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Abstract
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1 Introduction

Barbega and Beva (2002, 2005) introduce a notion of consistency between a global
decision governing community-wise consumptions and local decisions by individual
communities. They consider a simple model of community division and location of
(local) public facilities! A location is chosen from a real line. Members of a commu-
nity have single-peaked preferences over the line and the size of the community does
not affect members’ welfare (no congestion effect). Given a set of agents, their prefer-
ences, and a fixed number of communities to forspeial choice functiodetermines

a community division and locations of public facilities for individual communities.
The function isefficientif its decision does not allow any further welfare enhancement
(making all agents weakly better off and at least one better off).dbrsistentf any

local component (a community and the location of public facility for this community)
of its global decision coincides with the local decision made by applying the function
for this community only.

We offer simple necessary and sufficient conditionsdfficiencyand decentral-
izability of efficientdecisionsa la the first and the second welfare theorems. Next,
building on a constructive argument used by Baabend Beva (2002) in their proof
of Proposition 1, we define an algorithm that can be used to desigientandcon-
sistentcollective decision functions.

Our conditions forefficiencyare composed of the following four axiomso-envy
(everyone weakly prefers the location in his own community to the location in any
other community)local stability (there is no community where some members volun-
tarily move out and all remaining members agree on relocating their facility), and two
diversity conditions|ocation diversityandcommunity diversity

The decentralizability result is obtained, using strong Nash equilibrium, in a game
of community division and local public goods provision, similar to the game consid-
ered by Konishi, Le Breton, and Weber (1997a, 19970ur conditions foefficiency
play a critical role in proving this decentralizability result and existencsfafientand
consistentollective decision functions.

The rest of the paper is organized as follows. We define our model and basic
concepts in Section 2. In Section 3, we offer necessary and sufficient conditions for

1A simpler model of locating two public facilities is studied by Miyagawa (2001) and Ehlers (2002,
2003).

2As in Konishi, Le Breton, and Weber (1997a, 1997b), players are partitioned into communities each
of which consists of players with the same strategy choice. However, our model differs crucially from
theirs in that there is no externality or rivalry and the number of communities that can form is exogenous.
Considering this game, we study the relationship between efficient decisions and strong Nash equilibria,
while the main objective of Konishi, Le Breton, and Weber (1997a, 1997b) is to study conditions for
existence of strong Nash equilibria in a more general environment than ours.
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efficiency(Section 3.1), and decentralizability efficientdecisions (Section 3.2). In
Section 4, we show existence efficientand consistentfunctions. Proofs of some
results are provided in the appendix.

2 The Model and Basic Concepts

We consider the following collective decision problem. There is a set of agents. These
agents have to be divided into a fixed number of subsets, cadieanunitiesand for

each of these communities,l@cation for a local public facility has to be decided.

A location is represented by a real number and the realRing the set of possible
locations. We consider these problems in a variable population environment and use
natural numbers it to label agents. Le® C N be the set of potential agents.pbp-
ulationis a finite subset oP. Let. 4" be the set of all populations. Given a population

N € .4 and a number of communitidse N with k < |N|, let 1 (Nf) be the set of
profiles ofE—subsets(Cl, -+, Cp), which constitute a partition dfl. An N/E—decision

is a list ofk-communities(Cy, - - ,Ci) € M(N, k), and the locations of public facilities

for these communitiegxy, - , %) € (Ru{v})k, wherev means “no location (or no
public facility)”. Let Z(N,E) be the set oN/Q—decisions. For eacN/E—decisionz
andeaclk=1,--- ,E let z. = (Cy,X«) be the pair of communitk-and the location for
communityk. For simplicity, eackN/E—decisionz € Z(N, k) is labeled in such a way
thatx; < xp < --- < xc. LetZ (k) =Une.#Z (N, k) andZ = Uiy Z(k). In what follows,

we use indice#,i, j for agents and indices |, m for communities. Components af
andZ are denoted by, = (Cy,Xc) andz, = (C,x,) respectively foralk =1,..., k.

Each agent has a preference relation aerWe assume that each agent cares
about only the location of the public facility for the community he belongs to: that is,
forallz,Z € Z,if i € C, i € ¢, andx = X[, thenzandZ are indifferent fori. Thus in
our model, agents have no preference over community members or community sizes.
Under this assumption, preferences aX&an be described as preferences over the set
of locationsRU {v}. The generic notation for a preference relation for agésR,.

The strict and the indifferent counterpartsRfare denoted by, andl; respectively.
For eactx, X' € RU{v}, we writex R X' when agent prefersx to X'; x l; X when the
two are indifferentx R X whenx B X or x Ij X.

Furthermore, we assume that each agdas asingle-peaked preference relation
R overRU {v}, thatis, there is thpeak locatiomp(R;) € R such that for eack X € R,
if X <x<p(R)orp(R)<x<xX,xRX,and that for eack € R, x R v (thus having
a local public facility wherever it is located is better than not having one).Z &
the set of single-peaked preferences. For éaeh /", letZN be the set of profiles of
single-peaked preferences of agenthlin



For each populatioN € .4, a problemfor N is characterized by a list of pref-
erences of agents iN, Rc #", and a number of communities to forke N with
k< |N|. Let 2N C %N x N be the set of all these problems for Let 7 = Une » 2.
A social choice functiog : & — Z maps each probleiR, k) € 2 with populationN €
¥ into anN/k-decision, that is¢ (R k) € Z(N,k). Each social choice function
¢ can be described by two component functigifs: 2 — Uiennes T (N, k) and
ot 2 — UkeNRk such that for eacNl € .#” and each{R k) € #N x N, ¢€(R k) is
the list ofk-communities inp (R, k) andgt (R k) is the list ofk-locations ing (R k)
We now state two main axioms of social choice functions, which are crucial in
this paper. GivelN € ./, ke N, andR e %V, an N/k decisionz = (Ck,xk) _,isa

Pareto improvemeruf anotheiN /k-decisionz = (Ck,xk)k atR, if all agents weakly
preferz to Z and at least one agent preferso Z: that is, for each € N and each
kl=1--- ,kwith il e C«NC/, % R x, and for somg € Nandmn=1,.-- ,kwith

j €CmNC/, Xn B Xn. An N/k—decision isefficientif there is no Pareto improvement
of the decision.

Efficiency. For ea_cH\I € ¥, eachRe %N, and eaclk € N, there is no Pareto im-
provement ok (R k) atR.

The next axiom introduced by Bartzeand Bewva (2002) is a basic consistency re-
quirement between (global) decisions for the whole population and local decisions for
individual communities. Suppose that after I‘&yﬁk—decision is made, each commu-
nity can reassess its own location. The next axiom says that the orfrgjﬁaﬂecision
should remain intact after the community-wise reassessment.

Consistency For eachN € .4, each(R, k) e #" x N, and eactk € {1, k},
¢ (RK) = ¢(Rg,, 1), whereCy denotes communiti-in ¢ (R k).

