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1 Introduction

Barber̀a and Bevía (2002, 2005) introduce a notion of consistency between a global
decision governing community-wise consumptions and local decisions by individual
communities. They consider a simple model of community division and location of
(local) public facilities.1 A location is chosen from a real line. Members of a commu-
nity have single-peaked preferences over the line and the size of the community does
not affect members’ welfare (no congestion effect). Given a set of agents, their prefer-
ences, and a fixed number of communities to form, asocial choice functiondetermines
a community division and locations of public facilities for individual communities.
The function isefficientif its decision does not allow any further welfare enhancement
(making all agents weakly better off and at least one better off). It isconsistentif any
local component (a community and the location of public facility for this community)
of its global decision coincides with the local decision made by applying the function
for this community only.

We offer simple necessary and sufficient conditions forefficiencyand decentral-
izability of efficientdecisionsà la the first and the second welfare theorems. Next,
building on a constructive argument used by Barberà and Bevía (2002) in their proof
of Proposition 1, we define an algorithm that can be used to designefficientandcon-

sistentcollective decision functions.
Our conditions forefficiencyare composed of the following four axioms:no-envy

(everyone weakly prefers the location in his own community to the location in any
other community),local stability(there is no community where some members volun-
tarily move out and all remaining members agree on relocating their facility), and two
diversity conditions,location diversityandcommunity diversity.

The decentralizability result is obtained, using strong Nash equilibrium, in a game
of community division and local public goods provision, similar to the game consid-
ered by Konishi, Le Breton, and Weber (1997a, 1997b).2 Our conditions forefficiency

play a critical role in proving this decentralizability result and existence ofefficientand
consistentcollective decision functions.

The rest of the paper is organized as follows. We define our model and basic
concepts in Section 2. In Section 3, we offer necessary and sufficient conditions for

1A simpler model of locating two public facilities is studied by Miyagawa (2001) and Ehlers (2002,
2003).

2As in Konishi, Le Breton, and Weber (1997a, 1997b), players are partitioned into communities each
of which consists of players with the same strategy choice. However, our model differs crucially from
theirs in that there is no externality or rivalry and the number of communities that can form is exogenous.
Considering this game, we study the relationship between efficient decisions and strong Nash equilibria,
while the main objective of Konishi, Le Breton, and Weber (1997a, 1997b) is to study conditions for
existence of strong Nash equilibria in a more general environment than ours.

1



efficiency(Section 3.1), and decentralizability ofefficientdecisions (Section 3.2). In
Section 4, we show existence ofefficientand consistentfunctions. Proofs of some
results are provided in the appendix.

2 The Model and Basic Concepts

We consider the following collective decision problem. There is a set of agents. These
agents have to be divided into a fixed number of subsets, calledcommunities, and for
each of these communities, alocation for a local public facility has to be decided.
A location is represented by a real number and the real lineR is the set of possible
locations. We consider these problems in a variable population environment and use
natural numbers inN to label agents. LetP⊆ N be the set of potential agents. Apop-

ulation is a finite subset ofP. Let N be the set of all populations. Given a population
N ∈N and a number of communities̄k ∈ N with k̄≤ |N|, let Π

(
N, k̄

)
be the set of

profiles ofk̄-subsets,(C1, · · · ,Ck̄), which constitute a partition ofN. An N/k̄-decision

is a list of k̄-communities,(C1, · · · ,Ck̄) ∈Π(N, k̄), and the locations of public facilities
for these communities,(x1, · · · ,xk̄) ∈ (R∪{ν})k̄, whereν means “no location (or no
public facility)”. Let Z

(
N, k̄

)
be the set ofN/k̄-decisions. For eachN/k̄-decisionz

and eachk = 1, · · · , k̄, let zk ≡ (Ck,xk) be the pair of community-k and the location for
community-k. For simplicity, eachN/k̄-decisionz∈ Z(N, k̄) is labeled in such a way
thatx1≤ x2≤ ·· · ≤ xk̄. LetZ

(
k̄
)≡∪N∈N Z

(
N, k̄

)
andZ≡∪k̄∈NZ(k̄). In what follows,

we use indicesh, i, j for agents and indicesk, l ,m for communities. Components ofz

andz′ are denoted byzk = (Ck,xk) andz′k = (C′k,x
′
k) respectively for allk = 1, . . . , k̄.

Each agent has a preference relation overZ. We assume that each agent cares
about only the location of the public facility for the community he belongs to: that is,
for all z,z′ ∈ Z, if i ∈Ck, i ∈C′l , andxk = x′l , thenz andz′ are indifferent fori. Thus in
our model, agents have no preference over community members or community sizes.
Under this assumption, preferences overZ can be described as preferences over the set
of locationsR∪{ν}. The generic notation for a preference relation for agenti is Ri .
The strict and the indifferent counterparts ofRi are denoted byPi andIi respectively.
For eachx,x′ ∈ R∪{ν}, we writex Pi x′ when agenti prefersx to x′; x Ii x′ when the
two are indifferent;x Ri x′ whenx Pi x′ or x Ii x′.

Furthermore, we assume that each agenti has asingle-peaked preference relation

Ri overR∪{ν}, that is, there is thepeak locationp(Ri)∈R such that for eachx,x′ ∈R,
if x′ < x≤ p(Ri) or p(Ri)≤ x < x′, x Pi x′, and that for eachx∈ R, x Pi ν (thus having
a local public facility wherever it is located is better than not having one). LetR be
the set of single-peaked preferences. For eachN ∈N , let RN be the set of profiles of
single-peaked preferences of agents inN.
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For each populationN ∈ N , a problemfor N is characterized by a list of pref-
erences of agents inN, R∈ RN, and a number of communities to form,k̄ ∈ N with
k̄≤ |N|. LetDN ⊆RN×N be the set of all these problems forN. LetD ≡∪N∈N DN.
A social choice functionϕ : D →Z maps each problem(R, k̄)∈D with populationN∈
N into an N/k̄-decision, that is,ϕ

(
R, k̄

) ∈ Z
(
N, k̄

)
. Each social choice function

ϕ can be described by two component functionsϕC : D → ∪k̄∈N,N∈N Π
(
N, k̄

)
and

ϕL : D →∪k̄∈NRk̄ such that for eachN ∈N and each
(
R, k̄

) ∈RN×N, ϕC(R, k̄) is
the list of k̄-communities inϕ(R, k̄) andϕL

(
R, k̄

)
is the list ofk̄-locations inϕ

(
R, k̄

)
.

We now state two main axioms of social choice functions, which are crucial in
this paper. GivenN ∈N , k̄ ∈ N, andR∈ RN, anN/k̄-decisionz≡ (Ck,xk)

k̄
k=1 is a

Pareto improvementof anotherN/k̄-decisionz′ ≡ (
C′k,x

′
k

)k̄
k=1 atR, if all agents weakly

preferz to z′ and at least one agent prefersz to z′: that is, for eachi ∈ N and each
k, l = 1, · · · , k̄ with i ∈Ck∩C′l , xk Ri xl , and for somej ∈ N andm,n = 1, · · · , k̄ with
j ∈Cm∩C′n, xm Pi xn. An N/k̄-decision isefficientif there is no Pareto improvement
of the decision.

Efficiency. For eachN ∈ N , eachR∈ RN, and each̄k ∈ N, there is no Pareto im-
provement ofϕ(R, k̄) atR.

The next axiom introduced by Barberà and Bevía (2002) is a basic consistency re-
quirement between (global) decisions for the whole population and local decisions for
individual communities. Suppose that after anN/k̄-decision is made, each commu-
nity can reassess its own location. The next axiom says that the originalN/k̄-decision
should remain intact after the community-wise reassessment.

Consistency. For eachN ∈ N , each
(
R, k̄

) ∈ RN ×N, and eachk ∈ {1, · · · , k̄},
ϕk

(
R, k̄

)
= ϕ(RCk,1), whereCk denotes community-k in ϕ

(
R, k̄

)
.

A social choice function satisfiesself-selection consistency(Barber̀a and Bevía 2002)
if it satisfies bothefficiencyandconsistency.

