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Abstract. It is shown that, in the framework of Gelfand integrable mappings, the Fatou-type

lemma for integrably bounded mappings, due to Cornet–Medecin [14] and the Fatou-type lemma
for uniformly integrable mappings due to Balder [9], can be generalized to mean norm bounded

integrable mappings.
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1. Introduction

In Mathematical Economics, the framework to model perfect competition is to consider an
atomless measure space of agents. For economies with finitely many commodities, the Fatou-type
lemma of Aumann [3], Schmeidler [30] and Artstein [2] have been of most importance to prove the
existence of equilibria: Aumann [4] for exchange economies and Hildenbrand [19] for production
economies. For economies with infinitely many commodities, aggregation of individual consump-
tion bundles is formalized in terms of both the Bochner and Gelfand integral. The choice of Gelfand
integration is motivated by the models of spatial economies (Cornet–Medecin [13]) and models of
economies with differentiated commodities (Ostroy–Zame [26] and Martins-da-Rocha [23]).

We can find in the literature many Fatou-type lemma dealing with Bochner integrals: Khan–
Majundar [21], Balder [5], Yannelis [32, 33, 34], Papageorgiou [28], Balder–Hess [10]. In the
framework of Gelfand integrals, Podczeck [29] and Cornet–Medecin [14] proved a Fatou-type lemma
for integrably bounded mappings. Balder [9] generalized these results for uniformly integrable
mappings. However in order to apply these results to economic models, we need to assume ad-hoc
assumptions: boundedness of individual consumption sets or strict monotonicity of preferences.

We propose in this paper to generalize the Fatou-type lemma of Cornet–Medecin [14] and
Balder [8] to mean norm bounded integrable mappings. Moreover we provide a simple condition
under which mean norm boundedness of a sequence of mappings is implied by the boundedness of
the sequence of means. This result is the crucial step of the existence results in Araujo–Martins-da-
Rocha–Monteiro [1] and it should enable us to substantially weaken the monotonicity assumptions
used in Mas-Colell [24], Jones [20], Ostroy–Zame [26], Podczeck [29], Cornet–Medecin [13] and
Martins-da-Rocha [23].

The proof of our main result relies on an extension (Balder [6]) to vector-valued mappings of the
important result by Komlós. The crucial step of the proof is to deduce a lower closure result from
the Komlós-convergence of a sequence of mappings. The originality of this paper is to prove that
we can deduce the lower closure result for duals of separable Banach spaces from finite dimensional
(Page [27]) lower closure results.
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2 B. CORNET AND V.F. MARTINS-DA-ROCHA

2. Statement of results

2.1. Gelfand integrable mappings. In the whole paper we assume that (Ω,A, µ) is a finite
complete positive measure space, (E, ‖.‖) is a separable Banach space, with topological dual space
E∗. We shall mainly consider on the space E∗ the weak star topology σ(E∗, E), denoted w∗, and
we shall use the notation lim , cl (etc..) to specify the limit, the closure of a set (etc..) for this
topology. For x ∈ E and f ∈ E∗, we denote by 〈x, f〉 := f(x) the dual product, and by ‖.‖∗ the
dual norm on E∗, i.e. ‖f‖∗ := supx6=0 |〈f, x〉|/‖x‖. We denote by B and B∗, the closed unit balls
in (E, ‖.‖) and (E∗, ‖.‖∗), respectively. If (xk) is a sequence in E∗ we denote by Lsk{xk} the set of
w∗-limit points of (xk). If C ⊂ E (resp. C∗ ⊂ E∗) is a subset of E, then we note C◦ ⊂ E∗ (resp.
[C∗]◦ ⊂ E) the negative polar cone of C (resp. C∗), i.e. x∗ ∈ C◦ (resp. x ∈ [C∗]◦) if and only if
for every x ∈ C (resp. x∗ ∈ C∗), 〈x, x∗〉 6 0. If F ⊂ E is a subspace of E, then the negative polar
F ◦ coincide with the orthogonal F⊥ defined by {x∗ ∈ E∗ : ∀x ∈ F, 〈x, x∗〉 = 0}. Note that if A
is a subset of E∗, then

A ⊂
⋂

F∈F
[A+ F⊥] ⊂ clA,

where F is the collection of all finite dimensional subspaces of E. In particular if E is finite
dimensional, then A =

⋂
F∈F [A+ F⊥].

A mapping f from Ω to E∗ is said to be Gelfand measurable,1 if for every x ∈ E, the
real valued function a 7→ 〈x, f(a)〉 is measurable, and f is said to be Gelfand integrable, if for
every x ∈ E, the function a 7→ 〈x, f(a)〉 is integrable. If f is Gelfand integrable, it can be shown
(Diestel–Uhl [16, pp. 52-53]) that for each A ∈ A, there exists a unique x∗A ∈ E∗ such that

∀x ∈ E, 〈x, x∗A〉 =
∫

Ω

〈x, f(a)〉dµ(a).

For each A ∈ A, x∗A is noted
∫

A
fdµ. Note that if f is a Gelfand measurable mapping, then the

function a 7→ ‖f(a)‖∗ is measurable.2 However if f is Gelfand integrable then a 7→ ‖f(a)‖∗ is not
necessary integrable. A Gelfand measurable mapping f is said norm integrable if a 7→ ‖f(a)‖∗
is integrable. Obviously, a norm integrable mapping is Gelfand integrable. We recall the following
notions about sequences of integrable mappings.

Definition 2.1. A sequence (fn) of Gelfand integrable mappings from Ω to E∗ is said
1. integrably bounded if there exists a real-valued integrable function ϕ such that

sup
n
‖fn(a)‖∗ 6 ϕ(a) a.e. ,

2. uniformly integrable if the sequence of real-valued functions (‖fn(·)‖∗)n is uniformly in-
tegrable, i.e.

lim
α→∞

sup
n

∫
{‖fn‖∗>α}

‖fn(a)‖∗ dµ(a) = 0 ,

3. mean norm bounded if

sup
n

∫
Ω

‖fn(a)‖∗ dµ(a) < +∞.