A social choice function satisfieglf-selection consisten{Barbeg and Beva 2002)
if it satisfies botrefficiencyandconsistency

3 Efficiency

3.1 Conditions for Efficiency

In this section, we identify necessary and sufficient conditiongfioziency
As pointed out by Barb@rand Bewa (2002), the following are two necessary con-
ditions forefficiency To define them, we use the following notation. For elch .4,



eachRe #N, and eaclSC N, letRs = (R));.s And let
P« (Rs)=min{p(Ri) :i € S}; p"(Rs) =max{p(R) :i € S}; P(Rs) =[p«(Rs), p" (Rs)]

We callP (Rs) thelocal Pareto sefor communitySwith Rs. B

For eachN € .#" and each(R k) € 2N, anN /k-decisionz = (Cy, Xc)x_, satisfies
no-enwyif for eachk =1, -- ,E eachi e G, andeachh=1,--- ,E Xk Ri X . It satisfies
local efficiencyif for eachk € {1,--- ,E}, Xk € P(Rc,). The two conditions are not suf-
ficient for efficiency This is shown by the three examples below. These examples will
also provide us some insight into what additional conditions are neededfitvency

Example 1. LetN = {1,2,3} andk = 2. LetRe %N be a profile such thai(Ry) = 1,
p(R2) = 2, p(Rs) = 3, and1.5 I, 3. Consider theN /k-decisionz= ((C1,x1), (Co,X2))
defined as followsC; = {1,2}, C; = {3}, x; = 1.5, andx; = 3. Then if we move
agent2 into community2 and change the location for communityte x; = 1, agentl
is better off and agen®and3 are indifferent. Therefore,is notefficient

The Pareto improvement afin the example is possible because for a community
(community 2 in the example), the location is not between the peaks of members for
whom it isthe preferred location among all locationsZn Such Pareto improvement
does not exist i satisfies the next condition.

For eachN /k-decisionz = (Cy, x)f_;, eachRe %N, and eactk € {1,--- ,k}, let

CO(R2) = {i € Cy:foreachl =1,--- ,k, if X # X, X B X}

be the set of members of communkywho prefer the location for this community
to any different location for other communities. Note that for eaerC\C (R, 2),

Xk # p(R) and there id # k such thatg # xx andx; R xx. Thus if X, & P(RCE(RJ))’
then moving all agents iﬁ:k\CE(R z) to other communities they weakly prefer and
changing the location for communityto the closest location iﬁ(RCE(Rz)) improves
welfare of all remaining members in communkywithout hurting anyone else. The
next axiom guarantees that there be no such Pareto improvemem/@decisionz
satisfieslocal stability if for eachk = 1,--- ,k, X € P(ch(Rz)). Clearly, this axiom
implies local efficiencybut the converse does not hold as shown by Example 1. The
next example shows that the combinatiomofenvyandlocal stabilityis not sufficient
for efficiency

Example 2. LetN = {1,2,3,4} andk = 2. LetRe %N be a profile such thaa(Ry) =
1, p(R2) = p(R3) = 2, andp(R4) = 3. Letz= ((Cy,X1),(Co,%2)) be theN /k-decision
defined as followsCy = {1,2}, x1 = 2, C; = {3,4}, andxy = 2. Note thatz satis-
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fies bothno-envyandlocal stability. However,z violatesefficiencybecause there is
a Pareto improvemert = ((Cy,x3), (C5,%;)) defined as followsC; = {1}, x; = 1,
C, ={2,3,4}, andx, = 2.

TheN/k-decisionz in Example 2 admits a Pareto improvement because there is a
community (communityt in the example) with more than one peaks of the members
and its location is identical to the location for another community (commuiitythe
example). Then by diversifying locations and regrouping communities, we can achieve
a Pareto improvement. Communityin N/E—decisionZE (Ck,xk)t:1 is homogeneous
if all members have the same peak, thaPi§Rc, ) is a singleton. It isieterogeneouié
it is not homogeneous. AN /k-decisionz= (Cy,x)f_; satisfiedocation diversity if
whenever there exists a heterogeneous communityksay/l, - - - ,E}, in z, its location
x differs from the location for any other community. There are situations where pick-
ing the same location for different communities is inevitable: for example, when all
agents have the same peak but they are to be divided into more than one communities.
Location diversitythen, has no bite.

Adding location diversityto no-envyandlocal stability, however, is not sufficient
for efficiencyas the next example shows.

Example 3. LetN = {1,2,3,4} andk = 3. LetR e %N be a profile such thai(Ry) =
1, p(Rp) = 2, and p(Rs) = p(Ry) = 3. Let z= (Cy,x)i_, be defined as follows:
C1=1{1,2},C, ={3},C3={4}. x1 =1, xp = x3 = 3. Note thatz satisfiesno-envy
local stability, andlocation diversity However,z violates efficiencybecause there
is a Pareto improvemert = (C,x)3_, defined as follows:Cj = {1}, C, = {2},
C;={3,4},x; =1,% =2, andx; = 3.

The N/E—decisionz in Example 3 admits a Pareto improvement because there is a
heterogeneous community (communitys the example) and at the same time, there
are two other homogeneous communities with the same peaks (commd@raines3
in the example). Then after diversifying communities by combining members of the
two homogeneous communities znand partitioning the heterogeneous community
into two, we can achieve a Pareto improvement. Thus we need the following condi-
tion. An N/E—decisionz = (Ck,xk)[j:l satisfiescommunity diversityif whenever there
is a heterogeneous community, there are no two other homogeneous communities with
the same peak of their members, that is, for each pair of distinct homogeneous com-
munitiesk,| € {1,...,k}, P(Rc,) # P(Rg ). When a decision satisfies bafthcation
diversityandcommunity diversitywe say that it satisfiediversity.

Adding community diversityo the three conditions above, we finally get a nec-
essary and sufficient condition fefficiencywhich is shown in our first result. The



following lemmas are used in proving this result. B
Throughout the lemmas, we fik € .4, k€ N, andR € #N and assumk > 2.

Lemma 1. Ifan N/ k-decisionz = (Ck,xk):ﬁ:l satisfiesno-envy local efficiency and
location diversityatR, then

P« (Rey) < -+ < p«(Re) andp™ (Rey) < -+ < p'(Rey)-

Proof. To showp, (Rg,) < -+~ < p.(Re,), letk € {1,--- ,k—1}. Suppose, by contra-
diction, p, (Rg,) > P« (Re.,)- By local efficiencyx € P (Rg,) andx:1 € P(Rg,., ).
Sincexc < X1, thenp, (Rg,,,) < X1 and [p. (Rg,.,) . %+1] € P(Rg,,,) - Hence
P (Rck+1) is not a singleton. Therefore, hycation diversityx, < X«y1. Thenp,(Rg,,;) <
Xk < Xx+1. Hence, each agent Cy 1 with p(R)) < x prefersx, to X 1, contradicting
no-envy.The same argument can be used to prove the second inequalities.