3 Efficiency

3.1 Conditions for Efficiency

In this section, we identify necessary and sufficient conditions forefficiency.
As pointed out by Barberà and Bevía (2002), the following are two necessary con-

ditions forefficiency. To define them, we use the following notation. For eachN ∈N ,
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eachR∈RN, and eachS⊆ N, let RS≡ (Ri)i∈S. And let

p∗ (RS)≡min{p(Ri) : i ∈ S} ; p∗ (RS)≡max{p(Ri) : i ∈ S} ; P(RS)≡ [p∗ (RS) , p∗ (RS)] .

We callP(RS) the local Pareto setfor communitySwith RS.
For eachN ∈N and each

(
R, k̄

) ∈ DN, anN/k̄-decisionz≡ (Ck,xk)
k̄
k=1 satisfies

no-envyif for eachk = 1, · · · , k̄, eachi ∈Ck, and eachl = 1, · · · , k̄, xk Ri xl . It satisfies
local efficiencyif for eachk∈ {1, · · · , k̄}, xk ∈ P(RCk). The two conditions are not suf-
ficient forefficiency. This is shown by the three examples below. These examples will
also provide us some insight into what additional conditions are needed forefficiency.

Example 1. Let N≡ {1,2,3} andk̄≡ 2. Let R∈RN be a profile such thatp(R1) = 1,
p(R2) = 2, p(R3) = 3, and1.5 I2 3. Consider theN/k̄-decisionz≡ ((C1,x1) ,(C2,x2))
defined as follows:C1 ≡ {1,2}, C2 ≡ {3}, x1 ≡ 1.5, andx2 ≡ 3. Then if we move
agent2 into community-2 and change the location for community-1 to x′1≡ 1, agent1
is better off and agents2 and3 are indifferent. Therefore,z is notefficient.

The Pareto improvement ofz in the example is possible because for a community
(community 2 in the example), the location is not between the peaks of members for
whom it is thepreferred location among all locations inz. Such Pareto improvement
does not exist ifz satisfies the next condition.

For eachN/k̄-decisionz≡ (Ck,xk)
k̄
k=1, eachR∈RN, and eachk∈ {1, · · · , k̄}, let

C0
k (R,z)≡ {i ∈Ck : for eachl = 1, · · · , k̄, if xl 6= xk, xk Pi xl}

be the set of members of community-k who prefer the location for this community
to any different location for other communities. Note that for eachi ∈ Ck\C0

k (R,z),
xk 6= p(Ri) and there isl 6= k such thatxl 6= xk andxl Ri xk. Thus if xk 6∈ P(RC0

k(R,z)),

then moving all agents inCk\C0
k (R,z) to other communities they weakly prefer and

changing the location for community-k to the closest location inP(RC0
k(R,z)) improves

welfare of all remaining members in community-k without hurting anyone else. The
next axiom guarantees that there be no such Pareto improvement. AnN/k̄-decisionz

satisfieslocal stability if for eachk = 1, · · · , k̄, xk ∈ P(RC0
k(R,z)). Clearly, this axiom

implies local efficiencybut the converse does not hold as shown by Example 1. The
next example shows that the combination ofno-envyandlocal stabilityis not sufficient
for efficiency.

Example 2. Let N≡ {1,2,3,4} andk̄ = 2. Let R∈RN be a profile such thatp(R1) =
1, p(R2) = p(R3) = 2, andp(R4) = 3. Let z≡ ((C1,x1) ,(C2,x2)) be theN/k̄-decision
defined as follows:C1 ≡ {1,2}, x1 ≡ 2, C2 ≡ {3,4}, andx2 ≡ 2. Note thatz satis-
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fies bothno-envyand local stability. However,z violatesefficiencybecause there is
a Pareto improvementz′ ≡ ((C′1,x

′
1),(C

′
2,x

′
2)) defined as follows:C′1 ≡ {1}, x′1 ≡ 1,

C′2≡ {2,3,4}, andx′2≡ 2.

TheN/k̄-decisionz in Example 2 admits a Pareto improvement because there is a
community (community-1 in the example) with more than one peaks of the members
and its location is identical to the location for another community (community-2 in the
example). Then by diversifying locations and regrouping communities, we can achieve
a Pareto improvement. Community-k in N/k̄-decisionz≡ (Ck,xk)

k̄
k=1 is homogeneous

if all members have the same peak, that is,P
(
RCk

)
is a singleton. It isheterogeneousif

it is not homogeneous. AnN/k̄-decisionz≡ (Ck,xk)
k̄
k=1 satisfieslocation diversity, if

whenever there exists a heterogeneous community, say,k∈ {1, · · · , k̄}, in z, its location
xk differs from the location for any other community. There are situations where pick-
ing the same location for different communities is inevitable: for example, when all
agents have the same peak but they are to be divided into more than one communities.
Location diversity, then, has no bite.

Adding location diversityto no-envyandlocal stability, however, is not sufficient
for efficiencyas the next example shows.

Example 3. Let N≡ {1,2,3,4} andk̄≡ 3. Let R∈RN be a profile such thatp(R1) =
1, p(R2) = 2, and p(R3) = p(R4) = 3. Let z≡ (Ck,xk)

3
k=1 be defined as follows:

C1 = {1,2}, C2 = {3} , C3 = {4} . x1 ≡ 1, x2 = x3 ≡ 3. Note thatz satisfiesno-envy,
local stability, and location diversity. However,z violatesefficiencybecause there
is a Pareto improvementz′ ≡ (C′k,x

′
k)

3
k=1 defined as follows:C′1 = {1}, C′2 = {2},

C′3 = {3,4}, x′1 = 1, x′2 = 2, andx′3 = 3.

TheN/k̄-decisionz in Example 3 admits a Pareto improvement because there is a
heterogeneous community (community-1 in the example) and at the same time, there
are two other homogeneous communities with the same peaks (communities2 and3
in the example). Then after diversifying communities by combining members of the
two homogeneous communities inz and partitioning the heterogeneous community
into two, we can achieve a Pareto improvement. Thus we need the following condi-
tion. An N/k̄-decisionz≡ (Ck,xk)

k̄
k=1 satisfiescommunity diversity, if whenever there

is a heterogeneous community, there are no two other homogeneous communities with
the same peak of their members, that is, for each pair of distinct homogeneous com-
munitiesk, l ∈ {1, . . . , k̄}, P(RCk) 6= P(RCl ). When a decision satisfies bothlocation

diversityandcommunity diversity, we say that it satisfiesdiversity.
Adding community diversityto the three conditions above, we finally get a nec-

essary and sufficient condition forefficiencywhich is shown in our first result. The
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following lemmas are used in proving this result.
Throughout the lemmas, we fixN ∈N , k̄∈ N, andR∈RN and assumēk≥ 2.

Lemma 1. If an N/k̄-decisionz≡ (Ck,xk)
k̄
k=1 satisfiesno-envy, local efficiency, and

location diversityatR, then

p∗ (RC1)≤ ·· · ≤ p∗(RCk̄
) andp∗ (RC1)≤ ·· · ≤ p∗(RCk̄

).

Proof. To showp∗ (RC1) ≤ ·· · ≤ p∗(RCk̄
), let k ∈ {1, · · · , k̄−1}. Suppose, by contra-

diction, p∗
(
RCk

)
> p∗

(
RCk+1

)
. By local efficiency, xk ∈ P

(
RCk

)
andxk+1 ∈ P

(
RCk+1

)
.

Sincexk ≤ xk+1, then p∗
(
RCk+1

)
< xk+1 and [p∗

(
RCk+1

)
,xk+1] ⊆ P

(
RCk+1

)
. Hence

P
(
RCk+1

)
is not a singleton. Therefore, bylocation diversity, xk < xk+1. Thenp∗(RCk+1)≤

xk < xk+1. Hence, each agenti ∈Ck+1 with p(Ri)≤ xk prefersxk to xk+1, contradicting
no-envy.The same argument can be used to prove the second inequalities.