1We prove in Appendix that f is Gelfand measurable if and only if for each borelian B ⊂ E∗, f−1(B) := {a ∈
Ω : f(a) ∈ B} belongs to A.

2See Proposition A.1 in Appendix.
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Remark 2.1. Following Neveu [25], we recall that the sequence (ϕn) of real valued functions is
uniformly integrable if and only if the sequence is mean bounded, i.e.

sup
n

∫
Ω

|ϕn|dµ < +∞

and equi-continuous, i.e. for every ε > 0 there exists η > 0 such that for every A ∈ A,

µ(A) 6 η =⇒ sup
n

∫
A

|ϕn|dµ 6 ε.

It follows that (1) =⇒ (2) =⇒ (3).

Definition 2.2. A sequence (fn) of Gelfand integrable mappings from Ω to E∗ is said C-uniformly
integrable for a cone (of vertex 0) C of E, if for every x ∈ C, the sequence of real-valued functions
(〈x, fn(·)〉−)n is uniformly integrable, where

∀a ∈ Ω, 〈x, fn(a)〉− := max[0,−〈x, fn(a)〉].

Remark 2.2. For every x ∈ E, 〈x, fn(·)〉− 6 |〈x, fn(a)〉| 6 ‖x‖ ‖fn(a)‖∗ . It follows that if a
sequence of mappings is uniformly integrable then it is E-uniformly integrable. The converse is
not always true, i.e. an E-uniformly integrable sequence of mappings is not always uniformly
integrable.

2.2. Fatou’s lemma. We present hereafter our main results: the Convex and Approximate Fa-
tou’s Lemma.

Theorem 2.1 (Convex Fatou’s lemma). Let (Ω,A, µ) be a finite positive complete measure space
and (E, ‖.‖) be a separable Banach space. Let (fn) be a sequence of Gelfand integrable mappings
from Ω to E∗, which is mean norm bounded and C-uniformly integrable for a cone C ⊂ E. If
lim n

∫
Ω
fndµ exists in E∗ then there exists a Gelfand integrable mapping f such that∫

Ω

fdµ− lim
n

∫
Ω

fndµ ∈ C◦

and

f(a) ∈ co Lsn{fn(a)} a.e.

In fact f is norm integrable and∫
Ω

‖f(a)‖∗ dµ(a) 6 lim inf
n

∫
Ω

‖fn(a)‖∗ dµ(a).

Theorem 2.1 is a direct consequence of Theorem 3.1 in Section 3.

Theorem 2.2 (Approximate Fatou’s lemma). Let (Ω,A, µ) be a finite positive complete measure
space and (E, ‖.‖) be a separable Banach space. Let (fn) be a sequence of Gelfand integrable
mappings from Ω to E∗, which is mean norm bounded and C-uniformly integrable for a cone
C ⊂ E. If limn

∫
Ω
fndµ exists in E∗ then for each finite dimensional subspace F of E, there exists

a Gelfand integrable mapping fF such that∫
Ω

fF dµ− lim
n

∫
Ω

fndµ ∈ C◦ + F⊥

and

fF (a) ∈ Lsn{fn(a)} a.e.
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In particular, if the dimension of E is finite, then there exists a Gelfand integrable mapping fE

such that ∫
Ω

fEdµ− lim
n

∫
Ω

fndµ ∈ C◦

and

fE(a) ∈ Lsn{fn(a)} a.e.

In fact for each finite dimensional subspace F , the mapping fF is norm integrable and∫
Ω

‖fF (a)‖∗ dµ(a) 6 lim inf
n

∫
Ω

‖fn(a)‖∗ dµ(a).

Theorem 2.2 will be proved in Section 4 as a Corollary of Theorem 3.1. We provide hereafter a
sufficient condition for a sequence of mappings to satisfy the assumptions of Theorem 2.1.

Proposition 2.1. Let (Ω,A, µ) be a finite positive complete measure space and (E, ‖.‖) be a sep-
arable Banach space. Let (fn) be a sequence of Gelfand integrable mappings from Ω to E∗ such
that

∀n ∈ N, fn(a) ∈ C∗ + ϕn(a)B∗ a.e.,

where C∗ is a closed convex cone in E∗ and (ϕn) is a sequence of uniformly integrable positive
functions.

(a) Then the sequence (fn) is C-uniformly integrable, where C = −(C∗)◦ ⊂ E is the negative
polar of C∗.

(b) Suppose that lim n

∫
Ω
fndµ exists in E∗. If C∗ has a w∗-compact sole3 then the sequence (fn)

is mean norm bounded.

Proof. Part (a) is obvious, we propose to prove part (b). Let C∗ be a closed convex cone with a
w∗-compact sole. There exists e ∈ E such that for every x∗ ∈ C∗ \ {0}, 〈e, x∗〉 > 0 and such that
the following set S, defined by S := {x∗ ∈ C∗ : 〈e, x∗〉 = 1} is w∗-compact. It follows that S is
‖.‖∗-bounded by m > 0. In particular, for every x∗ ∈ C∗, 〈e, x∗〉 > m ‖x∗‖∗. For each n ∈ N, we
consider the following correspondence Fn : a 7→ C∗∩ [{fn(a)}−ϕn(a)B∗]. Applying Theorem A.1,
there exists cn : Ω 7→ C∗ and bn : Ω 7→ B∗, two measurable mappings such that for every n ∈ N,

∀a ∈ Ω, fn(a) = cn(a) + ϕn(a)bn(a).

Since the sequence (
∫
Ω
fndµ) converges, we can then suppose (passing to a subsequence if necessary)

that the sequences (
∫
Ω
cndµ) and (

∫
Ω
ϕnbndµ) converges in E∗. Now, let v∗ := limn

∫
Ω
cndµ, then

lim sup
n

∫
Ω

‖cn(a)‖∗ dµ(a) 6
1
m
〈e, v∗〉µ(Ω)

and the sequence (cn) is mean norm bounded. It follows that the sequence (fn) is mean norm
bounded.

Applying Proposition 2.1, we present hereafter a corollary of Theorems 2.1 and 2.2.

