian
rule.

Although Corollaries 6-7 are shown @&I*¥, translation invarianceenables us to extend
these results t&N*K, which is in fact the domain considered in Moulin [16].

6.5 Probability updating and aggregation

For probability updating problems, Theorem 4 and Corollary 1 give a characterization of Bayes
rule.

Corollary 8. For the class of probability updating problems with at least 3 states [Né> 3), a
rule satisfies pairwise reallocation-proofness, efficiency, no award for null, and non-negativity if
and only if it is Bayes rule.

For probability aggregation, McConway [15] considers the following axiom. A fidatisfies
the strong setwise function propertf/there is a functiorh: [0,1]X — [0,1] such that, for each
(c,E) € Z and eacl5C N, Jicsfi(c,E) = h(TjcsCi). Since functiorh is independent o8, this
axiom is stronger thareallocation-proofnessSinceS= 0 is allowed in the definition, the axiom
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also impliesno award for null Hence, we obtain the following result of McConway as a corollary.

Corollary 9 (McConway [15], Theorem 3.3). For the class of probability aggregation problems
with at least 3 states, a rule satisfies the strong setwise function property, efficiency, and non-
negativity if and only if it is a linear opinion pool.

7 Application II: Variable set of entities

We extend the model in the previous sections to allow the set of entities to valyCL€t, 2, ...}

be the set opotentialentities, which may be finite or infinite. Let” be the set of all non-empty
finite subsets of. For eachN € .4, let.o7N be the class of all division problems associated With

We retain our simplifying assumption that for edch K, ¢, > 0. For eaciN € .4/, let 2N C 7N

andZ = Uye» 2N, A ruleis now a functionf that associates with eathe .4 and each problem
(c,E) € 2N an award vectof (c,E) € RN. We say thatZ is rich* if for eachN,N’ € .4/, each

(c,E) € 2N, and eaclt’ € RY, if Sicn € = TienGi, then(c,E) € 2V, Note that ifZ is rich*,

2N is rich for allN € .#". The axioms and notions defined in the previous sections can be easily
redefined in this extended setup by simply adding “for ddeh.#"" in the definitions.

7.1 Merging-splitting-proofness

This subsection considers an axiamgrging-splitting-proofnessvhich is closely related treallocation-
proofnessin the context of claim problems, a rulemgerging-splitting-prooif no group of agents

can increase their total awards by merging their claims and, conversely, no single agent can in-
crease his award by creating dummy agents and splitting his claim among those dummy agents
and himself. This axiom was introduced by O’Neill [20] in the context of bankruptcy problems.

Merging-Splitting-Proofness. For eachN € .4, each(c,E) € 2N, each non-empt$ C N, each
i € S and eacht € RY, if ¢/ = ¥csCj, then

f C|7CN\S7 Zsf CE

Note that the problem on the left-hand side is well-defined sindgrich*. We also consider
a pairwise version of the axiof¥:

Pairwise Merging-Splitting-Proofness.For eactN € .4/, each(c,E) € 2N, each paifi, j} C N
with i # j, and eaclt] € R, if ¢/ = ¢ +¢cj, then

fi(ci,cn\i.j}, E) = fi(c,E) + fj(c,E). (18)

The following axiom, introduced by O’Neill [20], states that,cif= 0 for an entityi, the
awards to the other entities are independent of whether engifgresent:

16Banker [3] considers a stronger versiorpaiirwise merging-splitting-proofnesequiring that the merger of a pair
should not affect the award for anyone else.
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Null Consistency. For eachN € .4/, each(c,E) € 9N, and each € N, if ¢ = 0, then for each
J €N\ {i}, fj(engiy, E) = fj(c,E).

This axiom differs fronno award for null If ¢, = 0, no award for nullsaysfi(c,E) = 0 but
allows the other entitiegc N\ {i} to receive different amounts &, E) and(cy\ ;iy, E).