Lemma 2. If an N/k̄-decisionz≡ (Ck,xk)
k̄
k=1 satisfiesno-envy, local efficiency, and

location diversityat R, thenx1 ≤ p∗(RC2), p∗(Rk̄−1) ≤ xk̄, and for allk with 2≤ k≤
k̄−1, (i) p∗

(
RCk−1

) ≤ xk ≤ p∗(RCk+1); (ii) if P
(
RCk

)
is not a singleton,p∗

(
RCk−1

)
<

xk < p∗
(
RCk+1

)
; (iii) if P

(
RCk−1

)
is not a singleton,p∗

(
RCk−1

)
< xk; (iv) if P

(
RCk+1

)

is not a singleton,xk < p∗
(
RCk+1

)
; (v) if P

(
RCk

)
is a singleton andP

(
RCk−1

)
is not a

singleton, thenxk = p∗
(
RCk

)
= p∗

(
RCk

)
andxk−1≤ p∗

(
RCk−1

)
< xk.

Proof. We first show that for eachk≥ 2, p∗(RCk−1) ≤ xk. Suppose, by contradiction,
xk < p∗(RCk−1). Then there existsi ∈Ck−1 such thatxk < p(Ri). Since bylocal effi-

ciencyand Lemma 1, xk ∈ P(RCk) andxk < p∗(RCk−1) ≤ p∗(RCk), thenP(RCk) is not
a singleton. Then bylocation diversity,xk−1 < xk. Hence agenti prefersxk to xk−1,

contradictingno-envy. Similarly, we show that for eachk ≤ k̄− 1, xk ≤ p∗(RCk+1).
This proves the first two inequalities and part (i). Parts (ii)-(v) are obtained easily from
part (i),no-envy, andlocation diversity.

Lemma 3. Let z≡ (Ck,xk)
k̄
k=1 be anN/k̄-decision satisfyingno-envy, local efficiency,

anddiversityat R. If there exists at least one heterogeneous community inz, then all
locations are strictly ordered, that is,x1 < x2 < · · ·< xk̄.

Proof. Let k∈ {1, . . . , k̄−1}. If at least one ofP
(
RCk

)
andP

(
RCk+1

)
is not a singleton,

then by Lemma 2 andlocal efficiency,xk < xk+1. Suppose bothP
(
RCk

)
andP

(
RCk+1

)

are singleton. Bylocal efficiency, P
(
RCk

)
= {xk} andP

(
RCk+1

)
= {xk+1}. Then by

community diversity, P
(
RCk

) 6= P
(
RCk+1

)
. Soxk 6= xk+1. Thereforexk < xk+1.

Lemma 4. Let z≡ (Ck,xk)
k̄
k=1 be anN/k̄-decision satisfyingno-envy, local stability,

anddiversityatR. Assume that all locations inzare strictly ordered.
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(i) If z′ ≡ (
C′k,x

′
k

)k̄
k=1 is anotherN/k̄-decision such that for somel0 ∈ {1, . . . , k̄−1},

x′l0 < xl0 and for eachi ∈ Cl0, z′ Ri z, then there existl1 > l0 and j1 ∈ Cl0 such that
j1 ∈C′l1 andx′l1 < xl1.

(ii) If z′ ≡ (
C′k,x

′
k

)k̄
k=1 is anotherN/k̄-decision such that for somel0 ∈ {2, . . . , k̄}, xl0 <

x′l0 and for eachi ∈Cl0, z′ Ri z, then there existl1 < l0 and j1 ∈Cl0 such thatj1 ∈C′l1
andxl1 < x′l1.

Proof. By local stability, there existsj1 ∈ Cl0 such thatxl0 ≤ p
(
Rj1

)
and for each

m∈ {1, · · · , k̄}, if xm 6= xl , thenxl0 Pj1 xm. Since all locations inz are strictly ordered,
then for eachm 6= l0, xl0 Pj1 xm. For eachm≤ l0, sincex′m≤ x′l0 < xl0 ≤ p

(
Rj1

)
, thenxl0

Pj1 x′m. Since j1∈Cl0 andz′ Rj1 z, then for eachm≤ l0, j1 /∈C′m. Therefore sincel0 < k̄,

there existsl1 > l0 such thatj1 ∈C′l1. Sincel1 > l0 and j1 ∈Cl0, then by Lemma 2,
p
(
Rj1

) ≤ xl1. Sincex′l1 Rj1 xl0 andxl0 Pj1 xl1, thenx′l1 < xl1. This completes the proof
of part (i). The proof of part (ii) is similar.

Now we are ready to show the first result.

Theorem 1. A decision isefficientif and only if it satisfiesno-envy, local stability,
location diversity, andcommunity diversity. And the four axioms are independent.

Proof. It is easy to prove thatefficiencyimplies the four axioms, and so we omit this
part. In what follows, we prove the converse. Throughout the proof, we fixN ∈N ,
k̄ ∈ N, andR∈RN. Let z≡ (Ck,xk)

k̄
k=1 be anN/k̄-decision satisfyingno-envy, local

stability, anddiversity. Suppose by contradiction that there exists a Pareto improve-

ment ofz, z′ ≡ (
C′k,x

′
k

)k̄
k=1. Let i ∈ N be an agent who prefersz′ to z. Let k andl0 be

such thati ∈Ck andi ∈C′l0. Thenxk 6= p(Ri) andP
(
RCk

)
is not a singleton. Then by

Lemma 3, locations inz are strictly ordered, that is,

x1 < · · ·< xk̄. (1)

Assumep(Ri) < xk (the symmetric argument applies forxk < p(Ri)). We derive a
contradiction for each of the following two cases.

Case 1.l0≥ k. Sincex′l0 Pi xk andp(Ri) < xk, thenx′l0 < xk. Sincel0≥ k, xk ≤ xl0.
Hencex′l0 < xl0. Sincek̄ is finite, then the iterative application of part (i) of Lemma 4
leads tox′̄

k
< xk̄. By local stability, there existsh ∈Ck̄ such thatp(Rh) ≥ xk̄ and for

eachm≤ k̄, if xm 6= xk̄, thenxk̄ Ph xm. Hence by (1), for eachm 6= k̄, xk̄ Ph xm. For each
m≤ k̄, sincex′m≤ x′̄

k
< xk̄≤ p(Rh), thenxk̄ Ph x′m, contradicting the initial assumption.

Case 2. l0 < k. Since i ∈ Ck∩C′l0 andz′i Pi zi , thenx′l0 Pi xk. By no-envy, xk Ri

xl0. Since by (1), xl0 < xk andp(Ri) < xk, thenxl0 < p(Ri). Therefore sincex′l0 Pi xl0,
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xl0 < x′l0. Sincek̄ is finite, then the iterative application of part (ii) of Lemma 4 leads to
x1 < x′1. By local stability, there existsh∈C1 such thatp(Rh)≤ x1 and for eachm≤ k̄,
if xm 6= x1, thenx1 Ph xm. Hence by (1), for eachm 6= 1, x1 Ph xm. For eachm≤ k̄, since
x′m≥ x′1 > x1≥ p(Rh), thenx1 Ph x′m, contradicting the initial assumption.

Finally, independence of the four axioms is shown by the above three Examples 1-3
and Example 4 below.

Example 4. Let N ≡ {1, · · · ,5} and k̄≡ 3. Let R be a profile such thatp(R1) = 0,
p(R2) = 2, p(R3) = p(R4) = 3, andp(R5) = 4. Letz≡ (Ck,xk)3

k=1 be theN/k̄-decision
defined as follows:C1 ≡ {1}, C2 ≡ {2,3}, C3 ≡ {3,4}, x1 ≡ 0, x2 ≡ 3, andx3 ≡ 4.

Thenz satisfieslocal stabilityanddiversity.Howeverz violatesno-envy.

Theorem 1 enables us to checkefficiencyby testing the four elementary condi-
tions,no-envy, local stability, location diversity, andcommunity diversity. Checking
efficiencycan be simplified even further by using the following test.