3That is there exists e ∈ E, such that for each c∗ ∈ C∗ \ {0}, 〈e, c∗〉 > 0 and S := {c∗ ∈ C∗ : 〈e, c∗〉 = 1} is

w∗-compact.
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Corollary 2.1. Let (Ω,A, µ) be a finite positive complete measure space and (E, ‖.‖) be a separable
Banach space. Let (fn) be a sequence of Gelfand integrable mappings from Ω to E∗ such that

∀n ∈ N, fn(a) ∈ C∗ + ϕn(a)B∗ a.e.,

where C∗ is closed convex cone in E∗ with a w∗-compact sole, and (ϕn) is a sequence of uniformly
integrable positive functions. Suppose that lim n

∫
Ω
fndµ exists in E∗.

1. [Convex Fatou’s lemma]. There exists a Gelfand integrable mapping f such that∫
Ω

fdµ− lim
n

∫
Ω

fndµ ∈ −C∗

and

f(a) ∈ co Lsn{fn(a)} a.e.

2. [Approximate Fatou’s lemma]. For every finite dimensional subspace F of E, there exists a
Gelfand integrable mapping fF such that∫

Ω

fF dµ− lim
n

∫
Ω

fndµ ∈ F⊥ − C∗

and

fF (a) ∈ Lsn{fn(a)} a.e.

3. [Finite Fatou’s lemma]. If E is finite dimensional then there exists a Gelfand integrable
mapping f∗ such that ∫

Ω

f∗dµ− lim
n

∫
Ω

fndµ ∈ −C∗

and

f∗(a) ∈ Lsn{fn(a)} a.e.

Remark 2.3. If E is finite dimensional, then every pointed closed convex cone has a compact sole.
In particular, Corollary 2.1 generalizes the version of Fatou’s lemma proved in Cornet–Topuzu–
Yildiz [15].

Remark 2.4. Let T be a compact metric space and let E = C(T ) be the separable Banach space of
continuous real-valued functions endowed with the supremum norm. The topological dual space E∗

is then M(T ), the space of finite Radon measures on T . Let C := C(T )+ and C∗ = M(T )+ be the
natural positive cones of C(T ) and M(T ) respectively, i.e. C(T )+ := {x ∈ C(T ) : ∀t ∈ T, x(t) >
0} and M(T )+ := {f ∈ M(T ) : ∀x ∈ C(T )+, 〈x, f〉 > 0}. Then M(T )+ is a closed convex
cone with a w∗-compact sole.4 In particular, Corollary 2.1 can be applied in General Equilibrium
Theory to prove the existence of Walras equilibria for economies with a continuum of consumers
and differentiated commodities (see Martins-da-Rocha [23]).

4Take e in C(T ) defined by e(t) = 1 for each t ∈ T . Then for each m in M(T )+, 〈e, m〉 = ‖m‖∗.
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2.3. The link with other results. In the context of Cornet–Medecin [14], the sequence (fn) is
supposed to be integrably bounded. It follows that the sequence (fn) is mean norm bounded and
E-uniformly integrable. Hence Theorems 2.1 and 2.2 generalize Theorem 1 in Cornet–Medecin [14].

If a sequence (fn) is uniformly integrable, then it is mean norm bounded and E-uniformly
integrable. Hence Theorems 2.1 and 2.2 generalize Theorems 1 and 2 in Balder [9]. More precisely,
in Balder [9] it is proved that if a sequence (fn) of Gelfand integrable mappings is supposed to be
uniformly integrable, then for each open neighborhood W of zero, there exists a Gelfand integrable
mapping fW such that∫

Ω

fW dµ− lim
n

∫
Ω

fndµ ∈W and fW (a) ∈ cl Lsn{fn(a)} a.e.

Since the sequence (fn) is uniformly integrable, it follows that the sequence (fn) is mean norm
bounded and E-uniformly integrable. Now we can apply Theorem 2.2 to a finite dimensional
subspace F of E such that F⊥ ⊂W . Then there exists a Gelfand integrable mapping fF such that∫

Ω

fF dµ− lim
n

∫
Ω

fndµ ∈ F⊥ ⊂W and fF (a) ∈ Lsn{fn(a)} a.e.

Note that we succeed to prove that fF (a) belongs to Lsn{fn(a)} whereas Balder [9] only succeeded
to prove that fW (a) belongs to the closure of Lsn{fn(a)}.

3. A more general version of Theorem 2.1 and its proof

Our proof of Fatou’s lemma relies on an extension proved by Balder [6] of the important result by
Komlós (Theorem A.2 in Appendix). We first recall the following definition of Komlós convergence
or simply K−convergence.

Definition 3.1. A sequence (fm) of mappings from Ω to E∗ is said to be K-convergent almost
everywhere to a mapping f : Ω → E∗, denoted

fm
K−−→ f,

if for every subsequence (mi) of (m), there exists a null set N ∈ A (i.e. µ(N) = 0) such that

∀a ∈ Ω \N, (1/n)
n∑

i=1

fmi
(a) w∗

−−→ f(a).

We propose to prove the following theorem which is slightly more general than Theorem 2.1.

Theorem 3.1. Let (Ω,A, µ) be a finite positive complete measure space and (E, ‖.‖) be a separable
Banach space. Let (fn) be a sequence of Gelfand integrable mappings from Ω to E∗, which is mean
norm bounded. Then there exists a subsequence (m) of (n) and a Gelfand integrable mapping f
such that

(a) the sequence (fm) K-converge to f , and f is norm integrable with∫
Ω

‖f(a)‖∗ dµ(a) 6 lim inf
n

∫
Ω

‖fn(a)‖∗ dµ(a);

(b) if the sequence (fn) is C-uniformly integrable for a cone C ⊂ E, then

∀A ∈ A, ∀x ∈ C,
∫

A

〈x, f(a)〉dµ(a) 6 lim inf
m

∫
A

〈x, fm(a)〉dµ(a)
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and

∀A ∈ A,
∫

A

‖f(a)‖∗ dµ(a) 6 lim inf
m

∫
A

‖fm(a)‖∗ dµ(a);

(c) there exists ρ a positive integrable function such that for every finite dimensional subspace F
of E,

f(a) ∈ coLsn{fn(a)}+ ρ(a)B∗ ∩ F⊥ a.e.,

in particular f(a) ∈ co Lsn{fn(a)} almost everywhere.