Lemma 2. Ifan N/ k-decisionz = (Ck,xk)'lﬁ:l satisfiesno-envy local efficiency and
location diversityatR, thenx; < p.(Rc,), p*(Re_1) < X, and for allk with 2 <k <

k—1, (i) p* (Re ;) < X < Pe(Roy,,); (i) if P(Rg,) is not a singletonp* (R, ,) <

X < P« (Roy,y) ; (i) if P(Rg, ,) is not a singletonp* (R, ,) < X (V) if P(Re,.,)

is not a singletory, < p. (Rg,,,); (v) if P(Rg,) is a singleton an® (Re, ,) is not a
singleton, them = p. (Rg,) = p* (Rg,) andx_1 < p* (Re, ;) < X«

Proof. We first show that for eackh > 2, p*(Rc, ;) < X«. Suppose, by contradiction,

X« < P*(Rc,_,)- Then there exists € C¢_1 such thatx, < p(R;). Since bylocal effi-
ciencyand Lemma 1xc € P(Rc,) andx < p*(Rg, ;) < p*(Rg,), thenP(Rc,) is not

a singleton. Then bjocation diversity xx_1 < X. Hence agent prefersxy to xx_1,
contradictingno-envy. Similarly, we show that for eack < k— 1, Xk < p«(Roy,q)-

This proves the first two inequalities and part (i). Parts (ii)-(v) are obtained easily from
part (i), no-envy andlocation diversity g

Lemma 3. Letz= (C, xk)ﬁ:1 be arlN/ k-decision satisfyingo-envylocal efficiency
anddiversity atR. If there exists at least one heterogeneous community timen all
locations are strictly ordered, that¥g, < Xo < --- < X.

Proof. Letke {1,...,k—1}. Ifatleast one oP (Rg, ) andP (Rg,,) is not a singleton,
then by Lemma 2 antbcal efficiencyx < X;1. Suppose botP (R, ) andP (Rg, ,,)
are singleton. Byocal efficiency P (R, ) = {x} andP(Rc,,,) = {X1}. Then by
community diversityP (Rg, ) # P (Re,,, ). SOX # Xr1. Thereforexc < Xii1. i

Lemma 4. Letz= (Ck,xk)t:]_ be anN/ k-decision satisfyingio-envy local stability,
anddiversityatR. Assume that all locations inare strictly ordered.
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(i) If Z = (Cl, %) tzl is anothemN /k-decision such that for someg € {1,...,k— 1},
x,’0 < x, and for each € C,, Z R, z, then there exish > lg and j1 € C, such that
j1€C andx, <X,.

(i) If Z = (Cl, %) E:l is anotheN /k-decision such that for sonte< {2,....k}, x, <
x,’0 and for each € G, Z R z, then there exidy < lg andj1 € G, such thatj; € C|’1
andx, <X, .

Proof. By local stability, there existsj; € G, such thatx, < p(le) and for each
me {1,--- ,E}, if Xxm # X, thenx, Pj; Xm. Since all locations iz are strictly ordered,
then for eacim# lo, X, Pj, Xm. For eachm <lo, sincex;, <x_ <x, < p(Rj,), thenx,
P}, Xm. Sincej1 € G, andZ R;, z then for eaclm <o, j; ¢ C},,. Therefore sincé <k,
there existd; > lg such thatj; € Cl’l. Sincel, > lg and j; € G, then by Lemma 2,
p(Rj,) <x,. Sincex Rj; x, andx, Pj; x,, thenx < x,. This completes the proof
of part (i). The proof of part (ii) is similamn

Now we are ready to show the first result.

Theorem 1. A decision isefficientif and only if it satisfiesno-envy local stability,
location diversity andcommunity diversityAnd the four axioms are independent.

Proof. It is easy to prove thagfficiencyimplies the four axioms, and so we omit this
part. In what follows, we prove the converse. Throughout the proof, wi fx./",
keN, andRe #N. Letz= (Ck,xk)'lﬁzl be anN /k-decision satisfyingio-envy local
stability, anddiversity. Suppose by contradiction that there exists a Pareto improve-
ment ofz, Z = (C;, X II::l' Leti € N be an agent who prefersto z. Letk andlg be
such thai € Cc andi € G| . Thenx # p(R) andP (R, ) is not a singleton. Then by
Lemma 3, locations iz are strictly ordered, that is,

Xy <o < X Q)

Assumep(R) < X« (the symmetric argument applies faf < p(R;)). We derive a
contradiction for each of the following two cases.

Case 1lp > k. Sinc_exl’0 R xc andp(R) < X, thenxl’0 < Xk. Sincelg > Kk, X < X,
Hencex,’O < X,- Sincek is finite, then the iterative application of part (i) of Lemma 4
leads tox < X. By local stability, there exist$ € C such thatp(Ry) > X and for
eachin <K, If Xm # X, thenxg B, Xxm. Hence by (1), for eacm # k; X B, Xm. For each
m <k, sincexy, < X < X < p(Ry), thenx By X, contradicting the initial assumption.

Case 2.1p < k. Sincei € CkﬂC,’o andz B z, thenxfO B Xc. By no-envy xx R
X,- Since by (1)x, < X« andp(R;) < X, thenx, < p(R). Therefore sincexl’0 R X,
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X, < xfo. Sincek is finite, then the iterative application of part (i) of Lemma 4 leads to
X1 < X;. By local stability, there exist$ € C; such thap (R,) < x; and for eachm <K,

if Xm # X1, thenxy B, xm. Hence by (1), for eacm# 1, X1 B, Xm. For eachm < E, since

Xm > X; > X1 > p(Ry), thenxq B, X;,,, contradicting the initial assumption.

Finally, independence of the four axioms is shown by the above three Examples 1-3
and Example 4 belowy

Example 4. LetN = {1,--- ,5} and k=3. LetRbe a profile such thgp(Ry) = 0,

p(Rz) =2, p(Rs) = p(Ry) = 3, andp(Rs) = 4. Letz= (Cy,x)3_, be theN/E—decision
defined as followsC; = {1}, C; = {2,3}, C3 = {3,4}, x; =0, X = 3, andxz = 4.

Thenz satisfiedocal stabilityanddiversity. Howeverz violatesno-envy.

Theorem 1 enables us to cheeKiciencyby testing the four elementary condi-
tions, no-envy local stability, location diversity andcommunity diversity Checking
efficiencycan be simplified even further by using the following test.