Neighbor Test. For eachN ∈ N , eachk̄ ∈ N, and eachR ∈ RN, N/k̄-decision
z≡ (Ck,xk)

k̄
k=1 passes theneighbor testif it satisfies the following conditions. If

|{p(Ri) : i ∈ N}| ≤ k̄, then for eachk = 1, · · · , k̄ and eachi ∈ Ck, xk = p(Ri). If
|{p(Ri) : i ∈ N}|> k̄, then
(i) No overlap: For eachk≥ 2, p∗

(
RCk−1

)
< xk, and for eachk≤ k̄−1, xk < p∗(RCk+1);

(ii) Neighbor no-envy: For eachk with 2≤ k≤ k̄−1, xk∈
⋂

i∈Ck
Max[Ri ,{xk−1,xk,xk+1}],

x1∈
⋂

i∈C1
Max[Ri ,{x1,x2}], andxk̄∈

⋂
i∈Ck̄

Max[Ri ,{xk̄−1,xk̄}], where for eachX⊆R,
Max[Ri ,X] is the set of allRi-maximal elements inX;
(iii) Neighbor stability: For eachk∈ {1, · · · , k̄}, there existi, j ∈Ck such thatp(Ri)≤
xk ≤ p

(
Rj

)
, xk Pi xk−1, andxk Pj xk+1.

Theorem 2. A decision isefficientif and only if it passes theneighbor test.

Proof. Throughout the proof, we fixN∈N , k̄∈N, andR∈RN and consider the non-
trivial case|{p(Ri) : i ∈N}|> k̄. Let z≡ (Ck,xk)

k̄
k=1 be anefficientN/k̄-decision atR.

Then by Theorem 1,zsatisfiesno-envy, local stability, anddiversity. By Lemma 2-(i),
xk ≤ p∗(RCk+1). Supposexk = p∗(RCk+1). Note that by Lemma 3,xk < xk+1. Thus by
no-envy, xk < p∗(RCk+1). Similarly, we provep∗(RCk−1) < xk. Neighbor no-envyand
neighbor stabilityfollow directly fromno-envyandlocal stability.

To prove the converse, letz≡ (Ck,xk)
k̄
k=1 be anN/k̄-decision passing theneighbor

test.Note that byno-overlap,

x1 < x2 < · · ·< xk̄. (2)

8



This implieslocation diversityandcommunity diversity.To showno-envy, letk be such
that2≤ k≤ k̄−1. Let i ∈Ck. By no-overlap, xk−1 < p∗(Rk) ≤ p(Ri) . Therefore for
all l ≤ k−1, sincexl ≤ xk−1 andxk Ri xk−1 by neighbor no-envy, thenxk Ri xl . Also by
no-overlap, p(Ri)≤ p∗(Rk) < xk+1. For all l ≥ k+1, sincexl ≥ xk+1 andxk Ri xk+1 by
neighbor no-envy, thenxk Ri xl . Applying the same argument fork = 1 andk = k̄, we
show thatz satisfiesno-envy. For eachk = 1, · · · , k̄, by neighbor stability, there exist
i, j ∈Ck such thatp(Ri) ≤ xk ≤ p

(
Rj

)
, xk Pi xk−1, andxk Pj xk+1. Then by (2), for

eachl 6= k, xk Pi xl andxk Pj xl . Thereforei, j ∈Co
k(R,z). Sincep(Ri)≤ xk ≤ p

(
Rj

)
,

xk ∈ P(RCo
k(R,z)). Hencez satisfieslocal stability. Therefore, by Theorem 1,z satisfies

efficiency.

Whenk̄ = 2, theneighbor testreduces to a substantially simpler condition as stated
in Miyagawa (2001).

3.2 The Game of Community Division and Location

In this section, we consider a simple game similar to the local public good provision
game considered by Konishi, Le Breton, and Weber (1998).

Definition 1 (The Game of Community Division and Location). Given a set of agents
N ∈N and a required number of communitiesk̄∈ N, let G be a game form with the
following strategy sets and the outcome function. For eachi ∈ N, let Si ≡ R be i’s
strategy set with generic elementsi , interpreted asi’s proposal for the location of the
local public facility in his community. LetS≡ ×i∈NSi be the set of strategy profiles
with generic elements. When the total number of locations proposed by agents ats

is less than or equal to the required levelk̄, agents with the same proposals constitute
communities and locations are determined by their proposals. Otherwise, communities
are formed in the same way but no public facility can be provided for any community.
Formally, letg: S→ Z be the outcome function defined as follows: for each strategy
profiles≡ (si)i∈N,
(i) if k(s)≡ |{si : i ∈ N}| ≤ k̄, let g(s) be the decision(Ck,xk)

k(s)
k=1 such that{Ck}k(s)

k=1 is
a partition ofN and for eachk = 1, · · · ,k(s) , Ck ≡ {i ∈ N : si = xk},
(ii) if k(s)≡ |{si : i ∈ N}|> k̄, let g(s) be the decision(Ck,ν)k(s)

k=1 such that{Ck}k(s)
k=1 is

a partition ofN and for eachk = 1, · · · ,k(s) , Ck ≡ {i ∈ N : si = xk}.
A strategy profiles∈ S is a strong Nash equilibriumin (G,R), if there exist no

T ⊆ N and s′T ∈ ST such that for eachi ∈ T, g(s′T ,s−T) Ri g(s) and for somej ∈
T, g(s′T ,s−T) Pj g(s).3 The next result is that the set ofefficientdecisions can be

3The definition is from Moulin (1994). Aumann (1959) introduces a weaker version of strong Nash
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implemented in strong Nash equilibrium by this game formG. Theorem 1 plays a
crucial role in proving this result.

Theorem 3. Let N ∈N andk̄∈ N. For eachR∈RN, anN/k̄-decision isefficientif
and only if it is a strong Nash equilibrium outcome of the game of community division
and location.

Proof. Let R∈RN andk̄∈ N be given. By definition, every strong Nash equilibrium
outcome isefficient. In order to prove the converse, letz≡ (Ck,xk)

k̄
k=1 be anefficient

N/k̄-decision. Then by Theorem 1,z satisfiesno-envy, local stability, anddiversity.
Let s be such that for eachk ∈ {1, · · · , k̄} and eachi ∈Ck, si ≡ xk. We only have to
show thats is a strong Nash equilibrium. When|{p(Ri) : i ∈N}| ≤ k̄, every agent gets
his peak location and sos is, clearly, a strong Nash equilibrium. Assume that|{p(Ri) :
i ∈ N}| > k̄. Then there exists a heterogeneous community. Hence by Lemma 3,
x1 < x2 < · · · < xk̄. Suppose by contradiction that there existT ⊆ N ands′T such that
for all i ∈ T, g(s′T ,s−T) Ri z and for somej ∈ T, g(s′T ,s−T) Pj z. Let z′ ≡ g(s′T ,s−T).
Sinceν is the worst outcome for everyone,

∣∣{s′i : i ∈ T}∪{sj : j ∈ N\T}
∣∣≤ k̄. (3)

For eachk∈ {1, · · · , k̄}, let Tk ≡ T ∩Ck.

Claim 1. There existsk∈ {1, · · · , k̄} such thatTk = Ck.

Proof. Suppose by contradiction that for eachk ∈ {1, · · · , k̄}, Tk 6= Ck. Then|{s′i :
i ∈ T}∪ {sj : j ∈ N\T}| ≥ k̄. Therefore, by (3),|{s′i : i ∈ T}∪ {sj : j ∈ N\T}| = k̄.

Then{s′i : i ∈ T}∪{sj : j ∈ N\T}= {x1, · · · ,xk̄}. Therefore, sincez satisfiesno-envy,
there is noi ∈ T such thatz′ Pi z, contradicting the previous assumption onT ands′T . ¤

Since{k∈ {1, · · · , k̄} : Tk =Ck} 6= /0, we may write this set as{k1, · · · ,kr̄} for some
r̄ ≥ 1 wherek1, · · · ,kr̄ ∈ {1, · · · , k̄} are such thatk1 < · · ·< kr̄ .

Claim 2. (i) There existi1, · · · , i r̄ ∈ N such that for eachr ∈ {1, · · · , r̄}, ir ∈ Tkr ≡
Ckr , s′ir ≤ xkr , s′ir /∈ {xk : k /∈ {k1, · · · ,kr̄}}, ands′i1 < s′i2 < · · ·< s′i r̄ .
(ii) There existj1, · · · , j r̄ ∈N such that for eachr ∈ {1, · · · , r̄}, jr ∈ Tkr ≡Ckr , s′jr ≥ xkr ,

s′jr /∈ {xk : k /∈ {k1, · · · ,kr̄}}, ands′j1 < s′j2 < · · ·< s′j r̄ .