We recall that a sequence (fm) of Gelfand integrable mappings from Ω to E∗ is said to be
weakly convergent to a Gelfand integrable mapping f , if for every x ∈ E, the sequence of real
valued functions a 7→ 〈x, fn(a)〉 converges to the function a 7→ 〈x, f(a)〉 for the weak topology
σ(L1

R, L
∞
R ).

Remark 3.1. If a sequence (fm) of Gelfand integrable mappings from Ω to E∗ is mean norm
bounded and if there exists a Gelfand integrable mapping f such that

∀A ∈ A, lim
m

∫
A

fmdµ =
∫

A

fdµ

then the sequence (fm) is weakly convergent to f .

A direct consequence of Theorem 3.1 is the following weak sequential compactness criteria.

Corollary 3.1. Let (Ω,A, µ) be a finite positive complete measure space and (E, ‖.‖) be a separable
Banach space. If H is a family of Gelfand integrable mappings from Ω to E∗ which are mean norm
bounded and E-uniformly integrable, then H is weakly sequentially compact.

Proof. Indeed, if (fn) is a mean norm bounded sequence of Gelfand integrable mappings, then
applying part (a) of Theorem 2.1, there exists a Gelfand integrable mapping f and a subsequence
(m) of (n) such that (fm) K-converges to f . Moreover if (fn) is E-uniformly integrable, then from
part (b) of Theorem 2.1, we get that

∀A ∈ A,
∫

A

fdµ = lim
m

∫
A

fmdµ.

In particular (fm) weakly converges to f .

Remark 3.2. If a sequence (fn) of Gelfand integrable mappings is uniformly integrable, then (fn)
is mean norm bounded and E-uniformly integrable (Remark 2.1). In particular, if H is a family
of uniformly integrable mappings, then H is weakly sequentially compact.

The proof of Theorem 3.1 will be given in three steps corresponding to part (a), (b) and (c).

3.1. Proof of part (a). The following proposition is an extension to vector-valued mappings, of
the important result by Komlós (Theorem A.2 in Appendix). A very general criterion for relative
sequential compactness for K-convergence of scalarly integrable mappings is given in Balder [6]. As
a corollary of Balder’s result we can prove the following Proposition 3.1. However in [6], extensions
of Komlós results are only given for the Bochner integral. For the sake of completeness, we propose
a simple and direct proof.
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Proposition 3.1 (Balder [6]). Let (fk) be a sequence of Gelfand integrable mappings from Ω to
E∗, which is mean norm bounded. Then there exists a subsequence (m) of (k) and a Gelfand
integrable function f : Ω → E∗ such that the sequence (fm) is K-convergent to f and there exists
a real-valued integrable function ϕ∞ : Ω → R+ such that the sequence (‖fm(.)‖∗) is K-convergent
to ϕ∞. Moreover the mapping f is in fact norm integrable and∫

Ω

‖f(a)‖∗ dµ(a) 6 lim inf
n

∫
Ω

‖fn(a)‖∗ dµ(a).

Proof. Since the sequence (fk) is mean norm bounded, we can suppose (passing to a subsequence
if necessary) that lim infk

∫
Ω
‖fk(a)‖∗ dµ(a) = limk

∫
Ω
‖fk(a)‖∗ dµ(a). We let for each k ∈ N, for

every a ∈ Ω, ψk(a) := ‖fk(a)‖∗. Let (xj) be a ‖.‖-dense sequence in E. We define for each j, k ∈ N,

ϕj,k(a) := 〈xj , fk(a)〉 and ϕ∞,k := ψk.

Since the sequence (fk) is mean norm bounded then for every j ∈ N ∪ {∞},

sup
k

∫
Ω

| ϕj,k(a) | dµ(a) < +∞.

It is now possible to apply Komlós’ Theorem (Theorem A.2 in Appendix) repeatedly in a diagonal
procedure. This yields a subsequence (m) of (k) and a family (ϕj)j∈N∪{∞} of integrable real valued
functions such that for every j ∈ N ∪ {∞} and every subsequence (mi) of (m)

1
n

n∑
i=1

ϕj,mi
(a) −→ ϕj(a) a.e.

In particular, for every j ∈ N,

〈xj ,
1
n

n∑
i=1

fmi(a)〉 −→ ϕj(a) a.e.(3.1)

and

1
n

n∑
i=1

ψmi
(a) −→ ϕ∞(a) a.e.(3.2)

Fix a ∈ Ω outside the exceptional null-set and for each n ∈ N, define

gn(a) :=
1
n

n∑
m=1

fm(a).

Then applying (3.2), lim supn ‖gn(a)‖∗ 6 ϕ∞(a) < +∞. Now applying Banach-Alaoglu’s The-
orem, there exists a subsequence of (gn(a)) converging for the w∗-topology to some f(a) ∈ E∗.
Applying (3.1), for every j ∈ N,

〈xj , f(a)〉 = ϕj(a).

The sequence (xj) is ‖.‖-dense in E, it follows that for every subsequence (mi) of (m)

1
n

n∑
i=1

fmi
(a) w∗

−−→ f(a) a.e.(3.3)

i.e. the sequence (fm) is K-convergent to f , in particular, the mapping f is Gelfand measurable.
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Now ‖f(a)‖∗ 6 lim infn ‖gn(a)‖∗ almost everywhere in Ω. Hence applying Fatou’s lemma for
positive functions,∫

Ω

‖f(a)‖∗ dµ(a) 6 lim inf
n

1
n

n∑
m=1

∫
Ω

‖fm(a)‖∗ dµ(a) = lim inf
k

∫
Ω

‖fk(a)‖∗ dµ(a)

and the mapping f is then Gelfand integrable.

Remark 3.3. We refer to Balder [6] and Balder–Hess [11] for other extensions of Komlós’ result,
which mainly consider Bochner integration.