Neighbor Test For eachN € ./, eachk € N, and eachR € %V, N/E—decision
zZ= (Ck,xk)tz1 passes thaeighbor testif it satisfies the following conditions. If
{p(R) :i e N} <k, then for eactk = 1,--- .k and each € Gy, x = p(R). If
{p(R):i € N}| >k then

(i) No overlap For eactk > 2, p* (Rg, ,) < %, and for eachk < k—1, % < p«(Re,.., )
(i) Neighbor no-envyfFor eackk with2 <k < k—1, Xk € Nieg, MaX(Ry, { X1, %, X1},
X1 € Niec, MaX(R;, {x1, %2}], andxic € Nicc, Max(Ri, {X_1,%}], where for eaclX C R,
MaxR;, X] is the set of alR;-maximal elements iix;

(iii) Neighbor stability For eactk € {1,--- ,E}, there exist, j € C¢ such thap(R) <
X < P(Rj), X P X1, andxic Pj X1

Theorem 2. A decision isefficientif and only if it passes thaeighbor test.

Proof. Throughout the proof, we fikl € .1/, ke N, andR e ZN and consider the non-
trivial case|{p(R) :i € N}| > k. Letz= (Ck,xk)t:1 be anefficientN /k-decision aR.
Then by Theorem 1z satisfieno-envylocal stability, anddiversity. By Lemma 2-(i),
X < P«(Rey,,)- Suppose = p.(Rc,, ;). Note that by Lemma 3 < X¢,1. Thus by
no-envy x¢ < p«(Rg,,,). Similarly, we provep*(Rc, ;) < x. Neighbor no-envyand
neighbor stabilityfollow directly from no-envyandlocal stability.

To prove the converse, let= (Ck,xk)'lﬁzl be anN /k-decision passing theeighbor
test.Note that byno-overlap

Xp <X <o < X (2)



This implieslocation diversityandcommunity diversityTo showno-envyletk be such
that2 < k < k— 1. Leti € G. By no-overlap 1 < p.(R¢) < p(R). Therefore for
alll <k-—1, sincex <xx_1 andxx R xx_1 by neighbor no-envythenxi R; x. Also by
no-overlap p(R) < p*(Rk) < Xkr1- Foralll > k41, sincex; > X1 andxx R X1 by
neighbor no-envythenxy R; x. Applying the same argument f&r= 1 andk = E, we
show thatz satisfiesno-envy For eactk =1, --- ,E by neighbor stability there exist
i,j € C¢ such thatp(R) < x < p(R,—) , Xk B X¢—1, andx¢ Pj Xc1. Then by (2), for
eachl #k, x« B x andx Pj x. Thereford, j € C2(R ). Sincep(R) <x < p(R;),
Xk € P(ch(R,z))- Hencez satisfiedocal stability. Therefore, by Theorem Z%,satisfies
efficiency g

Whenk = 2, theneighbor testeduces to a substantially simpler condition as stated
in Miyagawa (2001).

3.2 The Game of Community Division and Location

In this section, we consider a simple game similar to the local public good provision
game considered by Konishi, Le Breton, and Weber (1998).

Definition 1 (The Game of Community Division and Locatior(iven a set of agents

N € .4 and a required number of communities N, let G be a game form with the
following strategy sets and the outcome function. For éaeN, let S =R bei’s
strategy set with generic elemestinterpreted ags proposal for the location of the
local public facility in his community. LeB= x;cnS be the set of strategy profiles
with generic elemens. When the total number of locations proposed by agenss at
is less than or equal to the required Iegehgents with the same proposals constitute
communities and locations are determined by their proposals. Otherwise, communities
are formed in the same way but no public facility can be provided for any community.
Formally, letg: S— Z be the outcome function defined as follows: for each strategy
profiles= (S)ien,

(i) if k(s) = |{s :i € N}| <k letg(s) be the decisioniC, X)r") such that{Cy }1) is

a partition ofN and for eactk=1,--- |k(s),Ck={i e N: 5 = X},

(ii) if k(s) = |[{s :i € N}| >k, letg(s) be the decisioriCy, v)i, such that{ G} is

a partition ofN and for eactk=1,--- 'k(s),Ck={i e N: 5 = X¢}.

A strategy profiles € Sis astrong Nash equilibriunin (G,R), if there exist no
T C N ands; € Sy such that for eacl e T, g(s;,s-1) R g(s) and for somej €
T, 9(sr,s-1) P 9(s).2 The next result is that the set efficientdecisions can be

3The definition is from Moulin (1994). Aumann (1959) introduces a weaker version of strong Nash



implemented in strong Nash equilibrium by this game fdan Theorem 1 plays a
crucial role in proving this result.

Theorem 3. LetN € .+ andk € N. For eactR e %N, anN /E—decision isefficientif
and only if it is a strong Nash equilibrium outcome of the game of community division
and location.

Proof. LetRe #N andk € N be given. By definition, every strong Nash equilibrium
outcome isefficient. In order to prove the converse, et (Ck,xk)t:1 be anefficient
N/E—decision. Then by Theorem % ,satisfiesno-envy local stability, anddiversity.

Let s be such that for eacke {1,--- k} and eachi € G, s = X. We only have to
show thatsis a strong Nash equilibrium. Whefip(R)) :i € N}| < k, every agent gets

his peak location and ssis, clearly, a strong Nash equilibrium. Assume tHgi(R)) :

i € N} > k. Then there exists a heterogeneous community. Hence by Lemma 3,
X1 < X2 < --- < X. Suppose by contradiction that there exist N ands; such that
foralli e T, g(sy,s-1) R zand for somg € T, g(st,s_1) Pj z LetZ = g(st,s-71).
Sincev is the worst outcome for everyone,

{g:ieTusj:je N\T}| <k (3)

For eackk € {1,--- ,E}, letTy=TNCy.
Claim 1. There existe € {1,- - ,k} such thafT, = Cy.

Proof. Suppose by contradiction that for edck {1, -- ,E}, Tk # C«. Then|{s :
i e THU{sj:j € N\T}| > k. Therefore, by (3)J{s:i e T}U{sj:je N\T} =k
Then{s:i e T}U{sj:j € N\T} = {x1,---,x}. Therefore, since satisfiemo-envy
there is na € T such that R z, contradicting the previous assumptionbands;. [

Since{k e {1, ,k} : Tu =G} # 0, we may write this set afky, -+, k-} for some
r > 1whereky,--- ke {1,--- Kk} are such thal; < --- < kg

Claim 2. (i) There exisiy,---,ir € N such that for each € {1,--- ,r}, i, € Ty, =
Ck. qr < X qr ¢ {xc k¢ {ke, - Kt} andﬁll < qz < <qr—'
(i) There existj1,---, jr€ N such that foreach € {1,--- ,r}, jr € Ty, =Cy,, s’jr > X,
S, & (X k¢ {ki, -k} }, ands) <sj, <--- <sj.

Proof. By (3), eachi € N eventually gets a location that is chosen by himself.

