
A Characterization of Plurality-Like Rules Based
on Non-Manipulability, Restricted Efficiency, and

Anonymity

Biung-Ghi Ju∗

March 22, 2005 (forthcoming in International Journal of Game Thoery)

Abs tract

A society needs to decide which issues (laws, public projects, public facilities,
etc.) in an agenda to accept. The decision can be any subset of the agenda but
must reflect the preferences of its members, which are assumed to be “separa-
ble weak orderings”. We characterize a family of plurality-like rules based on
strategy-proofness, restricted efficiency, anonymity, and two weak axioms per-
taining to the variable agenda feature of our model, called dummy independence
and division indifference. We also characterize a wide spectrum of rules dropping
anonymity or restricted efficiency.

Keywords: Plurality; Strategy-proofness; Efficiency; Restricted efficiency; Anonymity;
Division indifference; Separable preferences
JEL Classification Numbers: D70, D71

∗Department of Economics, University of Kansas, 1300 Sunnyside Avenue, Lawrence, KS 66045,
USA. E-mail: bgju@ku.edu. Tel. 1-785-864-2860. Fax. 1-785-864-5270. I am indebted to Dolors Berga,
William Thomson, an associate editor, and two anonymous referees for their detailed comments and
helpful suggestions. All remaining errors are mine.



1 Introduction

We consider social choice problems of the following form. There is a set of issues
such as passing a law, launching a public project, building a public facility, etc. This
set is called an agenda. A society consisting of more than two agents has to decide
which issues in the agenda to choose. Any subset is a social alternative. A problem is
identified by the agenda and the list of agents’ preferences over alternatives. A social
choice rule, or simply a rule, associates a single alternative with each problem.
In a variable agenda model with a restricted domain of preferences known as “sep-

arable” preferences, we study rules satisfying the following two axioms. Strategy-
proofness (Gibbard 1973; Satterthwaite 1975) requires that no one should ever benefit
by misrepresenting his preferences, independently of the others’ announcements. Effi-
ciency requires that it should not be possible to make an agent better off without mak-
ing someone else worse off. In their work on strategy-proofness, Barberà, Sonnenschein,
and Zhou (1991, BSZ below) established an impossibility result saying that if there are
at least three issues in the agenda, no rule satisfies strategy-proofness, efficiency, and
the minimal equity criterion of “non-dictatorship”.1 Thus, to avoid dictatorship, one
needs to sacrifice strategy-proofness or efficiency. Here we sacrifice efficiency. Inter-
estingly, we come across an axiomatic justification for plurality-like rules based on a
notion of “restricted efficiency”, strategy-proofness, anonymity (symmetric treatment
of agents), and two additional axioms pertaining to possible variations in agendas,
called “dummy independence” and “division indifference” (to be explained below).
This result is established without the unnatural assumption of strict preferences (there
is no indifference between alternatives), which is crucial in BSZ.
The BSZ impossibility applies to any agenda with at least three issues. Thus, one

natural way of weakening efficiency in our variable agenda model is to restrict efficiency
to agendas with at most two issues. This is our notion of restricted efficiency.
In our model, preferences are defined over the set of potential alternatives, which is

typically larger than the set of feasible alternatives in the agenda under actual consid-
eration. Thus, preferences describe not only how agents rank feasible alternatives but
also how they rank infeasible alternatives. One could argue that the latter information
is irrelevant, and require rules not to depend on it. We call the requirement indepen-
dence. A dummy (player) is an agent who is indifferent between any pair of feasible
alternatives (he may not be indifferent between infeasible alternatives). Dummy inde-
pendence, a much weaker requirement than independence, limits its application to the
preferences of dummies.
Division indifference is a robustness property of rules with respect to agenda di-

vision. It says that for any pair of agendas X and Y , making decisions on X and
Y independently should result in an outcome that is indifferent, for everyone, to the

1See also Le Breton and Sen (1995, 1999), Le Breton and Weymark (1999), and Ju (2003).
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decision on the union X ∪ Y . It is similar, in spirit, to the path independence axiom
introduced by Plott (1973), stating robustness to agenda division in the Arrovian social
choice framework (see also Plott and Levine 1978; Kalai and Megiddo 1980). Division
indifference requires rules to behave consistently across different agendas. It excludes,
for example, rules based on the “plurality principle” for one agenda and on the “una-
nimity principle” for another. When agents have separable preferences, the impact of
an issue on the welfare of each agent can be separated from the impact of the other
issues. Then, division indifference is easily met: it suffices to make decisions issue by
issue. Indeed, we identify a large family of rules satisfying this axiom. They include,
among others, all the rules known as “voting by committees” (BSZ). In this sense, there
is little cost of imposing this axiom, especially from the perspective of the main goal
of our research. On the contrary, the axiom greatly facilitates our investigation. This
is because, when combined with our other axioms, it delivers a useful representation
of rules in terms of “power relations” among groups of agents.
Justifications for plurality rule have been derived in various models (May 1952, Mu-

rakami 1966, Inada 1969, Guha 1972, Ching 1996, etc.). However, these justifications
are based on “neutrality” or “duality” type conditions. Our characterization involves
no such conditions.
Ju (2005) considers two simple domains of separable preferences, called “dichoto-

mous” and “trichotomous” preferences. Our results do not apply to these domains.
This is because they do not have the richness that is crucial here. However, relying on
the full power of efficiency in combination with anonymity and other axioms, Ju (2005)
characterizes a family of rules, called “semi-plurality rules”. On our domain, none of
these rules satisfies restricted efficiency.
Shimomura (1996) studies partial efficiency (efficiency on the subdomain of prob-

lems where voters’ preferences bear some degrees of resemblance or agreement) in the
fixed agenda model with strict separable preferences considered by BSZ.2 He offers a
sharp characterization of partially efficient schemes of voting by committees.