3.2. Proof of part (b). The proof of part (b) is given by the following proposition.

Proposition 3.2. Let {fk} be a sequence of Gelfand integrable mappings from Ω to E∗, K-
converging to a Gelfand integrable mapping f . Suppose that there exists a cone C ⊂ E such
that (fk) is C-uniformly integrable. Then for every x ∈ C,

∀A ∈ A,
∫

A

〈x, f(a)〉dµ(a) 6 lim inf
k

∫
A

〈x, fk(a)〉dµ(a).

Proof. Let A ∈ A and x ∈ C, we pose α := lim infk

∫
A
〈x, fk〉dµ. Passing to a subsequence if

necessary we can suppose that α = limk

∫
A
〈x, fk〉dµ. For each m, we let gm = (1/m)

∑m
k=1 fk and

we define the real-valued function ϕm from Ω to R by ϕm(a) = 〈x, gm(a)〉. We have

ϕm(a)− 6
1
m

m∑
k=1

〈x, fk(a)〉−.

Since (fk) is C-uniformly integrable, it follows that the sequence (ϕ−m) is uniformly integrable. Since
(gm) is K-converging to f , it follows that for almost every a, (ϕm(a)) is converging to 〈x, f(a)〉.
We apply Fatou’s lemma (for real-valued functions) and we get∫

A

〈x, f(a)〉dµ(a) 6 lim inf
m

∫
A

ϕm(a)dµ(a) = α.

3.3. Proof of part (c). We propose now to prove that we can deduce a lower closure result from
the Komlós convergence of a sequence of mappings. The proof of the lower closure result for an
infinite dimensional separable Banach space is based on the following lower closure result proved
by Page [27] for finite dimensional spaces. For the sake of completeness, we propose a simple and
direct proof.

Proposition 3.3 (Page [27]). Let E be a finite dimensional vector space and let (fn) be a sequence
of integrable mappings from Ω to E∗. Suppose that the sequence (fn) is mean norm bounded and
K-convergent to an integrable mapping f . Then

f(a) ∈ coLsn{fn(a)} a.e.

Proof. Let (fn) be a sequence of mean norm bounded mappings from Ω to E∗, K-converging to
f . Following Gaposhkin’s lemma A.1, there exists a subsequence (nk) of (n) such that for each k,
fnk

= gk + hk, where the sequence (gk) is uniformly integrable and the sequence (hk) converges
almost everywhere to 0. Since (fnk

) K-converges to f , it follows that (gk) K-converges to f .
¿From Proposition 3.2, we have that the sequence (gk) weakly converges to f . Now applying
Proposition C in Artstein [2], we get that f(a) belongs to coLsk{gk(a)} almost every where. Since
Lsk{gk(a)} ⊂ Lsn{fn(a)}, it follows that f(a) ∈ coLsn{fn(a)} almost everywhere.
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Remark 3.4. The proof of Proposition 3.3 (actually in Page [27] a more general result is proved)
is based on Proposition C in Artstein [2]. Note that Proposition C in Artstein [2] is a corollary
of Propositions 3.1, 3.2 and 3.3. Indeed, let (fn) be sequence of integrable mappings from Ω
to E∗ (E is finite dimensional) such that (fn) weakly converges to an integrable mapping f .
The sequence (fn) is then mean norm bounded. Applying Propositions 3.1 and 3.3, there exists
a subsequence (m) of (n) and an integrable mapping g such that (fm) K-converges to g and
that g(a) ∈ coLsm{fm(a)} almost everywhere. But since (fn) weakly converges, it follows from
Proposition IV.2.3 in Neveu [25] that (fn) is uniformly integrable. Applying Proposition 3.2, the
sequence (fm) weakly converges to g. Hence g = f almost everywhere and f(a) ∈ coLsn{fn(a)}
almost everywhere.

Applying Proposition 3.3, we now provide a proof of the lower closure result in the general
setting.

Proposition 3.4. Let (fn) be a sequence of Gelfand integrable mappings from Ω to E∗. Suppose
that the sequence (fn) is mean norm bounded and is K-convergent to a Gelfand integrable mapping
f . Then there exists ρ a positive integrable function such that for every finite dimensional subspace
F of E,

f(a) ∈ coLsn{fn(a)}+ ρ(a)B∗ ∩ F⊥ a.e.

Proof. The sequence (‖fn(.)‖∗) is mean norm bounded. Applying Komlós’ Theorem (Theorem
A.2 in Appendix) and passing to a subsequence if necessary, we can suppose that the sequence
(‖fn(.)‖∗) is K-convergent to an integrable function ψ from Ω to R. Let F be a finite dimensional
subspace of E. We consider π the following projection from E∗ to F ∗, defined by

∀x∗ ∈ E∗, π(x∗) = [x ∈ F 7→ 〈x, x∗〉].
It follows that the sequence ([‖fn(.)‖∗ , π(fn)]) is K-convergent to [ψ, π(f)]. Applying Proposi-
tion 3.3,

[ψ(a), π(f(a))] ∈ coLsn

{[
‖fn(a)‖∗ , π(fn(a))

]}
a.e.

Let a ∈ Ω outside the exceptional null set. There exists a finite set I, a finite family (λi)i∈I ∈ [0, 1]I

such that
∑

i∈I λi = 1, and there exists a finite family (ϕi)i∈I of strictly increasing functions from
N to N, such that

[ψ(a), π(f(a))] =
∑
i∈I

λi lim
n

[∥∥fϕi(n)(a)
∥∥∗ , π(fϕi(n)(a))

]
.

Let i ∈ I, the sequence (
∥∥fϕi(n)(a)

∥∥∗) converges, passing to a subsequence if necessary, we can
suppose that the sequence (fϕi(n)(a)) w∗-converges to some hi(a) ∈ Lsn{fn(a)} ⊂ E∗. It follows
that

π[f(a)] =
∑
i∈I

λiπ[hi(a)] ∈ π [coLsn{fn(a)}] .