Therefore for each and each € Ty, § R x. Letr € {1,---.r}. By local stability,
there existiy, j, € Cg(R,z) such thatp(R;, ) < x, < p(Rj,). Clearly, s <X <.

equilibrium. Konishi, Le Breton, and Weber (1999) study the relationship between strong Nash equilib-
rium and “coalition-proof Nash equilibrium” in the context of common agency games.
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Note that for allk # ki, X Pj, X andx, B, X. Also note that by Lemma 2, K > k;,
P(Rj,) <X Therefore for alk, sj, <s;  ands;j, ¢ {X:k¢ {kq, - .k} }. Similarly,
forallr,s <s , ands, ¢ {x:k¢ {k, - ki}}. O

Claim 3. There exists€ {1,---,r} such thats # .

Proof. Suppose by contradiction that for alkc {1,---,r}, § = %. Then atZ,
each agent im gets a location that is a location m Therefore, since satisfiesno-
envy then there is noe T such thatZ B z, contradicting the earlier assumption ©n
ands;. O

To complete the proof, letbe such thaﬁ’r # X, . Then by Claim 25’1r < Sljr' There-

fore, by Claim 3{x: kK ¢ {ki,--- .k} U{s s} }U{s,, .S _JU{sj .S} is
composed of more thanelements, contradicting (3j.

r+1’

4 Self-Selection Consistent Social Choice

In this section, we provide an algorithm that can be used to construct a large family of
efficientandconsistentnamelyself-selection consisterdocial choice functions.

We first give a simple characterization obnsistentsocial choice functions. A
single location functionf: Uney 2N — R maps each single location problem (a
preferences profile) into a location. Examples arerttigimal peak functiorf ™"(.)
and themean peak functiori™®@"(.) defined as follows: for eacN € .4#" and each
Re %N, f™MN(R) =min{p(R) :i € N} and f™3(R) = ;. P(R)/IN].

Proposition 1. A social choice function (-) satisfiesconsistencyf and only if there

is a unique single location functioh(-) such that for eachR k) € & and eaclk =

1,....k %= f(Rg,), where(Ci,x)k_; = ¢ (R K).

Proof. The proof for the “if” part is evident. In order to prove the “only if” part, let
¢ (-) be aconsistensocial choice function. Lef(-) = ¢'(-,1). Let (R k) € 2. Let
(Ck,X«) be a pair of a community and the location for its public facility chosexp by
for (R k). Then byconsistencyx, = ¢-(Re,1). Soxc = f(Rg,). Uniqueness of (+)
follows from the fact that any single location functidr{-) with the stated condition

should satisfyf (-) = ¢-(-,1). n

The next example shows existence oidiiicientandconsistensocial choice func-
tion using the minimal peak functiof™"(-).

Example 5(An efficient and consistent functianf-or eactN € .4” and eaEI'(R, k) €
N with [{p(R) :i € N}| >k, let pp < p2 < --- < pg be the list of thek smallest
peaks. Foreacke {1,... .k}, if k<k, Cy={ieN:p(R)=p} and ifk=Kk, G =
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{ieN:p(R) > pe}. Let ¢ (R K) = (Cy, f™N(Rg,)). Itis easily shown by Theorem 2
and Proposition 1 thap (-) satisfies botlefficiencyandconsistency

It can be shown that alternative constructions obtained by replaéi#yg-) with
some other single location functions, e.§"¢2"(-), may not give arefficientsocial
choice function.

In what follows, we provide an algorithm that will allow us to construceéitient
andconsistenfunction based on any single location function with the following two
mild conditions. A single location functioh satisfiesefficiencyif for eachN € .4 and
eachRe #ZN, f(R) € P(R). It satisfiesparticipationif for eachN € .4, eachi ¢ N,
and eactR e 7"V}, f(R) R f(R_;) (Barbe& and Beva 2002).

Leftward Adjustment Algorithm .“LetN € .4, Re %N, andk € N. Letzbe anN/E—
decision and (-) a single location function. To simplify our notation, for eggh N,
we usef (S) instead off (Rs).

Stage 1. Let | = max{k: k=1 or whenk > 2, C; # 0}, whereC; = {i € C:
X1 R %} # 0.

Stage 2If | =1, go to Stage 8. If not, for eadh< | — 1, let 7 = z and go to Stage 3.
Stage 3LetC_; =C_1UC’ and go to Stage 4.

Stage 4Letk=1|—1and go to Stage 5.1.

Stage 5.1lIf there isi € G, 1\Cy such thatp; < f(Cy), go to Stage 5.1.1. If not, go to
Stage 5.2.

Stage 5.1.1Picki € C1\Cx such that

min{y e X:y li (G} =min{min{y:y Iy f(C)}:heC1\Ccandpn < f(C)},

and go to Stage 5.1.2.

Stage 5.1.2PutC == G U{i} and return to Stage 5.1.

Stage 5.2LetC, = G, andx, = f(C}). And go to Stage 5.3.
Stage 5.3If k+1 < K, go to Stage 5.4. If not, go to Stage 6.
Stage 5.4Putk == k+ 1 and go to Stage 5.5.

Stage 5.5Let Gy = C(\C}._, and return to Stage 5.1.

Stage 6LetC = CG\C , andx. = f(C,). Then go to Stage 7.
Stage 7Putz== Z and return to Stage 1.

Stage 8The algorithm ends with.

40ur algorithm is a modification of the one provided in the proof of Proposition 1 by Baeoet
Bevia (2002). Reversing the direction of moving agents within the leftward adjustment algorithm, we
can define the “rightward adjustment algorithm” and establish the same result as we do later for the
leftward adjustment algorithm.

12
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0 1 ‘ 2 ‘ 4 5 8 10 27
3/2 11/3

Figure 1:Let N = {1,...,7} and k = 4. Consider the preference profil® of
agents in N depicted in the figure. The leftward adjustment algorithm with ini-
tial decision (({1},0),({2},1),({3},2),({4,5,6,7},10)) leads to four iterations of
loop 3, as explained in Tables 1-4, and yields the followigfficient final decision:

(({1,2},1/2),({3},2),({4,5,6},13/3), ({7}, 27))-

We refer to the combination of Stages 5.1, 5.1.1, and 5.1l8as1, the combi-
nation of loop 1 and Stages 5.2-5.5laep 2 and the combination of Stages 1-7 and
loops 1 and 2 akop 3

Convergence of this algorithm depends on what inltliﬂf-decision is used. Propo-
sition 2 below states conditions for convergence and, in addition, convergence to an
efficientdecision.