Proof. By (3), eachi ∈ N eventually gets a location that is chosen by himself.
Therefore for eachr and eachi ∈ Tkr , s′i Ri xkr . Let r ∈ {1, · · · , r̄}. By local stability,
there existir , jr ∈ C0

kr
(R,z) such thatp(Rir ) ≤ xkr ≤ p(Rjr ). Clearly, s′ir ≤ xkr ≤ s′jr .

equilibrium. Konishi, Le Breton, and Weber (1999) study the relationship between strong Nash equilib-
rium and “coalition-proof Nash equilibrium” in the context of common agency games.
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Note that for allk 6= kr , xkr Pjr xk andxkr Pir xk. Also note that by Lemma 2, ifk > kr ,
p(Rjr )≤ xk. Therefore for allr, s′jr < s′jr+1

andsjr /∈ {xk : k /∈ {k1, · · · ,kr̄}}. Similarly,
for all r, s′ir < s′ir+1

andsir /∈ {xk : k /∈ {k1, · · · ,kr̄}}. ¤

Claim 3. There existsr ∈ {1, · · · , r̄} such thats′ir 6= xkr .

Proof. Suppose by contradiction that for allr ∈ {1, · · · , r̄}, s′ir = xkr . Then atz′,
each agent inT gets a location that is a location inz. Therefore, sincez satisfiesno-

envy, then there is noi ∈ T such thatz′ Pi z, contradicting the earlier assumption onT

ands′T . ¤

To complete the proof, letr be such thats′ir 6= xkr . Then by Claim 2,s′ir < s′jr . There-
fore, by Claim 3,{xk : k /∈ {k1, · · · ,kr̄}}∪{s′ir ,s′jr}∪{s′i1, · · · ,s′ir−1

}∪{s′jr+1
, · · · ,s′j r̄} is

composed of more than̄k elements, contradicting (3).

4 Self-Selection Consistent Social Choice

In this section, we provide an algorithm that can be used to construct a large family of
efficientandconsistent, namelyself-selection consistent, social choice functions.

We first give a simple characterization ofconsistentsocial choice functions. A
single location functionf : ∪N∈N RN → R maps each single location problem (a
preferences profile) into a location. Examples are theminimal peak functionf min(·)
and themean peak functionf mean(·) defined as follows: for eachN ∈ N and each
R∈RN, f min(R)≡min{p(Ri) : i ∈ N} and f mean(R)≡ ∑i∈N p(Ri)/|N|.
Proposition 1. A social choice functionϕ (·) satisfiesconsistencyif and only if there
is a unique single location functionf (·) such that for each(R, k̄) ∈ D and eachk =
1, . . . , k̄, xk = f (RCk), where(Ck,xk)k̄

k=1 = ϕ(R, k̄).

Proof. The proof for the “if” part is evident. In order to prove the “only if” part, let
ϕ (·) be aconsistentsocial choice function. Letf (·) ≡ ϕL(·,1). Let (R, k̄) ∈ D . Let
(Ck,xk) be a pair of a community and the location for its public facility chosen byϕ (·)
for (R, k̄). Then byconsistency,xk = ϕL(RCk,1). Soxk = f (RCk). Uniqueness off (·)
follows from the fact that any single location functionf (·) with the stated condition
should satisfyf (·) = ϕL(·,1).

The next example shows existence of anefficientandconsistentsocial choice func-
tion using the minimal peak functionf min(·).
Example 5(An efficient and consistent function). For eachN ∈N and each

(
R, k̄

) ∈
DN with |{p(Ri) : i ∈ N}| ≥ k̄, let p1 < p2 < · · · < pk̄ be the list of thek̄ smallest
peaks. For eachk∈ {1, . . . , k̄}, if k < k̄, Ck ≡ {i ∈ N : p(Ri) = pk} and if k = k̄, Ck̄ ≡

11



{i ∈ N : p(Ri)≥ pk̄}. Let ϕk(R, k̄)≡ (Ck, f min(RCk)). It is easily shown by Theorem 2
and Proposition 1 thatϕ (·) satisfies bothefficiencyandconsistency.

It can be shown that alternative constructions obtained by replacingf min(·) with
some other single location functions, e.g.f mean(·), may not give anefficientsocial
choice function.

In what follows, we provide an algorithm that will allow us to construct anefficient

andconsistentfunction based on any single location function with the following two
mild conditions. A single location functionf satisfiesefficiencyif for eachN∈N and
eachR∈RN, f (R) ∈ P(R). It satisfiesparticipation if for eachN ∈N , eachi /∈ N,
and eachR∈RN∪{i}, f (R) Ri f (R−i) (Barber̀a and Bevía 2002).

Leftward Adjustment Algorithm .4Let N ∈N , R∈RN, andk̄∈N. Let zbe anN/k̄-
decision andf (·) a single location function. To simplify our notation, for eachS⊆ N,
we usef (S) instead off (RS).
Stage 1. Let l ≡ max{k : k = 1 or when k ≥ 2, C∗k 6= /0}, whereC∗k ≡ {i ∈ Ck :
xk−1 Ri xk} 6= /0.
Stage 2.If l = 1, go to Stage 8. If not, for eachk < l −1, let z′k ≡ zk and go to Stage 3.
Stage 3.Let Ĉl−1≡Cl−1∪C∗l and go to Stage 4.
Stage 4.Let k≡ l −1 and go to Stage 5.1.
Stage 5.1.If there isi ∈Ck+1\Ĉk such thatpi ≤ f (Ĉk), go to Stage 5.1.1. If not, go to
Stage 5.2.
Stage 5.1.1.Pick i ∈Ck+1\Ĉk such that

min{y∈ X : y Ii f (Ĉk)}= min{min{y : y Ih f (Ĉk)} : h∈Ck+1\Ĉk andph≤ f (Ĉk)},

and go to Stage 5.1.2.
Stage 5.1.2.PutĈk == Ĉk∪{i} and return to Stage 5.1.
Stage 5.2.Let C′k ≡ Ĉk andx′k ≡ f (C′k). And go to Stage 5.3.
Stage 5.3.If k+1 < k̄, go to Stage 5.4. If not, go to Stage 6.
Stage 5.4.Putk == k+1 and go to Stage 5.5.
Stage 5.5.Let Ĉk ≡Ck\C′k−1 and return to Stage 5.1.
Stage 6.Let C′̄

k
≡Ck̄\C′̄k−1

andx′̄
k
≡ f (C′̄

k
). Then go to Stage 7.

Stage 7.Putz== z′ and return to Stage 1.
Stage 8.The algorithm ends withz.

4Our algorithm is a modification of the one provided in the proof of Proposition 1 by Barberà and
Beviá (2002). Reversing the direction of moving agents within the leftward adjustment algorithm, we
can define the “rightward adjustment algorithm” and establish the same result as we do later for the
leftward adjustment algorithm.
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Figure 1: Let N ≡ {1, . . . ,7} and k̄ ≡ 4. Consider the preference profileR of
agents in N depicted in the figure. The leftward adjustment algorithm with ini-
tial decision (({1},0) ,({2},1) ,({3},2) ,({4,5,6,7},10)) leads to four iterations of
loop 3, as explained in Tables 1-4, and yields the followingefficient final decision:
(({1,2},1/2) ,({3},2) ,({4,5,6},13/3) ,({7},27)) .

We refer to the combination of Stages 5.1, 5.1.1, and 5.1.2 asloop 1, the combi-
nation of loop 1 and Stages 5.2-5.5 asloop 2and the combination of Stages 1-7 and
loops 1 and 2 asloop 3.

Convergence of this algorithm depends on what initialN/k̄-decision is used. Propo-
sition 2 below states conditions for convergence and, in addition, convergence to an
efficientdecision.

Proposition 2. Assume thatf (·) is a single location function satisfyingefficiencyand
participation. Let N ∈N , R∈RN, andk̄∈N. Let z≡ (Ck,xk)

k̄
k=1 be anN/k̄-decision

such that for eachk = 1, · · · , k̄, xk = f (RCk). If z satisfiesno-overlapand for each
k = 1, · · · , k̄−1,

No-right-envy: xk Ri xk+1 for eachi ∈Ck; (4)

Right stability: xk Pj xk+1 andp
(
Rj

)≥ xk for somej ∈Ck, (5)

then theleftward adjustmentof z based onf converges to anefficientN/k̄-decision.