Note that
∥∥∑

i∈I λihi(a)
∥∥∗ 6

∑
i∈I λi ‖hi(a)‖∗ 6

∑
i∈I λi limn

∥∥fϕi(n)(a)
∥∥∗ = ψ(a), hence

f(a) ∈ coLsn{fn(a)}+ ρ(a)B∗ ∩ F⊥,
where ρ(a) := ψ(a) + ‖f(a)‖∗.

The proof of part (c) of Theorem 3.1 will follow from Proposition 3.4 and the following propo-
sition.
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Proposition 3.5. Let L be a multifunction from Ω to E∗, let f be a mapping from Ω to E∗ and
let ρ be a positive function such that for every finite dimensional subspace F of E,

f(a) ∈ L(a) + ρ(a)B∗ ∩ F⊥ a.e.

Then

f(a) ∈ clL(a) a.e.

Proof. Let (ei) be a dense sequence in E, and for each n ∈ N, we let Fn be the vector subspace of
E generated by {e0, e1, . . . , en}. It follows that there exists Ω′ ⊂ Ω with µ(Ω \ Ω′) = 0 and such
that

∀a ∈ Ω′, f(a) ∈
⋂
n∈N

(
L(a) + ρ(a)B∗ ∩ F⊥n

)
.

Let a ∈ Ω′, there exists a sequence (zn(a))n in E∗ satisfying f(a) − zn(a) belongs to L(a) and
zn(a) belongs to ρ(a)B∗∩F⊥n . Passing to a subsequence if necessary, we can suppose that (zn(a))n

is w∗-convergent to z(a). It follows that f(a) − z(a) belongs to clL(a). Moreover, since zn(a)
belongs to F⊥n , we have that for every i, 〈ei, z(a)〉 = 0. In particular z(a) = 0 and f(a) belongs to
clL(a).

4. Proof of Theorem 2.2

We propose to first prove Theorem 2.2 when (Ω,A, µ) is non atomic and then we provide the
proof in the general case.

4.1. The case (Ω,A, µ) is non atomic. Let (fn) be a sequence of Gelfand integrable mappings,
which is mean norm bounded, and let F be a finite dimensional subspace of E. Applying Theorem
3.1, we can suppose, passing to a subsequence if necessary that there exists f a Gelfand integrable
mapping from Ω to E∗ and ψ an integrable function from Ω to [0,+∞) such that

(‖fn(.)‖∗ , fn) K−−−−−→ (ψ, f) a.e.

and

(ψ(a), f(a)) ∈ coLsn{(‖fn(a)‖∗ , fn(a))}+ (R× F )⊥ a.e.

Let π be the following projection from E∗ to F ∗, the algebraic dual of F , defined by

∀x∗ ∈ E∗, π(x∗) = [x ∈ F 7→ 〈x, x∗〉].
Then

(ψ(a), π[f(a)]) ∈ coLsn{(‖fn(a)‖∗ , π[fn(a)])} a.e.

Following Carathéodory’s theorem, we let I := {1, . . . , ` + 2}, where ` is the dimension of F .
Then, for almost every a ∈ Ω, there exists (λi(a))i∈I ∈ [0, 1]I such that

∑
i∈I λi(a) = 1 and (ϕi)i∈I

strictly increasing functions from N to N, such that

(ψ(a), π[f(a)]) =
∑
i∈I

λi(a) lim
n

(
∥∥fϕi(n)(a)

∥∥∗ , π[fϕi(n)(a)]).

In particular, for each i ∈ I, ψi(a) := limn

∥∥fϕi(n)(a)
∥∥∗ < +∞. It follows that there exists

si(a) ∈ Lsn{fn(a)} such that limn fϕi(n)(a) = si(a), and

(ψ(a), π[f(a)]) =
∑
i∈I

λi(a)(ψi(a), π[si(a)]) a.e.



12 B. CORNET AND V.F. MARTINS-DA-ROCHA

Applying Theorem A.1, Proposition A.4 and Corollary A.1, we can suppose that for each i ∈ I,
the functions λi and ψi are measurable and the mappings si are Gelfand measurable selections of
Lsn{fn(.)}. Note that for each i ∈ I, for almost every a ∈ Ω, ‖si(a)‖∗ 6 ψi(a). It follows that∫

Ω

∑
i∈I

λi(a) ‖si(a)‖∗ 6
∫

Ω

ψ(a)dµ(a) < +∞

and hence that ∫
Ω

∑
i∈I

λi(a)
[
‖si(a)‖∗ + ‖π[si(a)]‖∗

]
dµ(a) 6 2

∫
Ω

ψdµ <∞.

Applying the Extended Lyapunov Theorem A.3, there exists a measurable partition (Bi)i∈I of Ω
such that (‖si(.)‖∗ , π[si(.)]) is integrable over Bi and such that∫

Ω

∑
i∈I

λi(a)(‖si(a)‖∗ , π[si(a)])dµ(a) =
∑
i∈I

∫
Bi

(‖si(a)‖∗ , π[si(a)])dµ(a).

Let fF :=
∑

i∈I χBisi,5 then fF is a Gelfand measurable selection of Lsn{fn(.)}, and moreover∫
Ω

‖fF (a)‖∗ dµ(a) =
∑
i∈I

∫
Bi

‖si(a)‖∗ dµ(a) 6
∫

Ω

ψdµ <∞.

It follows that fF is Gelfand integrable. Now

π[
∫

Ω

fF dµ] =
∑
i∈I

∫
Bi

π[si(a)]dµ(a) =
∫

Ω

∑
i

λi(a)π[si(a)]dµ(a) =
∫

Ω

π[f(a)]dµ(a).

Hence ∫
Ω

fdµ−
∫

Ω

fF dµ ∈ F⊥.