Proposition 2. Assume thaf (-) is a sin_gle location function satisfyimjficiiencyand
participation LetN € .4, R e_%'\‘, andk e N. Letz= (Ck,xk)tz1 be arN /k-decision
such that _for eack=1,--- Kk x = f(Rc,). If z satisfiesno-overlapand for each
k=1,--- k—1,

No-right-envy xx R X1 for eachi € Cy; (4)
Right stability x Pj X1 andp (R;) > x for somej € Cy, (5)

then thdeftward adjustmendf z based orf converges to aafficientN/ k-decision.
Proof. See the appendis

To better understand how the algorithm works, consider the following example:
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Loop 3 #1 Community 1| Community 2| Community 3 | Community 4
" - {1} {2} {3} {4,5,6,7}
Initial decision 0 1 5 10
Stage 1 / (/)2k =0 C=0 C, =1{5,6}
C1={1} C = {2}
Stage 2 X, =0 X, =1
Cs ={3,5,6}
Stage 3 f(és) —11/3
Stages 4 and 5.
C;={3,5,6}
Stage 5.2 X, = 11/3
Stages 5.3-5.5
Cﬁl = {47 7}
Stage 6 X, = 31/2
{1} {2} {3,5,6} {47}
Stage 7 0 1 11/3 31/2

Table 1: The firstiteration of loop 3 in Example 6. The setin each cell gives composition of the
corresponding community and the real number in each cell is the location for the community.
The first row gives the initial decision and the last row gives the final decision of this iteration.

Example 6. LetN = {1,...,7} and k= 4. Let Ri,...,R7 be such thap(R;) = 0,

P(R2) =1, p(Rs) =2, p(Rs) = p(Rs) =4, p(Rs) =5, p(R7) =27 and0 I 3/2,
11311/3,31/2P,11/3,21510, 2 Ps 10as illustrated in Figure 1. Let(-) = fMean(.).
Consider the initial decision of

(({1},0),({2},1),({3},2),({4,5,6,7},10))

satisfying no-right-envyand right stability. The leftward adjustment of this initial
decision consists of four iterations of loop 3, as explained in Tables 1-4. The algorithm
yields

(({1,2},1/2),({3},2), ({4.5,6},13/3),({7},27)) .

The first iteration of loop 3ltis explained in Table 1 and yields the following decision:

(({1},0),({2},1), ({3,5,6},11/3),({4,7},31/2)).

In this process, neither loop 1 nor loop 2 is triggered as explained by blank cells in
rows 6 and 8 of Table 1.
The second iteration of loop: 3t is explained in Table 2 and starts with the decision
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Loop 3 #2 Community 1| Community 2 | Community 3 | Community 4
N o {1} 2} {3.5,6} {47}
Initial decision 0 1 11/3 31/2
Stage 1 C,=0 C={3 G, =0
Stage 2 1= {1}
g X, =0

C = {27 3}
Stage 3 f(éz) =3/2
Stages 4-5.1

Cé = {27 3}
Stage 5.2 X, = 3/2

i C3 = {57 6}
Stages 5.3-5.5 f(C3) =9/2
Cs ={4,5,6}
) » - (g
Stages 5.1-5.1. f(Cs) = 13/3
Stage 5.1
C;={4,5,6}
Stage 5.2 Xy =13/3
Stage 5.3
Cy={7}
Stage 6 Xy =27
I (2,3} {4,5,6} {7}

Stage 7 0 3/2 13/3 27

Table 2: The second iteration of loop 3 in Example 6.

obtained after the first iteration. It yields

(({1},0),({2,3},3/2), ({4,5,6},13/3), ({7},27)).-

Loop 2 is triggered once because 3 < E(: 4) as explained in rows 8-11. Loop 1 is
triggered within the first iteration of loop 2, which is explained in row 9.
The third iteration of loop 3lt is explained in Table 3 and yields

(({1,2},1/2),({3},2),({4,5,6},13/3), ({7},27)).

In this process, loop 2 is triggered twice in rows 8-10 first and rows 11-13 second.
However, loop 1 is not triggered as explained by blank cells in rows 6, 9, and 12.

The fourth iteration of loop 3lt is explained in Table 4 and starts with the decision
from the third iteration. Note that at this decision, no agent weakly prefers the location
for the left adjacent community to the location for his own community, which means
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Loop 3#3 Community 1 | Community 2| Community 3 | Community 4
" - {1} {2,3} {4,5,6} {7}
Initial Decision 0 3/2 13/3 27
Stage 1 C =1{2} C;=0 C,=0
Stage 2
Ci={12}
Stage 3 F(G) = 1/2
Stages 4-5.1
/
1= {1a 2}
Stage 5.2 X, = 1/2
. Co={3}
Stages 5.3-5.5 F(Gp) =2
Stage 5.1
/
> ={3}
Stage 5.2 X, = 2
_ C3 = {47 57 6}
Stage 5.3-5.5 F(Cs) = 13/3
Stage 5.1
Cé = {47 S5, 6}
Stage 5.2 X, = 13/3
Stage 5.3
/
2 =17}
Stage 6 X, = 27
{1,2} {3} {4,5,6} {7}
Stage 7 1/2 2 13/3 27

Table 3: The third iteration of loop 3 in Example 6.

| = 1. Thus this decision is the final outcome of the algorithm.

For each(R k) € 2, let LA (R k) be the set of alN /k-decisionsz = (C.,x)X_;

with no-overlap no-right-envy andright stability such that for eaclk = 1,--- |k,
xc = f(Rg,). Itis easy to show that for eacfR k) € 7, LA" (Rk) # 0> Using

any decision irLAf (R, k) as the initial decision in the leftward adjustment algorithm

and associating witl(nR, k) an outcome of the algorithm, we can defingedf-selection

SBarbea and Beva (2002) shows this by the following construction. If the number of peaks is

less thark, the proof is trivial. Supposg p(R) :i € N}| > k. Letr be the number of peaks ¢ k).

Denote peaks i{p(R) : i € N} in the increasing order bp; < --- < pr. Then we can partitiofN

into k communities(Cy,---,Cy) as follows:Ci = {i e N: p(R) = p1}, C2={i e N: p(R) = p2},

G ={ieN:p(R)=p1}, Ce={ieN:p(R) > p}. Letxy=pg, -, X1 = Pg_q, and
X = f(Re). Letz= (Ck,Xk)Ll- Every member in communitl; for eachk = 1,--- .k — 1, gets his
peak location and so both (4) and (5) hold. Sircsatisfiesefficiencyand each communiti-with

k <k—1has only one peak,(Rc,) = p« (= X«). Finally, no-overlapholds by construction af.
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Loop 3#4 Community 1| Community 2| Community 3| Community 4
Initial Decision 1/2 5 13/3 27
Stage 1 C=0 C=0 C,=0

{1,2} {3 {4,5,6} {7}
Stage 8 1/2 2 13/3 27

Table 4: The fourth iteration of loop 3 in Example 6. The algorithm stops at Stage 8 with the
final decision(({1,2},1/2),({3},2),({4,5,6},13/3) ,({7},27)).

consistensocial choice function.

Theorem 4. If f (-) is a single location function satisfyirefficiencyandparticipation
andy (-) is a selection function of the correspondehéé (-), then any social choice

function that maps each probleiR, k) € & into a decision obtained by the leftward

adjustment oty (R, k) satisfies botlefficiencyandconsistency

Proof. The result follows immediately from the definition of the leftward adjustment
algorithm and Propositions 1 and .