We first usenull consistencyo extend the characterization of generalized proportional rules
in Theorem 2 to the current variable-population framework. The definition of generalized propor-
tional rules, which is given below, is the same as before but it should be noted that the pair of
functions(A,W) is independent of the sbt of entities.

Corollary 10. Assumefl| > 3 and let f be a rule on a rich* domainz. A rule f satisfies
reallocation-proofness, one-sided boundedness, and null consistency if and only if it is a general-
ized proportional rule, i.e., there exist two functiohsRY , x R, — R andW: R, xR, —
RK such that, for eaciN € .4/, each(c,E) € 2N, and eachi € N,

f(CE)=ACE)+ Y %\M((C_,E)E.

KeK “k

Proof. Let f be a rule ornZ satisfying the axioms. Theorem 2 andll consistencymply that, for
eachN € .+, f coincides with a generalized proportional rule @ff. Let (AN, WN) denote the
associated pair. Bgull consistency(AN,WN) is independent oK. O

The next result characterizeserging-splitting-proofrules. The result also gives a relation
betweenmerging-splitting-proofnesand reallocation-proofness merging-splitting-proofnesis
equivalent to the combination ofallocation-proofnessio award for nul] andnull consistency

Theorem 8. Assumel| > 3 and letf be a rule on a rich* domairZ. Then the following three
statements are equivalent: (f)satisfies merging-splitting-proofness; (fi)satisfies reallocation-
proofness, no award for null, and null consistency; (iii) there exists a funttiorR , x RL X
R, — RK such that, for eaciN € .+, each(c,E) € 2N, and eacti € N,

fi(c,E) =3 Wk(ck,C,E),

keK
and, for eactk € K, Wi (-, G, E) is additive.

Intuitively, merging-splitting-proofnesinplies reallocation-proofnessince a reallocation of
claims within a group can be done in two steps: merge the claims first and then split them among
the members. Bynerging-splitting-proofnesshe total awards stay the same in each step, and
hencereallocation-proofness satisfied. The fact thakallocation-proofnessno award for null
andnull consistencymply merging-splitting-proofnesis obtained as follows. Byeallocation-
proofnessandno award for nul) the rule is given by the sum &t. By null consistency\ is
independent of the set of agents. This independence and the additiVifyimiply that merging
or splitting claims does not affect the total awards.

Proof. Let f be a rule on a rich* domaify with |I| > 3. Clearly, (iii) implies (i). The fact that (ii)
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implies (iii) follows from Theorem 1 as in the proof of Corollary 10. To show that (i) implies (ii),
let f bemerging-splitting-proaf

We first show thaf is reallocation-proof LetN € .4, SCN,i € S, (c,E) € 2N, andc € Ry
be such that{ = ¥ ;cscj. By merging-splitting-proofnessfi(¢/,cn\s,E) = ¥ jesfj(c,E). This
equality implies thaty jcs fj(c,E) is invariant under any reallocation of characteristic vectors
within S.

We now show thaf satisfiemo award for nullandnull consistencyLetN € .4 and(c,E) €
9N be such that,, = 0 for someh € N.

We first consider the case whi| > 3. Letx= f(c,E) andy = f(cy\n},E). Letj € N\ {h}
and leta = f;(€;,E) be the award to entity in the single-entity problem wheig = ;.\ Ci. By
applyingmerging-splitting-proofnes® each of(c, E) and(cy (n), E), we obtainy .y X = a and
Yien\(n} Yi = a. On the other hand, for eac¢te N\ {h}, merging-splitting-proofnes®r the pair
{i,h} impliesx + X = yi. Henceyjen X + (IN| = 2)%h = Sieny (ny Vi SINCETienXi = Yien (hy Vi
and|N| > 3, we obtainx, = 0, which provesno award for null This in turn impliesx =y; for
eachi € N\ {h}, which provesull consistency

We now consideN such thatN| = 2, sayN = {1,2}. Let(c;,cp, E) € 2N be such that, =0,
and lety = f(ca,c2, E). Consider the three-entity problefmy, c,, c3, E) wherecz = 0, and letx =
f(c1,co,C3,E). Since the resultin the previous paragraph applies to the three-entity prohlm,
consistencymplies (y1,Y2) = (X1,X2) andno award for nullimpliesx, = 0. Thusy, = 0, which
provesno award for null Finally, merging-splitting-proofnessnplies f1(c1,E) = y1 + Y2 = yi,
which provesull-consistency O

The following result characterizes proportional rules as in Theorem 4. The definition of pro-
portional rules is the same as in the previous sections but the vector of waightg) is inde-
pendent of the set of entitids.