Proof. See the appendix.

To better understand how the algorithm works, consider the following example:
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Loop 3 #1 Community 1 Community 2 Community 3 Community 4

Initial decision
{1}
0

{2}
1

{3}
2

{4,5,6,7}
10

Stage 1 C∗2 = /0 C∗3 = /0 C∗4 = {5,6}
Stage 2

C′1 = {1}
x′1 = 0

C′2 = {2}
x′2 = 1

Stage 3
Ĉ3 = {3,5,6}
f (Ĉ3) = 11/3

Stages 4 and 5.1

Stage 5.2
C′3 = {3,5,6}

x′3 = 11/3
Stages 5.3-5.5

Stage 6
C′4 = {4,7}
x′4 = 31/2

Stage 7
{1}
0

{2}
1

{3,5,6}
11/3

{4,7}
31/2

Table 1: The first iteration of loop 3 in Example 6. The set in each cell gives composition of the
corresponding community and the real number in each cell is the location for the community.
The first row gives the initial decision and the last row gives the final decision of this iteration.

Example 6. Let N ≡ {1, . . . ,7} and k̄ = 4. Let R1, . . . ,R7 be such thatp(R1) = 0,

p(R2) = 1, p(R3) = 2, p(R4) = p(R5) = 4, p(R6) = 5, p(R7) = 27 and0 I2 3/2,
1 I3 11/3, 31/2 P4 11/3, 2 I5 10, 2 P6 10as illustrated in Figure 1. Letf (·)≡ f mean(·).
Consider the initial decision of

(({1},0) ,({2},1) ,({3},2) ,({4,5,6,7},10))

satisfyingno-right-envyand right stability. The leftward adjustment of this initial
decision consists of four iterations of loop 3, as explained in Tables 1-4. The algorithm
yields

(({1,2},1/2) ,({3},2) ,({4,5,6},13/3) ,({7},27)) .

The first iteration of loop 3: It is explained in Table 1 and yields the following decision:

(({1},0) ,({2},1) ,({3,5,6},11/3) ,({4,7},31/2)) .

In this process, neither loop 1 nor loop 2 is triggered as explained by blank cells in
rows 6 and 8 of Table 1.
The second iteration of loop 3: It is explained in Table 2 and starts with the decision

14



Loop 3 #2 Community 1 Community 2 Community 3 Community 4

Initial decision
{1}
0

{2}
1

{3,5,6}
11/3

{4,7}
31/2

Stage 1 C∗2 = /0 C∗3 = {3} C∗4 = /0

Stage 2
C′1 = {1}

x′1 = 0

Stage 3
Ĉ2 = {2,3}
f (Ĉ2) = 3/2

Stages 4-5.1

Stage 5.2
C′2 = {2,3}

x′2 = 3/2

Stages 5.3-5.5
Ĉ3 = {5,6}
f (Ĉ3) = 9/2

Stages 5.1-5.1.2
Ĉ3 = {4,5,6}
f (Ĉ3) = 13/3

Stage 5.1

Stage 5.2
C′3 = {4,5,6}

x′3 = 13/3
Stage 5.3

Stage 6
C′4 = {7}
x′4 = 27

Stage 7
{1}
0

{2,3}
3/2

{4,5,6}
13/3

{7}
27

Table 2: The second iteration of loop 3 in Example 6.

obtained after the first iteration. It yields

(({1},0) ,({2,3},3/2) ,({4,5,6},13/3) ,({7},27)) .

Loop 2 is triggered once becausel = 3 < k̄(= 4) as explained in rows 8-11. Loop 1 is
triggered within the first iteration of loop 2, which is explained in row 9.
The third iteration of loop 3: It is explained in Table 3 and yields

(({1,2},1/2) ,({3},2) ,({4,5,6},13/3) ,({7},27)) .

In this process, loop 2 is triggered twice in rows 8-10 first and rows 11-13 second.
However, loop 1 is not triggered as explained by blank cells in rows 6, 9, and 12.
The fourth iteration of loop 3: It is explained in Table 4 and starts with the decision
from the third iteration. Note that at this decision, no agent weakly prefers the location
for the left adjacent community to the location for his own community, which means
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Loop 3 #3 Community 1 Community 2 Community 3 Community 4

Initial Decision
{1}
0

{2,3}
3/2

{4,5,6}
13/3

{7}
27

Stage 1 C∗2 = {2} C∗3 = /0 C∗4 = /0
Stage 2

Stage 3
Ĉ1 = {1,2}
f (Ĉ1) = 1/2

Stages 4-5.1

Stage 5.2
C′1 = {1,2}

x′1 = 1/2

Stages 5.3-5.5
Ĉ2 = {3}
f (Ĉ2) = 2

Stage 5.1

Stage 5.2
C′2 = {3}

x′2 = 2

Stage 5.3-5.5
Ĉ3 = {4,5,6}
f (Ĉ3) = 13/3

Stage 5.1

Stage 5.2
C′3 = {4,5,6}

x′3 = 13/3
Stage 5.3

Stage 6
C′4 = {7}
x′4 = 27

Stage 7
{1,2}
1/2

{3}
2

{4,5,6}
13/3

{7}
27

Table 3: The third iteration of loop 3 in Example 6.

l = 1. Thus this decision is the final outcome of the algorithm.

For each
(
R, k̄

) ∈ D , let LAf
(
R, k̄

)
be the set of allN/k̄-decisionsz≡ (Ck,xk)

k̄
k=1

with no-overlap, no-right-envy, and right stability such that for eachk = 1, · · · , k̄,
xk = f (RCk). It is easy to show that for each

(
R, k̄

) ∈ D , LAf
(
R, k̄

) 6= /0.5 Using
any decision inLAf

(
R, k̄

)
as the initial decision in the leftward adjustment algorithm

and associating with
(
R, k̄

)
an outcome of the algorithm, we can define aself-selection

5Barber̀a and Bevía (2002) shows this by the following construction. If the number of peaks is
less than̄k, the proof is trivial. Suppose|{p(Ri) : i ∈ N}| ≥ k̄. Let r be the number of peaks (r ≥ k̄).
Denote peaks in{p(Ri) : i ∈ N} in the increasing order byp1 < · · · < pr . Then we can partitionN
into k̄ communities(C1, · · · ,Ck̄) as follows: C1 ≡ {i ∈ N : p(Ri) = p1}, C2 ≡ {i ∈ N : p(Ri) = p2},
· · · , Ck̄−1 ≡ {i ∈ N : p(Ri) = pk̄−1}, Ck̄ ≡ {i ∈ N : p(Ri) ≥ pk̄}. Let x1 ≡ p1, · · · , xk̄−1 ≡ pk̄−1, and

xk̄ ≡ f (RCk̄
). Let z≡ (Ck,xk)

k̄
k=1. Every member in community-k, for eachk = 1, · · · , k̄−1, gets his

peak location and so both (4) and (5) hold. Sincef satisfiesefficiencyand each community-k with
k≤ k̄−1 has only one peak,f (RCk) = pk (= xk). Finally,no-overlapholds by construction ofz.
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Loop 3 #4 Community 1 Community 2 Community 3 Community 4

Initial Decision
{1,2}
1/2

{3}
2

{4,5,6}
13/3

{7}
27

Stage 1 C∗2 = /0 C∗3 = /0 C∗4 = /0

Stage 8
{1,2}
1/2

{3}
2

{4,5,6}
13/3

{7}
27

Table 4: The fourth iteration of loop 3 in Example 6. The algorithm stops at Stage 8 with the
final decision(({1,2},1/2) ,({3},2) ,({4,5,6},13/3) ,({7},27)).

consistentsocial choice function.

Theorem 4. If f (·) is a single location function satisfyingefficiencyandparticipation

andψ (·) is a selection function of the correspondenceLAf (·), then any social choice
function that maps each problem(R, k̄) ∈ D into a decision obtained by the leftward
adjustment ofψ

(
R, k̄

)
satisfies bothefficiencyandconsistency.

Proof. The result follows immediately from the definition of the leftward adjustment
algorithm and Propositions 1 and 2.