Note that the leftward adjustment algorithm treats agents “symmetrically”. Thus
using f(-) and (-) with the same symmetric treatment property, we can construct a
large family of social choice functions satisfying “anonymity” as weleffgciencyand
consistency

Proposition 2 and Theorem 4 improve Proposition 1 in Baxlzard Beva (2002)
by showing existence of a larger family sélf-selection consistefiinctions that can
be obtained through the leftward adjustment algorithm. We show that any selection
function g (-) of the correspondendeAf (-) can be used in the algorithm to obtain a
self-selection consistefunction, while Barbex and Bevéa (2002) use one specigll(-)
(decisions made by this function are explained in Footnote 5). Also by virtue of our
conditions forefficiencywe are able to give a formal proof that the leftward adjustment
algorithm leads to awefficientdecision. The proof of Proposition 1 in Barbeand
Bevia (2002) only shows that their construction leads to an outcome that sdtisfiés
efficiencyand no-envy which are necessary but not sufficient &ificiency To give
more explanation in this regard, let us return to Example 6 and explain how we modify
their construction.

In what follows, we use the same notation as used in the proof of Proposition 1 in
Barbea and Beva (2002). Their construction applied to Example 6 starts with the ini-
tial decision given bC! = {1}, x} = 0,C} = {2}, x5 = 1,C} = {3}, 4 = 2, andC} =
{4,5,6,7}, xt = 10. Since agent 6 in the fourth group prefes= 2 to x; = 10, there
is an envy an@€z = Cg-, U{5,6} (see p.272 of Barbarand Beva 2002; in this example,
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k=4andC,_1 =C3). Note thatf (Rc,) = 11/3 and there is no agent &4 whose peak
is betweend = 2 and f (Re,) = 11/3. Thus the process in lines 2-17 of p.272 is not
needed sozg_cg—csu{s 6} = {3,5,6}, x5 =11/3,C2 = {4,7}, x5 = 31/2. And
= {1}, x2 = 0,C3 = {2}, andx3 = 1. Then there isi0-envyand the process stops.

However, the outcomé({1},0),({2},1),({3,5,6},11/3),({4,7},31/2)) is not effi-
cientbecause moving agent 3 from community 3 to community 2 (notelthat1/3)
and changing the location for community 3 frdr/3 to 4 makes both agentsand6
better off without making anyone else worse off.

Therefore, there needs to be some change in their construction. The first change
we can think of is the following: instead of checking-envyas the stopping criterion,
we check what is in Stage 2 in our algorithm. Unfortunately, this does not resolve
the deficiency fully. To see this, let us continue with the above example. Since there
is an agent, agent 3, who feels indifferent between his location and the left location
(and agent 3 is the only such agent), we reiterate the whole process as incBamtler
Bevia (2002). Now we have to skt at the top of p.272 in their paper, to be equal to
3. Then we obtailC} = {1}, x} =0,C3 =C5U {3} = {2,3}, X3 = 3/2, C3 = {5,6},
X3 =9/2,C3 = {4,7}, andx; = 31/2. Again check the criterion in our Stage 2. The
last outcome does not pass the criterion and in fact in this case there is an envy (agent 4
prefers the location in community 3 to his own). So the next iteration starts. It yields
Ct={1},x§ =0,C3 = {2,3}, X3 = 3/2,C} = {4,5,6}, X3 = 13/3, C; = {7}, and
X; = 27. But note that < x3, in contradiction to the last sentence of the proof in
Barbeh and Beva (2002), that is,>(|j1 > xﬂ]’l forallhe {1,...,k}.... Thus there needs
to be some further change.

The change we made in this regard is that in our algorithm, we combine what
might have been two or more iterations in Badband Beva (2002) in one iteration
of loop 3 (loop 1 and loop 2 are within loop 3). This guarantees monotonic movement
of locations in every iteration as shown in Step 1 of the proof of Proposition 2 (so it
resolves the problem mentioned in the previous paragraph).

Our Proposition 2 shows, in addition, that the algorithm can be used with any initial
allocation satisfying the three properties;overlap no-right-envy andright stability.
This gives more power to the result.

A Proof of Proposition 2

In this section, we prove Proposition 2.
The following two lemmas in Barbarand Beva (2002) are useful.

Lemma 5 (Barbea and Beva 2002) Consider a single location functidnsatisfying
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participation andefficiency LetS S € .4 be two non-empty disjoint sets of agents.
LetRe #5°S andy e R. Ifforalli€ S p(R) <y, andforalf € S, f(Rs) < p(R) <y
andf(Rs) Ry, then for alli € S,

f(Rs,Rg) Ry andf(Rs) < f(Rs,Rg) <.

Lemma 6 (Barbea and Beva 2002) Consider a single location functidnsatisfying
participation andefficiency LetSe< .4 be a non-empty set of agents. et R be
suchthay < f(Rs). IfweletS ={i€S:yR f(Rg)},

f(Rs) < f(Rgg)-
Now we are ready to prove the proposition.

Proof of Proposition 2 LetN € .4, Re %N, andk € N. To simply our notation, for
eachSC N, let f (S) meanf (Rs). Similarly letp. (S) = p. (Rs), p* (S) = p* (Rs), and

b = p(R). Letz= (G, % )i_, be anN/k-decision satisfying the stated assumptions.
Let | be the maximum community index in Stage 1. The proof is trividl 4 1.
Suppose thdt> 1. ThenC = {i € C : x_1 R X} # 0. The proof is in five steps.

Step 1.Foreachk=1,... K, X < X, and ifk < K, X < X1-
Whenk < | — 2, the proof is trivial since is identical toz for these communities
andz satisfiesno-overlap

Substep 1.1x_1 < X _; <X.
For each € C/, sincex_1 R x andz satisfiemo-overlap thenx_1 < pi < x. By
Lemma 5,
-1 < F(G1UC) <x. (6)

LetG_1=C_1UG. Leti € G\C _1 be the agent who moves into community- 1)
in the first iteration of loop 1. Thep; < f(é|_1). By no-overlapatz x,_1 < p;. Thus
from (6), we get

x_1<pi < f(Goy) <X @)
Clearly, f(C,_1) P x. Sincei ¢ Cf, x B x_1 and sof (C;_1) R x_1. By participation,
f(G_1U{i}) R f(G_1). Thus,f(G_1U{i}) B x andf(G_1U{i}) B x_1. Therefore
f(C_1U{i}) is closer toi's peak locationp; thanx or x,_1, which together with (7)
implies

-1 < f(G_1U{i}) < x. (8)
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The same argument applies for each iteration of loop 1 and at the end of loop 1, we get

x-1< F(G_)(=%) <x. ()

Note thaty_; < X, when loop 1 is triggered.