Theorem 9. Assumél| > 3 and let f be a rule on a rich* domairZ. Then the following three
statements are equivalent: (i)satisfies pairwise merging-splitting-proofness, efficiency, and non-
negativity (or no transfer paradox); (iij satisfies pairwise reallocation-proofness, efficiency, non-
negativity (or no transfer paradox), and null consistency; (fiils a proportional rule, i.e., there
exists a weight functiow': RX, x R, — AKI=1 such that, for eacN € .+, each(c,E) € 2N,

and each € N, (1) holds.

Proof. Clearly, (i) implies (i) and (ii).

(ii) = (iii). Let f satisfy the axioms in (ii). Note tha&fficiencyandnull consistencymply no
award for null Theorem 4 andull consistencyhen imply that, orzN for a givenN € ¢, f is a
proportional rule for some weight functiohiN. By null consistencyWN is identical for alIN.

(i) = (ii). Let f satisfy the axioms in (i). To prove thdtis pairwise reallocation-proqgf
we can use the argument in the proof of Theorem 8=i)ii)) for S such that|]§ = 2. To
show thatf satisfiesnull consistencyletN € .4 and(c,E) € 2N be such that, = 0 for some
heN. Letx= f(c,E) andy = f(cy\(n),E). In the proof of Theorem 8 ((i}> (ii)), we used
merging-splitting-proofneswith respect to coalitions with more than two entities only to obtain
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YieNXi = Yien\(h} Yi- This equality now holds bgfficiency We can use the remaining argument
in the proof of Theorem 8 ((i=- (ii)) to show thatf satisfiesull consistency O

If |K| =1, the same argument that led us to Corollary 3 also impliesthatnegativityor no
transfer paradoxin Theorem 9 can be weakeneddioe-sided boundedness

Corollary 11. Assumél| > 3 and |[K| = 1 and let f be a rule on a rich* domain. Then the
following three statements are equivalent: fi)satisfies pairwise merging-splitting-proofness,
efficiency, and one-sided boundedness;f(igatisfies pairwise reallocation-proofness, efficiency,
one-sided boundedness, and null consistency;f(ii§) the proportional rule.

Several papers consider the case wh&re= 1 and prove results similar to Corollary 11.
O’Neill [20, Theorem C.1] considers bankruptcy problems and characterizes the proportional rule
using merging-splitting-proofnes®fficiency anonymity continuity, andnull consistency Chun
[8, Theorem 3] considers claim problems and shows tiiditconsistencyn O’Neill’s result is
redundant. de Frutos [9, Theorem 1] considers bankruptcy problems and characterizes the propor-
tional rule usingnerging-splitting-proofnesefficiency andnon-negativity thereby showing that
anonymityandcontinuityin Chun’s result can be replaced witlon-negativity Our result [(i))<
(iii)] strengthens de Frutos’s by weakeningn-negativityto one-sided boundednessd showing
that the pairwise version aferging-splitting-proofnessuffices. As we mentioned after Corol-
lary 3, Chun [8, Theorem 2] also characterizes the proportional rule usatigcation-proofness
efficiency anonymity continuity, andnull consistencyOur result [(ii)<> (iii)] strengthens Chun’s
Theorem 2 by removingnonymity weakeningontinuityto one-sided boundednesmd showing
that the pairwise version ofallocation-proofnessuffices. Ju [12] considers bankruptcy problems
and shows that for rules that satigfficiencynon-negativityand “claim boundedness” (requiring
fi(c,E) < ¢), pairwise merging-splitting-proofness equivalent to the combination phirwise
reallocation-proofnesandnull consistencyOur result [(i)<> (ii)] strengthens Ju’s by removing
“claim boundedness” and weakeningn-negativityto one-sided boundednesall the existing
results mentioned above are proved under the assumption that there exist an infinite number of
potential agentg | = ).