Note that the leftward adjustment algorithm treats agents “symmetrically”. Thus
using f (·) andψ (·) with the same symmetric treatment property, we can construct a
large family of social choice functions satisfying “anonymity” as well asefficiencyand
consistency.

Proposition 2 and Theorem 4 improve Proposition 1 in Barberà and Bevía (2002)
by showing existence of a larger family ofself-selection consistentfunctions that can
be obtained through the leftward adjustment algorithm. We show that any selection
functionψ (·) of the correspondenceLAf (·) can be used in the algorithm to obtain a
self-selection consistentfunction, while Barber̀a and Bevía (2002) use one specialψ (·)
(decisions made by this function are explained in Footnote 5). Also by virtue of our
conditions forefficiency, we are able to give a formal proof that the leftward adjustment
algorithm leads to anefficientdecision. The proof of Proposition 1 in Barberà and
Beviá (2002) only shows that their construction leads to an outcome that satisfieslocal

efficiencyandno-envy, which are necessary but not sufficient forefficiency. To give
more explanation in this regard, let us return to Example 6 and explain how we modify
their construction.

In what follows, we use the same notation as used in the proof of Proposition 1 in
Barber̀a and Bevía (2002). Their construction applied to Example 6 starts with the ini-
tial decision given byC1

1 = {1}, x1
1 = 0, C1

2 = {2}, x1
2 = 1, C1

3 = {3}, x1
3 = 2, andC1

4 =
{4,5,6,7}, x1

4 = 10. Since agent 6 in the fourth group prefersx1
3 = 2 to x1

4 = 10, there
is an envy andC3 =C1

3∪{5,6} (see p.272 of Barberà and Bevía 2002; in this example,
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k = 4 andCk−1 =C3). Note thatf (RC3) = 11/3 and there is no agent inC4 whose peak
is betweenx1

3 = 2 and f (RC3) = 11/3. Thus the process in lines 2-17 of p.272 is not
needed. SoC2

3 = C3 =C1
3∪{5,6}= {3,5,6}, x2

3 = 11/3, C2
4 = {4,7}, x2

4 = 31/2. And
C2

1 = {1}, x2
1 = 0, C2

2 = {2}, andx2
2 = 1. Then there isno-envyand the process stops.

However, the outcome(({1},0),({2},1),({3,5,6},11/3),({4,7},31/2)) is not effi-

cientbecause moving agent 3 from community 3 to community 2 (note that1 I3 11/3)
and changing the location for community 3 from11/3 to 4 makes both agents5 and6
better off without making anyone else worse off.

Therefore, there needs to be some change in their construction. The first change
we can think of is the following: instead of checkingno-envyas the stopping criterion,
we check what is in Stage 2 in our algorithm. Unfortunately, this does not resolve
the deficiency fully. To see this, let us continue with the above example. Since there
is an agent, agent 3, who feels indifferent between his location and the left location
(and agent 3 is the only such agent), we reiterate the whole process as in Barberà and
Beviá (2002). Now we have to setk, at the top of p.272 in their paper, to be equal to
3. Then we obtainC3

1 = {1}, x3
1 = 0, C3

2 = C2
2∪{3} = {2,3}, x3

2 = 3/2, C3
3 = {5,6},

x3
3 = 9/2, C3

4 = {4,7}, andx3
4 = 31/2. Again check the criterion in our Stage 2. The

last outcome does not pass the criterion and in fact in this case there is an envy (agent 4
prefers the location in community 3 to his own). So the next iteration starts. It yields
C4

1 = {1}, x4
1 = 0, C4

2 = {2,3}, x4
2 = 3/2, C4

3 = {4,5,6}, x4
3 = 13/3, C4

4 = {7}, and
x4

4 = 27. But note thatx4
3 < x3

3, in contradiction to the last sentence of the proof in
Barber̀a and Bevía (2002), that is, ‘x j

h≥ x j−1
h for all h∈ {1, . . . ,k}...’. Thus there needs

to be some further change.
The change we made in this regard is that in our algorithm, we combine what

might have been two or more iterations in Barberà and Bevía (2002) in one iteration
of loop 3 (loop 1 and loop 2 are within loop 3). This guarantees monotonic movement
of locations in every iteration as shown in Step 1 of the proof of Proposition 2 (so it
resolves the problem mentioned in the previous paragraph).

Our Proposition 2 shows, in addition, that the algorithm can be used with any initial
allocation satisfying the three properties,no-overlap, no-right-envy, andright stability.
This gives more power to the result.

A Proof of Proposition 2

In this section, we prove Proposition 2.
The following two lemmas in Barberà and Bevía (2002) are useful.

Lemma 5 (Barber̀a and Bevía 2002). Consider a single location functionf satisfying
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participationandefficiency. Let S,S′ ∈N be two non-empty disjoint sets of agents.
Let R∈RS∪S′ andy∈R. If for all i ∈S, p(Ri) < y, and for alli ∈S′, f (RS)≤ p(Ri) < y

and f (RS) Ri y, then for alli ∈ S′,

f (RS,RS′) Ri y and f (RS)≤ f (RS,RS′) < y.

Lemma 6 (Barber̀a and Bevía 2002). Consider a single location functionf satisfying
participation andefficiency. Let S∈N be a non-empty set of agents. Lety∈ R be
such thaty < f (RS). If we let S′ ≡ {i ∈ S: y Ri f (RS)},

f (RS)≤ f (RS\S′).

Now we are ready to prove the proposition.

Proof of Proposition 2. Let N ∈N , R∈RN, andk̄∈ N. To simply our notation, for
eachS⊆N, let f (S) meanf (RS). Similarly let p∗ (S)≡ p∗ (RS), p∗ (S)≡ p∗ (RS), and
pi ≡ p(Ri). Let z≡ (Ck,xk)

k̄
k=1 be anN/k̄-decision satisfying the stated assumptions.

Let l be the maximum community index in Stage 1. The proof is trivial ifl = 1.
Suppose thatl > 1. ThenC∗l ≡ {i ∈Cl : xl−1 Ri xl} 6= /0. The proof is in five steps.

Step 1.For eachk = 1, . . . , k̄, xk ≤ x′k and if k < k̄, x′k < xk+1.
Whenk≤ l −2, the proof is trivial sincez′ is identical toz for these communities

andzsatisfiesno-overlap.

Substep 1.1.xl−1≤ x′l−1 < xl .
For eachi ∈C∗l , sincexl−1 Ri xl andzsatisfiesno-overlap, thenxl−1 < pi < xl . By

Lemma 5,
xl−1≤ f (Cl−1∪C∗l ) < xl . (6)

Let Ĉl−1≡Cl−1∪C∗l . Let i ∈Cl\Ĉl−1 be the agent who moves into community-(l−1)
in the first iteration of loop 1. Thenpi ≤ f (Ĉl−1). By no-overlapat z, xl−1 < pi . Thus
from (6), we get

xl−1 < pi ≤ f (Ĉl−1) < xl (7)

Clearly, f (Ĉl−1) Pi xl . Sincei /∈C∗l , xl Pi xl−1 and sof (Ĉl−1) Pi xl−1. By participation,
f (Ĉl−1∪{i}) Ri f (Ĉl−1). Thus,f (Ĉl−1∪{i}) Pi xl and f (Ĉl−1∪{i}) Pi xl−1. Therefore
f (Ĉl−1∪{i}) is closer toi’s peak locationpi thanxl or xl−1, which together with (7)
implies

xl−1 < f (Ĉl−1∪{i}) < xl . (8)
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The same argument applies for each iteration of loop 1 and at the end of loop 1, we get

xl−1 < f (C′l−1)(= x′l ) < xl . (9)

Note thatxl−1 < x′l−1 when loop 1 is triggered.