4.2. The general case. We now provide the proof of Theorem 2.2 in the general case, i.e. without
assuming anymore that (Ω,A, µ) is non-atomic. This is a classical result that the set Ω can be
partitioned into a non atomic part Ωna ∈ A and a purely atomic part Ωpa ∈ A, and that the set
Ωpa can be written as the disjoint union of at most countably many measurable atoms (Ai)i∈I

(I ⊂ N). Furthermore, for every i ∈ I and every n ∈ N , the measurable mapping fn : Ω → E∗

takes a constant value f i
n ∈ E∗ for a.e. a ∈ Ai. Since the sequence (fn) is mean norm bounded, for

each i ∈ I, the sequence (f i
n) is norm bounded, and thus remains in a w∗-compact subset of E∗ by

Alaoglu’s theorem. Consequently, by a diagonal extraction argument, there exists a subsequence
(nk) of (n) such that for every i ∈ I, (f i

nk
)k w∗-converges to some element f̄ i ∈ E∗. We let

fpa : Ωpa → E∗ be defined by fpa(a) = f̄ i if a ∈ Ai. We have shown that

fpa(a) ∈ Lsn{fn(a)} a.e. in Ωpa.

We now show that

lim
k

∫
Ωpa

fnk
(a)dµ(a) =

∫
Ωpa

fpa(a)dµ(a).

5For each measurable set A ∈ A, χA is the characteristic function associated to A, i.e for every a ∈ Ω, χA(a) = 1

if a belongs to A and χA(a) = 0 elsewhere.
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This is clearly a consequence of Lebesgue dominated convergence theorem applied for every fixed
x ∈ E, to the sequence (〈x, fnk

〉)k which is integrably bounded over Ωpa (since the sequence (fnk
)k

is also integrably bounded over Ωpa).
We now consider the non atomic part Ωna and we first remark that limk

∫
Ωna fnk

dµ exists since

lim
k

∫
Ωna

fnk
dµ = lim

k

∫
Ω

fnk
dµ− lim

k

∫
Ωpa

fnk
dµ.

We can now apply to the non atomic part Ωna the version of Fatou’s lemma proved previously.
Thus, for every finite dimensional subspace F of E, there exists fna

F : Ωna → E∗ such that

fna
F (a) ∈ Lsn{fn(a)} a.e. in Ωna

and ∫
Ωna

fna
F dµ− lim

k

∫
Ωna

fnk
dµ ∈ F⊥ + C◦.

We now define the mapping fF : Ω → E∗ by fF (a) := fpa(a) if a ∈ Ωpa and fF (a) := fna
F (a) if

a ∈ Ωna. One checks that the mapping fF satisfies the conditions of Theorem 2.2.

Appendix A. Appendix

A.1. Measurable mappings. Let (Ω,A, µ) be a complete finite measure space and (E, ‖.‖) be
a separable Banach space. We note B the Borel σ-algebra of (E∗, w∗). We recall that a mapping
f from Ω to E∗ is said Gelfand measurable if for every x ∈ E, the function a 7→ 〈x, f(a)〉 is
measurable. The mapping f is said measurable, if for every B ∈ B, f−1(B) belongs to A.

Proposition A.1. Let f be a mapping from Ω to E∗. Then f is Gelfand measurable if and only
if it is measurable. Moreover, if f is measurable then the function a 7→ ‖f(a)‖∗ is measurable.

Proof. Let (xi) a norm dense sequence in B the unit ball of E. For each i ∈ N and each α > 0,
we let Vi,α := {x∗ ∈ E∗ : |〈xi, x

∗〉| < α}. We note D the σ-algebra generated by the family of all
Vi,α. Since Vi,α is open in (E∗, w∗), we have D ⊂ B. It follows that if f is measurable then f is
Gelfand measurable. Note that⋃

i∈N

⋂
n>0

Vi,α+1/n = αB∗ = {x∗ ∈ E∗ : ‖x∗‖∗ 6 α} ∈ D.

It follows that if f is Gelfand measurable then the mapping a 7→ ‖f(a)‖∗ is measurable.
Let d be the following distance defined on E∗,

∀(x∗, y∗) ∈ E∗ × E∗, d(x∗, y∗) =
∑
i>0

|〈xi, x
∗ − y∗〉|
2i

.

Let Bd be the Borel σ-algebra defined by d. Note that Bd ⊂ D. The topology defined by the
distance d coincide with the w∗-topology on closed bounded subsets of E∗. It follows that if W
is a w∗-open subset of E∗, then for each k ∈ N, W ∩ kB∗ is d-open, in particular, W ∩ kB∗ ∈ D.
Since W =

⋃
k W ∩ kB∗, it follows that W ∈ D, and then B ⊂ D. Hence B = D and the result

follows.
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A.2. Measurable selections. Let (Ω,A, µ) be a complete finite measure space and E be a sep-
arable Banach space. A multifunction F from Ω into E∗ is said graph measurable if the graph
GF of F belongs to the σ-algebra A⊗ B, where

GF := {(a, x∗) ∈ Ω× E∗ : x∗ ∈ F (a)}.
A mapping f from Ω to E∗ is a selection of F if f(a) ∈ F (a) for almost every a ∈ Ω. We provide
hereafter a classical result of existence of measurable selections.

Theorem A.1 (Aumann Selection Theorem). We consider E a separable Banach space and (Ω,A, µ)
a complete finite measure space. Let F be a graph measurable multifunction from Ω to E∗ with
non empty values. Then there exists a measurable mapping f from Ω to E∗ such that

∀a ∈ Ω, f(a) ∈ F (a).

In particular f is a measurable selection of F .

The proof of this theorem is given in Castaing–Valadier [12, Theorem III.22, p.74]. We provide
hereafter a direct application of this theorem.

Corollary A.1. We consider E a separable Banach space and (Ω,A, µ) a complete finite measure
space. Let F be a graph measurable multifunction from Ω to E∗ with non empty values, let I be a
finite set and let f be a measurable selection of F . Suppose that for almost every a ∈ Ω, for each
i ∈ I, there exist λi(a) ∈ [0, 1] and fi(a) ∈ F (a) such that

f(a) =
∑
i∈I

λi(a)fi(a) and
∑
i∈I

λi(a) = 1.

Then for each i ∈ I, λi may be chosen as a measurable function from Ω to [0, 1] and fi may be
chosen as a measurable selection of F .