7.2 Equal treatment of equal groups

This subsection considers another axiom that is also closely relateallimcation-proofnessThe

axiom, calledequal treatment of equal groupextends the idea afqual treatment of equat®

groups, requiring that two groups with the same aggregate claims should receive the same amount.
The axiom was introduced by Chambers and Thomson [6] and Ching and Kakkar [7] in the context
of bankruptcy problems.

Equal Treatment of Equal Groups. For eachN € .4, eachN’,N” C N, and eacH(c,E) € 2N,
if ziGN/ C = ZiGN”Ci’ thenziEN/ fi (C, E) = XiGN” fi(C, E)

In this subsection, we focus on the classes of bankruptcy, surplus sharing, and claim problems.
We say that a rule igegular if it satisfiesefficiency non-negativity no award for nul] and the
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following condition ofclaim boundedness

f(c,E) <c for bankruptcy problems
f(c,E) 2c for surplus sharing problems
no condition for claim problems

We also consider what is callembnsistencyor the reduced-game propertySuppose that,
after awards are determined by a rule, a subset of agents “leave the scene” with their awards.
Thenconsistencyays that reapplying the rule to the problem with the remaining agents and the
remaining amount to divide does not change the award vector for those agents.

Consistency. For eachN € .4/, each(c,E) € 2N, and eachN' C N, fy/(c,E) = f(cn,E —
Sienn fi(c,E)).18

The next result shows a relation amoognsistencyequal treatment of equal groupand
reallocation-proofnessThe relation in turn yields an alternative characterization of the propor-
tional rule.

Theorem 10. Assume tha@ is any of the three domains—bankruptcy, surplus sharing, or claim
problems—uwith at least 6 potential agents. If a regular riilen  satisfies equal treatment of
equal groups and consistency, then for etk .4 with 3 < |N| < |I|/2, the restriction off on

2N is reallocation-proof; in fact,f is necessarily the proportional rule over the entire domain.
Therefore, the proportional rule is the only regular rule that satisfies equal treatment of equal
groups and consistency.

Proof. Let f be aregular rule satisfying the axioms on any of the three domains with at least
6 potential agents. We first prove thhtis reallocation-prooffor eachN € .4 such that3 <
IN| < |1]/2. Without loss of generality, assume= {1,2,...,n}, wheren= |N|. Let(c,E) € 2N,
N’ C N, and¢ € Rﬁ be such thaficn 6 = Tien G and€ = ¢ for all i € N\ N’. Without loss
of generality, assumi’ = {1,2,...,n'}, wheren’ = [N'|. To showS .\ fi(€,E) = Jien fi(C,E),
letM={n+1n+2,....2n}, M ={n+1,n+2,...,n+n'}, andc’ € RY be such thafcu c =
YienC andYicw ¢ = Sien G- Consider the problem fdd UM, (c,c’,2E). By equal treatment
of equal groupsandefficiency Sicy fi(c,¢',2E) = Ticm fi(c,¢,2E) = E and Y\ fi(c,¢, 2E) =
Yiew fi(c,¢',2E). By consistencyfy(c,c,2E) = f(c,E) and fu(c,c’,2E) = f(c,E). The last
three equalities implicn fi(C,E) = Siew fi(c¢,E). By replacingc with €, the same argument
yields Sicn fi(€,E) = Siew fi(C,E). HenceSicn fi(C.E) = Tien fi(€,E). This shows thaf is
reallocation-proofon 2N,

It remains to show thaf is the proportional rule. By Corollary 1f, coincides with the pro-
portional rule onZN for all N € .4 such that3 < [N| < |I|/2. By consistencyf is also the