Substep 1.2.For eachk≥ l , xk ≤ x′k and if k < k̄, x′k < xk+1.
We only prove the statement fork = l . The proof fork > l is the same. In what

follows, we assumek < k̄ but our proof covers the casek = k̄.
By no-overlapatz and Lemma 6,

xl−1 < xl = f (Cl )≤ f (Cl\C∗l ). (10)

Let i ∈Cl\C∗l be the agent who moves into community-(l −1) in the first iteration of
loop 1. Then

pi ≤ f (Cl−1∪C∗l ) < xl ≤ f (Cl\C∗l ), (11)

where the second inequality follows from (6) and the third follows from (10). By
Lemma 6, after movingi into community-(l −1) from community-l , the location for
community-l moves to the right or stays constant, that is,f (Cl\C∗l )≤ f ((Cl\C∗l )\{i}).
Applying the same argument for each iteration of loop 1 withk = l−1 (moving agents
from community-l to community-(l −1)), we obtain f (Cl\C∗l ) ≤ f (Ĉl ), whereĈl =
Cl\C′l−1. Then from (11),

xl ≤ f (Cl\C∗l )≤ f (Ĉl ). (12)

Since f (Ĉl )≤ p∗(Ĉl )≤ p∗(Cl ) < xl+1 (the last inequality holds byno-overlapatz),

xl ≤ f (Cl\C∗l )≤ f (Ĉl ) < xl+1. (13)

We now consider loop 1 withk = l (moving agents from community-(l +1) to
community-l ). Let i ∈Cl+1 be the agent who moves into community-l in the first round
of loop 1. Thenpi ≤ f (Ĉl ) and byno-overlapatz, xl < pi . Thusxl < pi ≤ f (Ĉl ) < xl+1.

By participation, f (Ĉl ∪{i}) Ri f (Ĉl ). By definition of l in Stage 1,xl+1 Pi xl . Then
f (Ĉl ) Pi xl+1 Pi xl . Thereforexl < f (Ĉl ∪ {i}) ≤ f (Ĉl ) < xl+1. Applying the same
argument for each iteration of loop 1, we finally getxl < f (C′l ) = x′l < xl+1.

Step 2.Decisionz′ obtained after each iteration of loop 3 satisfiesno-overlap.
We show thatx′1 < p∗ (C′2), p∗(C′̄

k−1
)< x′̄

k
, and for eachk∈{2, . . . , k̄−1}, p∗(C′k−1)<

x′k < p∗(C′k+1). For k < l −1, the statement follows directly fromno-overlapat z be-
cause loop 3 does not change anything for these communities.

Substep 2.1.For eachk∈ {l −1, . . . , k̄−1}, x′k < p∗(C′k+1).
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We only consider the casek = l −1 and skip the same arguments for other cases.
For eachi ∈ Ĉl ≡Cl\C′l−1, x′l−1 < pi because otherwise loop 1 fork = l−1 should not
have ended atC′l−1 andx′l−1. Hence

x′l−1 < p∗(Ĉl ). (14)

Let i ∈Cl+1 be the agent who moves into community-l in the first iteration of loop 1. If
pi ≤ x′l−1, thenpi ≤ x′l−1 < xl by Step 1 and soi ∈Cl+1 prefersxl to xl+1, contradicting
definition of l in Stage 1. Hencex′l−1 < pi . Combining this with (14),x′l−1 < p∗(Ĉl ∪
{i}). Applying the same argument for each iteration of loop 1, we show thatx′l−1 <

p∗(C′l ).

Substep 2.2.For eachk∈ {l −2, . . . , k̄−1}, p∗(C′k) < x′k+1.

We only consider the casek = l −1 and skip the same arguments for other cases.
Note that each iteration of loop 1 for eachk does not change the maximal peak for
community-k. Thusp∗(C′l−1) = p∗(Cl−1∪C∗l ). By no-overlapat z and the definition
of C∗l , p∗(Cl−1∪C∗l ) < xl . By Step 1,xl ≤ x′l . Therefore,p∗(C′l−1) < x′l .

Step 3.For eachk≥ 2 and eachi ∈C′k−1, x′k−1 Ri x′k.
For k≤ l −1, the result follows directly from the condition ofno-right-envyat z

stated in (4). We consider below only the casek = l . The same argument can be used
for eachk≥ l + 1. Let i ∈ C′l−1 be such thatpi ≤ x′l−1. Sincex′l−1 < x′l , x′l−1 Pi x′l .
Let i ∈C′l−1 be such thatpi > x′l−1. If i ∈C′l−1∩Cl−1, then by (4),xl−1 Ri xl . By no-

overlapat z, pi < xl . Sincexl−1≤ x′l−1 andxl ≤ x′l , as shown in Step 1, andx′l−1 < x′l ,
then x′l−1 Ri x′l . If i ∈ C′l−1\Cl−1, i ∈ C∗l or i /∈ C∗l . In the former case,xl−1 Ri xl

and so using the same argument as above, we showx′l−1 Ri x′l . In the latter case,
suppose thati is the person who moves into community-(l −1) in the first iteration of
loop 1. Thenf (Cl−1∪C∗l ) is the location right beforei moves. And if we letyh ≡
min{y: yIh f (Cl−1∪C∗l )} for all h∈Cl with ph≤ f (Cl−1∪C∗l ), thenyi ≤ yh for all h∈
Cl with ph ≤ f (Cl−1∪C∗l ) (see the condition in Stage 5.1.1). Since byparticipation,
i should be weakly better off after moving, the new location for community-(l −1),
denoted bŷxl−1, should be in[yi , f (Cl−1∪C∗l )]. Note that for eachh∈Cl , if ph≤ x̂l−1,
then h is a person withph ≤ f (Cl−1∪C∗l ) (recall that among these persons,i has
the lowestyh value), which impliesyi ≤ yh. Thusyi ≤ ph (otherwise,yh ≤ ph < yi ,
contradictingyi ≤ yh). Let h be the person who moves into community-(l −1) in the
second iteration of loop 1. Then using the same argument as above we can show that
the location afterh moves, should be in[yh, x̂l−1] ⊆ [yi , f (Cl−1∪C∗l )]. Similarly, after
each iteration of loop 1, we get a location for community-(l −1) in [yi , f (Cl−1∪C∗l )].
Hencex′l−1 ∈ [yi , f (Cl−1∪C∗l )]. Thereforex′l−1 Ri f

(
Cl−1∪C∗l

)
Pi xl Ri x′l , where
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the second and the third relations follow frompi ≤ f (Cl−1∪C∗l ) < xl ≤ x′l . The same
argument can be used for every other agent who moves into community-(l −1) in
loop 1.

Step 4.For eachk≤ k̄−1, there is j ∈C′k such thatx′k Pj x′k+1 and x′k ≤ p j .
For k≤ l −2, this follows from the condition ofright stability at z stated in (5),

andxl−1 ≤ x′l−1 shown in Step 1. Letk = l − 1. There are two cases,xl−1 = x′l−1

or xl−1 < x′l−1. In the former case, we simply use (5) andxl ≤ x′l to show existence
of j ∈Cl−1 with the two desired properties. Consider the latter casexl−1 < x′l−1. If
there is j ∈ Cl−1 with p j ≥ x′l−1, this is a person we are looking for because by (4)
andxl−1 < x′l−1, we havex′l−1 Pj xl−1 Rj xl Rj x′l . Suppose that there is noj ∈Cl−1

with p j ≥ x′l−1. Then byefficiencyof f , there is j ∈ C∗l with p j ≥ x′l−1. And since
xl−1 < x′l−1, then by definition ofC∗l (notexl−1 Rj xl ), x′l−1 Pj xl−1 Rj xl Rj x′l .

Now considerk = l . If xl = x′l , the result follows immediately from the condition
of right stability at z in (5), andxl+1 ≤ x′l+1 as shown in Step 1. Supposexl < x′l .
Sincep∗(Cl ) = p∗(C′l ), then for eachj ∈Cl ∩C′l with p j = p∗(C′l ) = p∗(Cl ), we have
xl < x′l ≤ p j < xl+1 ≤ x′l+1 and sox′l Pj xl Rj xl+1 Rj x′l+1, where the second relation
holds by (4). The same argument applies for all otherk≥ l .

Step 5.We now complete our proof. Each iteration of loop 3 moves at least one
agent (in fact all agents inC∗l ) from one community into the left adjacent community.
Since there is only a finite number of agents, this process must end after a finite number
of iterations. And after the last iteration, for eachk∈ {2, · · · , k̄}, C∗k = /0, which means
that for eachk ∈ {2, · · · , k̄} and eachi ∈Ck, xk Pi xk−1. This property together with
(4) and (5) shown by Steps 1-4 imply thatz′ passes theneighbor test. Therefore, by
Theorem 2,z′ satisfiesefficiency.
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