Proof. We let Σ(I) be the set of all (αi) ∈ [0, 1]I such that
∑

i αi = 1. Let π be the linear mapping
from Σ(I)× (E∗)I to E∗ defined by

∀[(αi), (x∗i )] ∈ Σ(I)× (E∗)I , π[(αi), (x∗i )] :=
∑
i∈I

αix
∗
i .

For each a ∈ Ω, we let

H(a) := π−1({f(a)}) ∩
(
Σ(I)× F (a)I

)
.

The multifunction H is graph measurable with non empty values. The proof of the corollary follows
from the application of Theorem A.1 to the multifunction H.

A.3. Measurability of limes superior. We consider E a separable Banach space and (Ω,A, µ) a
(possibly not complete) finite measure space. A multifunction F from Ω into E∗ is said measurable
if for each w∗-open subset V of E∗, F−(V ) := {a ∈ Ω : F (a) ∩ V 6= ∅} belongs to A.

Proposition A.2. Let F be a multifunction from Ω to E∗.
1. Suppose that (Ω,A, µ) is complete. If F is graph measurable then F is measurable.
2. Suppose that F is closed valued. If F is measurable then F is graph measurable.

Proof. The part (1) follows from the Projection Theorem in Castaing–Valadier [12, Theorem III.23].
Now we prove part (2) of the proposition. Since E is a separable Banach space, E∗ is the countable
union of w∗-compact metrizable subsets. It follows from Schwartz [31] that E∗ is a Lusin space,
in particular, there exists a separable and completely metrizable topology τ , stronger than the w∗
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topology, but generating the same Borel sets. Since F is w∗-closed valued, it is τ -closed valued.
Applying Proposition III.13 in Castaing–Valadier [12], the graph of F is measurable.

Proposition A.3. Let F and Fn, n ∈ N be graph measurable multifunctions from Ω into E∗.
1. The multifunction clF defined by a 7→ clF (a) is graph measurable.
2. The multifunction

⋃
n Fn and

⋂
n Fn are graph measurable.

Proof. Proof of (1). The multifunction F is graph measurable, and then following Proposition A.2,
F is measurable. Let V be a w∗-open subset of E∗. For each a ∈ A,

F (a) ∩ V 6= ∅ ⇐⇒ [clF (a)] ∩ V 6= ∅.
It follows that if F is measurable then clF is measurable. Once again applying Proposition A.2,
the multifunction clF is graph measurable.
Proof of (2). This an immediate consequence of

Graph (∪nFn) = ∪nGraph (Fn) and Graph (∩nFn) = ∩nGraph (Fn)

If (Cn) is a sequence of subsets of E∗, we denote by LsnCn the sequential limes superior of (Cn)
relative to w∗, i.e.

LsnCn := {x ∈ E∗ : x = lim
k
xk , xk ∈ Cnk

}.

Proposition A.4. Let (Fn) be a sequence of graph measurable multifunctions from Ω into E∗.
The multifunction a 7→ LsnFn(a) is graph measurable. In particular, if (fn) is a sequence of
measurable mappings from Ω to E∗, then the multifunction a 7→ Lsn{fn(a)} is graph measurable.

Proof. Note that if (Cn) is a sequence of non-empty subsets of E∗, then

LsnCn =
⋃
p∈N

Lsn(Cn ∩ pB∗).

Indeed, let x ∈ LsnCn. There exists a sequence (xk) and a subsequence (nk) of (n) such that
xk ∈ Cnk

for each k ∈ N and

xk
w∗

−−−→ x.

It follows that the sequence (xk) is ‖.‖∗-bounded. Hence following Proposition A.3, we can suppose
without any loss of generality that there exists a w∗-compact convex and metrizable subset K of
E∗, such that

∀a ∈ Ω,
⋃
n

Fn(a) ⊂ K.

Hence

LsnFn(a) =
⋂
n

cl
⋃
p>n

Fp(a).

Following Proposition A.3, the multifunction

a 7→ LsnFn(a)

is graph measurable. This ends the proof of Claim A.4.

Remark A.1. We refer to Hess [18] for related results of measurability of limes superior.
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A.4. Komlós limits. Let E be a separable Banach space and (Ω,A, µ) a finite measure space.
A sequence (fn) of mappings from Ω to E∗ is said K-convergent to a mapping f , if for every
subsequence (ni) of (n)

1
n

n∑
i=1

fni
(a) w∗

−−−−−−→ f(a) a.e.

Theorem A.2 (Komlós). Suppose that (ϕk) is a sequence of integrable real valued functions such
that

sup
k

∫
Ω

| ϕk | dµ < +∞.

Then there exists a subsequence (m) of (k) and an integrable real valued function ϕ such that (ϕm)
is K-convergent to ϕ.

This theorem is due to Komlós [22].

A.5. Gaposhkin.

Lemma A.1 (Gaposhkin’s lemma). Let E be a finite dimensional vector space and (Ω,A, µ) a
finite measure space. If (fn) is a mean norm bounded sequence of integrable mappings from Ω to
E∗, then there exists a subsequence (nk) of (n) such that for each k ∈ N, fnk

= gk + hk, where
the sequence (gk) is uniformly integrable and where the sequence (hk) converges almost everywhere
to 0.

This lemma is due to Gaposhkin, Lemma C.I in [17].

A.6. Lyapunov.

Theorem A.3 (Extended Lyapunov). Let (Ω,A, µ) be a finite measure space, let I be a finite
set, let ` ∈ N, let (fi)i∈I be measurable functions from (Ω,A, µ) to R` and let (λi)i∈I measurable
functions from Ω to [0, 1] with

∑
i∈I λi(a) = 1. Suppose that∫
Ω

∑
i∈I

λi(a)|fi(a)|dµ(a) < +∞.

If (Ω,A, µ) is non atomic then there exists a measurable partition (Bi)i∈I of Ω such that for each
i ∈ I, the function fi is integrable over Bi and∫

Ω

∑
i∈I

λi(a)fi(a)dµ(a) =
∑
i∈I

∫
Bi

fidµ.

This theorem proved in Balder [7] is a corollary of the classical Lyapunov theorem.
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