17Note that for bankruptcy problemslaim boundednesandnon-negativitimply no award for null

8t E— Yienyw fi(c,E) =0, the last term is not well-defined because of our simplifying assumptiorEtha0 for
all problems. Thus we complete the definition by saying the f yicn\n fi(C,E) = 0, thenfy (c,E) = 0. Given
this, the last term is always well-defined for regular rules becaus#iofencyandclaim boundednesg homson [25]
surveys the large literature of the consistency principle.
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proportional rule on two-agent problems. To show thé the proportional rule on the entire do-
main, take an\N € .#" and let(c,E) € 2N andx = f(c,E). Since the rule is the proportional rule
on two-agent problemsgonsistencyor a given pair{i, j} C N impliesxc; = ¢xj. Aggregating
this equation for all € N yieldsx ¥ jen Cj = Ci ¥ jen Xj = GE by efficiency This shows that is
the proportional rule on the entire domain. O

Chambers and Thomson [6, Theorem 5] show that, in the class of bankruptcy problems with
|l| > 3, the proportional rule is the onlggular rule satisfyingequal treatment of equal groups
consistencyandcontinuity It has been known that jf | = o, continuityis redundant in their
characterization. Indeed, as they shegual treatment of equal grousd consistencymply
merging-splitting-proofnesy |I| = « (Chambers and Thomson [6, Theorem 7]). This and the
result of de Frutos [9] (or our Corollary 11) imply that/if = o, the proportional rule is the only
regular rule that satisfiegqual treatment of equal grousd consistency It has been an open
question whether, whelh| is finite, their result holds withowtontinuity Theorem 10 shows that
continuityis in fact redundant ifl | > 6.1°

Theorem 10 also holds even if we weakeual treatment of equal groupsy requiring the
equal treatment condition only to a pairdi§joint groups of the samsize N’ andN” such that
N'NN”=0and|N'| = |N”|. Itis easy to see that the proof of Theorem 10 also works with this
axiom. We remark that, on a rich* domain with = o, the weaker version afqual treatment of
equal groupsno award for nul] andnull consistencyogether imply the original version efqual
treatment of equal groups\Ve leave the easy proof to the reader.

8 Extensions

We conclude the paper by discussing a few ways to extend our model. First, the model can be
extended to allow(c,E) to take negative values. For example, there may be debtors as well as
creditors, and the surplus to divide may be sometimes negative. Theorem 1 extends to the case
where the domain i = RN*K x R. For general domaing C RN*K x R, Appendix gives a
generalized condition of richness. Second, the proof of Theorem 1 also extends to the model
where all values are restricted to integers. However, if awards have to be integers too, proportional
rules are not admissible and an impossibility result obtains. Third, one might want to extend the
model to allow for multi-dimensional resources (multiple goods). Doing so, however, requires one
to introduce entities’ preferences over different types of resources and genegalipeation-
proofness Finally, we assumed that any subset or pair of agents can form a coalition. Ju [13]
extends our results to the case where there are exogenously given restrictions on what coalitions
can form.

19Actua||y, we can show thatontinuityis redundant if/l| > 4. The proof, however, does not useallocation-
proofnessand hence is not given here; it is available from the authors upon request.
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Appendix

Proof of Corollary 6. Let f be arule satisfying the axioms. Then by Corollary & given by (11)
for some non-negative valued functidh R, xR, , — R. Definep by px(C) =Wk (C)Cmax/Ck-
With this definition andE = Cmax, (11) reduces to (16). It remains to show tpatatisfies (15) and
Skek Px(C) = 1.

We first prove thap satisfies (15). Led € RK . andA > 0. Pickh € K andj, ¢ € N arbitrarily,
and letc € RX*N be such that = d, ¢jn > 0, c = 0 for eachk € K\ {h}, andcy = O for each
k € K. Since|N| > 3, there exists another agente N\ {j,¢}. Letc’ € RK*N be the profile defined
byc = (cm+A1,c_m). By translation invariancef;(c’) = fj(c) andf,(c’) = f,(c). By definition
of c and (16),fj(c) = f/(c) +cjnpn(C) and fj(c’) = fy(c') +cjhpn(C+A1). Sincecj, > 0, we
obtainpn(C+ A1) = py(C).