Substep 1.2For eachk > |, xc < % and ifk < K, Xie < Xie1-

We only prove the statement far=1. The proof fork > | is the same. In what
follows, we assumé& < k but our proof covers the cage= K.

By no-overlapatzand Lemma 6,

x-1<x=f(G) < f(G\C). (10)

Leti € G\C/" be the agent who moves into community- 1) in the first iteration of
loop 1. Then
p < f(G2UG) <x < FG\G), (11)

where the second inequality follows from (6) and the third follows from (10). By
Lemma 6, after moving into community¢l — 1) from communityt, the location for
communityt moves to the right or stays constant, thatfi€; \C;) < f((G\C)\{i}).
Applying the same argument for each iteration of loop 1 with| — 1 (moving agents
from communityt to community{l — 1)), we obtainf(G\C/") < f(C), whereC, =
C\C/_;. Then from (11),

x < f(G\C) < F(G). (12)

Sincef(G) < p*(C) < p*(C) < x41 (the last inequality holds bgo-overlapat 2),

x < F(CG\G) < F(G) < X41. (13)

We now consider loop 1 wittk = | (moving agents from communitfl-+ 1) to
communityt). Leti € G, 1 be the agent who moves into communiitiyr the first round
of loop 1. Therp; < f(C;) and byno-overlapatz, x; < p;. Thusx < pi < f(§) < X ;1.
By participation, f(C U{i}) R f(C). By definition ofl in Stage 1x.,1 P x. Then
f(C) B x41 P x. Thereforex, < f(G U{i}) < f(C) < x41. Applying the same

argument for each iteration of loop 1, we finally gek f(C) =X < Xj41.

Step 2 DecisionZ obtained after each iteration of loop 3 satisﬁiesgverlap

We show thak) < p. (C;), p*(C;_,) <X, and foreacke {2,...,k—1}, p*(C_;) <
X < P«(C,1). Fork <1 —1, the statement follows directly fromo-overlapat z be-
cause loop 3 does not change anything for these communities.

Substep 2.1For eachk € {I —1,...,k—1}, X, < P«(Ciiq)-
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We only consider the case=| — 1 and skip the same arguments for other cases.
For each € G =C/\C/_,, X_, < pi because otherwise loop 1 fiee=| — 1 should not
have ended & , andx_,. Hence

X_1 < p.(C). (14)

Leti € G 1 be the agent who moves into communitithe first iteration of loop 1. If
pi <X_q, thenp <x_; <x by Step 1 and sbe C ;1 prefersx to x 41, contradicting
definition ofl in Stage 1. Hencg ,; < pi. Combining this with (14)x_; < p.(C U
{i}). Applying the same argument for each iteration of loop 1, we showxthat<
P«(C).

Substep 2.2For eachk € {I —2,...,k—1}, p*(C}) < X 1-

We only consider the cade= | — 1 and skip the same arguments for other cases.
Note that each iteration of loop 1 for eakldoes not change the maximal peak for
communityk. Thusp*(C/_,;) = p*(G_1UC"). By no-overlapat z and the definition
of G, p"(C_1UC) < x. By Step 1x < x. Thereforep*(C[_;) <X.

Step 3.Foreachk > 2 and each e C|_,,X_; R X.

Fork <1 —1, the result follows directly from the condition ofo-right-envyat z
stated in (4). We consider below only the c&se |. The same argument can be used
for eachk > 14+ 1. Leti € C[_; be such thap; < x_;. Sincex_; <X, X_; R X.
Leti € C[_, be such thap; > x_;. If i € G_;NC_1, then by (4)x_1 R x. By no-
overlapatz, p; < x. Sincex_1 <X _, andx < X, as shownin Step 1, angl ; < x,
thenx_; R x. If ieC_;\C_1,i€C orié¢C. Inthe former casex_1 R X
and so using the same argument as above, we showR x. In the latter case,
suppose thatis the person who moves into community- 1) in the first iteration of
loop 1. Thenf(C_1UC) is the location right before moves. And if we lety, =
min{y: ylhf(G_1UC)} for all h e G with p < f(G_1UC), theny; <yp forallhe
G with py, < f(G_1UC") (see the condition in Stage 5.1.1). Sincedayticipation
i should be weakly better off after moving, the new location for commuftityd),
denoted by _1, should be irfy;, f (C,_1UC/")]. Note that for each € G, if ph <X _1,
thenh is a person withp, < f(C_1 UC/") (recall that among these persomndyas
the lowestyy, value), which impliesy; < yn. Thusy; < pn (otherwise,yn < pn < Vi,
contradictingy; < ;). Leth be the person who moves into community- 1) in the
second iteration of loop 1. Then using the same argument as above we can show that
the location afteh moves, should be ifyn,%_1] C [yi, f(C_1 UC)]. Similarly, after
each iteration of loop 1, we get a location for commuriity-1) in [y;, f(C_1 UC/)].
Hencex ; € [yi, f(Ci_1 UC/")]. Therefore ; R f(C_1UC/) R x R X, where
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the second and the third relations follow frgin< f(C,_1UC") <X < x. The same
argument can be used for every other agent who moves into comniurity} in
loop 1.

Step 4.For eactk < k— 1, there isj € C|, such thatx, Pj X, 1 andx < pj.

Fork <1 —2, this follows from the condition ofight stability at z stated in (5),
andx_1 < x_; shown in Step 1. Lek=1—1. There are two case$,_; =X_;
orx_1 < X_,. Inthe former case, we simply use (5) and< x| to show existence
of j € Gi_1 with the two desired properties. Consider the latter case< x{_;. If
there isj € C_1 with p; > x/_,, this is a person we are looking for because by (4)
andx_1 < X_,, we havex_; P, x_1 Rj X Rj X|. Suppose that there is noc C;_;
with pj > x_;. Then byefficiencyof f, there isj € G with p; > x ;. And since
X—1 < X_4, then by definition o (notex_1 Rj ), X_; P} xi—1 Rj X Rj X{.

Now considerk = I. If x = ], the result follows immediately from the condition
of right stability at z in (5), andx ;1 < X, as shown in Step 1. Suppoze< X.
Sincep*(C) = p*(C/), then for eachj € G, NCf with p; = p*(C/) = p*(C), we have
X <X < pj<Xi1<X,.,andsox Pjx Rjx41 Rj X4, where the second relation
holds by (4). The same argument applies for all otherl.

Step 5.We now complete our proof. Each iteration of loop 3 moves at least one
agent (in fact all agents iG;") from one community into the left adjacent community.
Since there is only a finite number of agents, this process must end after a finite number
of iterations. And after the last iteration, for edch {2, - -- ,E}, C; = 0, which means
that for eachk € {2, -- ,E} and each € Cy, xx B xx_1. This property together with
(4) and (5) shown by Steps 1-4 imply thAtpasses theeighbor test Therefore, by
Theorem 27 satisfiesefficiency
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