We now prove thaf .k pk(d) = 1 for all d. By the previous paragraph, it suffices to prove the
result ford such thatd > 1 for all k € K. Pick two agentg,/ € N arbitrarily, and letc € RX*N
be such that'= ¢, = d. Letc € R*N be defined by’ = (¢j + 1,6, — 1,¢ny(j¢y). Thend =c,
andtranslation invariancemplies f;(c’) = fj(c) + 1. Sincef;(c) andf;(c’) differ only in the last
term of (16),

L= (€)= fi(e) = 3 (ep+1-ci)n(@) = 3 Ai(E).
kek kek
Proof of Corollary 7. Let f be a rule satisfying the axioms in the corollary. By Theoreni 4,
is a proportional rule with some weight functid. Definep by px(C) = Wk(C)Cmax/Ck- Then
fi(C) = ¥ kek Px(C)Cik-

We first show thap satisfies (15). Letl € RX andA > 0. Pick j € N andh € K arbitrarily,
and letc € RY*K be such that = d, cj, > 0, andcjx = 0 for all k € K\ {h}. Let¢e N\ {j}
andc = (¢, +A1,c_). By translation invariance fj(c’) = fj(c). Sincefj(c) = pn(C)cjn and
fi(c) = pn(C+ A L)Cjn, we obtainon(C+ A1) = pn(C).

The same argument in the proof of Corollary 6 shows fhak px(d) = 1 for all d.

It remains to show thap(C) satisfies (17). Byefficiency Cmax= Yien fi(C) = ek Pk(C)Ck-
Sincepk(€) > 0 andy .k pk(C) = 1, the equality holds if and only ip(c) satisfies (17). O

Generalized richnessWe here define a generalized condition of richness that enables us to extend
our results to division problems that involve negative values. Intuitively, instead of Osiaghe
origin, we can have any numbbg as the relevant origin for ageiis claim in issuek.
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Definition 6. A domainZ C RN*K x R satisfiegeneralized richneséfor each(d,E) € RK x R
with 2(d,E) # 0, there existd = (I )icn € RN*K such that if a seX C RX is defined by

X = {i;q _I;bi . (¢,E) € 2(d,E) and0 £ SC N},

then

@ (0,...,0) € X,

(i) For eachx € X and eactk € K, (O,...,0,X,0,...,0) € X,

(iii) For each pairx,y € X with x+y € X and each pair of disjoint subs&sT C N with SUT C N,
there exist§c,E) € Z(d, E) such that

gsq —ébi =X, ieZ‘Ci —i;bi =Y,

(iv) For eachSC N and each paifc, E), (¢',E) € Z(d,E), if J;csC = ¥icsCi, then((cg, cns), E) €
9.

Generalized richness is indeed weaker than richness; richness implies that generalized richness
can be satisfied by settirip= 0 for any (d,E). On the other hand, there are a number of domains
that satisfy generalized richness but not richness: BYK x R (settingb = 0), RNK x R_
(settingb = 0), and for anyo € RK*N, {(c,E) e RN*K xR : ¢ > b} and{(c,E) e RN*K xR :c <
b}.

For any domain that satisfies generalized richness, Theorem 1 extends and characterizes rules
of the following form:

fi(c,E)=A(CE)+ ;\/A\&(Cik — bi,C,E),
KE

whereby depends oric, E) andW is additive incy — bix for a given(c,E). Since the proof of
this extension is essentially the same as before, we ofit it.

References

[1] J. Aczl, J. Dhombres, Functional Equations in Several Variables: With Applications to
Mathematics, Information Theory and to the Natural and Social Sciences, Cambridge Uni-
versity Press, Cambridge, 1989.

[2] R. Aumann, M. Maschler, Game theoretic analysis of a bankruptcy problem from the Tal-
mud, J. Econ. Theory 36 (1985) 195-213.

[3] R.D. Banker, Equity considerations in traditional full cost allocation practices: An axiomatic
perspective, in: S. Moriarity (Ed.), Joint Cost Allocations, Center for Economic and Man-
agement Research, Norman, 1981.

20Here are two important changes in the proof: defi@, E) = fi(c,E) with ¢ € % andc; = by; for the definition
of w(S x), replace1&_, [0, dy] with X andy;cs¢ = x with Tics(ci — b)) = x.

27



[4] G.Bergantids, J. Vidal-Puga, Additive rules in bankruptcy problems and other related prob-
lems, Math. Soc. Sci. 47 (2004) 87-101.

[5] R. Carnap, The Continuum of Inductive Methods, University of Chicago Press, Chicago,
1952.

[6] C. Chambers, W. Thomson, Group order preservation and the proportional rule for the adju-
dication of conflicting claims, Math. Soc. Sci. 44 (2002) 223—-334.

[7] S. Ching, V. Kakkar, A market approach to the bankruptcy problem, mimeo., City University
of Hong Kong, 2001.

[8] Y. Chun, The proportional solution for rights problems, Math. Soc. Sci. 15 (1988) 231-246.

[9] M. de Frutos, Coalitional manipulations in a bankruptcy problem, Rev. Econ. Design 4
(1999) 255-272.

[10] I. Gilboa, D. Schmeidler, Updating ambiguous beliefs, J. Econ. Theory 59 (1993) 33-49.

[11] C. Herrero, M. Maschler, A. Villar, Individual rights and collective responsibility: the rights-
egalitarian solution, Math. Soc. Sci. 37 (1999) 59-77.

[12] B.-G. Ju, Manipulation via merging and splitting in claims problems, Rev. Econ. Design 8
(2003) 205-215.

[13] B.-G. Ju, Coalitional manipulation on networks, mimeo., University of Kansas, 2004.

[14] D. Majumdar, An axiomatic charaterization of Bayes’ rule, Math. Soc. Sci. 47 (2004) 261-
273.

[15] K. McConway, Marginalization and linear opinion pools, J. Amer. Statist. Assoc. 76 (1981)
410-414.

[16] H. Moulin, Egalitarianism and utilitarianism in quasi-linear bargaining, Econometrica 53
(1985) 49-67.

[17] H. Moulin, Equal or proportional division of a surplus, and other methods, Int. J. Game
Theory 16 (1987) 161-186.

[18] H. Moulin, Priority rules and other asymmetric rationing methods, Econometrica 83 (2000)
643-684.

[19] H. Moulin, Axiomatic cost and surplus-sharing, in: K. Arrow, A. Sen, K. Suzumura (Eds.),
Handbook of Social Choice and Welfare, Elsevier, Amsterdam, chap. 6, 2002.

[20] B. O'Neill, A problem of rights arbitration from the Talmud, Math. Soc. Sci. 2 (1982) 345—
371.

28



[21] A. Rubinstein, P. C. Fishburn, Algebraic aggregation theory, J. Econ. Theory 38 (1986) 63—
77.

[22] A.Rubinstein, L. Zhou, Choice problems with a ‘reference’ point, Math. Soc. Sci. 37 (1999)
205-209.

[23] R. Stalnaker, A theory of conditionals, in: N. Rescher (Ed.), Studies in Logical Theory, Basil
Blackwell, Oxford, 1968.

[24] W. Thomson, Axiomatic and strategic analysis of bankruptcy and taxation problems: A sur-
vey, Math. Soc. Sci. 45 (2003) 249-97.

[25] W. Thomson, Consistent allocation rules, mimeo., University of Rochester, 2003.

[26] W. Thomson, How to divide when there isn’'t enough: From the Talmud to modern game
theory, mimeo., University of Rochester, 2003.

[27] H. P. Young, On dividing an amount according to individual claims or liabilities, Math. Oper.
Res. 12 (1987) 398-414.

29