The rest of this paper is organized as follows. In Section 2, we define our model,
basic concepts, and some important families of rules. In Section 3, we define our axioms.
In Section 4, we state our results. All the proofs are collected in Section 5. In Section 6,
we obtain a corollary involving the “issue-wise voting property” and efficiency.

2 The Model and Basic Concepts

There is a society of n agents, n ≥ 2, denoted by N ≡ {1, · · · , n}. The society faces
the problem of choosing a subset from a set of issues. Let A be the set of potential

2I thank William Thomson for bringing to my attention this work by Shimomura (1996).
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issues, with |A| ≥ 2. An agenda is a nonempty subset of A. Given an agenda X ⊆ A,
the society can choose any subset of X. Each subset of X is called an alternative.
LetA be the family of all admissible agendas, referred to as the agenda domain. We

assume finiteness, saying that each agenda X ∈ A contains a finite number of issues,
and divisibility, saying that for each X ∈ A and each X 0 ⊆ X, X 0 ∈ A. By divisibility,
A also represents the set of alternatives. For each pair X,X 0 ∈ A, X and X 0 are linked
if there are k ∈ N agendas X1, · · · , Xk ∈ A such that X ∩ X1 6= ∅, X1 ∩ X2 6= ∅,
· · · , Xk−1 ∩Xk 6= ∅, and Xk ∩X 0 6= ∅. Finally, we assume connectedness, saying that
every two agendas in A are linked. Our results can be extended to the case without
connectedness.3

A preference of agent i ∈ N , denoted generically by Ri, is a complete and transitive
binary relation overA. As in BSZ, we focus on the following special type of preferences.
A preference Ri is separable if for each X ∈ A and each x ∈ X, (i) X Pi X\{x} if
and only if {x} Pi ∅; (ii) X Ii X\{x} if and only if {x} Ii ∅, where Pi and Ii denote
the strict and indifferent parts of Ri, respectively. Let S be the collection of separable
preferences. A preference Ri is strict if for each pair of distinct alternatives X,Y ∈ A,
either X Pi Y or Y Pi X. Clearly, for strict preferences, part (ii) does not apply, and
so our separability property coincides with that separability property considered by
BSZ. Let SStrict be the collection of strict separable preferences. Examples of separable
preferences are additive preferences. Such a relation for agent i is represented by a
function ui : A → R in the following way: for each pair X,X 0 ∈ A, X Ri X

0 if and
only if

P
x∈X ui (x) ≥

P
x∈X0 ui (x), where

P
x∈X ui (x) = 0 when X = ∅.4 Let SAdd be

the collection of additive preferences.
A collective choice problem, or briefly a problem, is characterized by a profile of

preferences in SN and an agenda in A. Thus, we may denote the collection of problems
by the Cartesian product V ≡ SN×A. A rule is a function ϕ : V → A associating with
each problem (R,X) ∈ V a single alternative that is a subset of the agenda X. We
call V the separable domain. Similarly, we call VAdd ≡ SN

Add ×A the additive domain,
and VStrict ≡ SStrict ×A the strict separable domain.

Families of Voting Rules

We next define families of rules that are important in this paper. They are based on
the following simple information about preferences. For each R ∈ SN and each a ∈ A,

3The earlier version of this article, Chapter 7 of Ju (2001), considers an agenda domain without
connectedness.

4Let X ∈ A and x ∈ X. If X Pi X\{x}, then
P

y∈X ui (y) >
P

y∈X\{x} ui (y), that is, ui (x) > 0.
This means {x} Pi ∅. On the other hand, if {x} Pi ∅, then ui (x) > 0, which implies

P
y∈X ui (y) >P

y∈X\{x} ui (y). Thus X Pi X\{x}. Hence X Pi X\{x} if and only if {x} Pi ∅. Similarly, we can
show that X Ii X\{x} if and only if {x} Ii ∅. Therefore, additive preference Ri is separable.
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let
N+

a (R) ≡ {i ∈ N : {a} Pi ∅} and N−
a (R) ≡ {i ∈ N : ∅ Pi {a}}.

Issue a ∈ A is a good for Ri if i ∈ N+
a (R), a bad for Ri if i ∈ N−

a (R), and a null for
Ri, if i /∈ N+

a (R) ∪ N−
a (R). When a is a null for Ri, agent i is indifferent between

having a and not having a, that is, for each X ∈ A with a ∈ X, X Ii X\{a}. Let

Null (R) ≡ {a ∈ A : for each i ∈ N , a is a null for Ri}

be the set of nulls for all agents at R.
A rule ϕ : V → A satisfies votes-only if for each pair R,R0 ∈ SN and each X ∈

A such that for each x ∈ X, N+
x (R) = N+

x (R
0) and N−

x (R) = N−
x (R

0), we have
ϕ (R,X) = ϕ (R0,X). A weaker condition is votes-onlyo, saying that for each pair
R,R0 ∈ SN and each X ∈ A such that for each x ∈ X, N+

x (R) = N+
x (R

0) and
N−

x (R) = N−
x (R

0), if y ∈ X\Null (R), y ∈ ϕ(R,X) if and only if y ∈ ϕ(R0, X).5 Note
that when a rule satisfies votes-onlyo, the decision on each non-null issue x can be
implemented through a voting procedure in which agents may vote on x positively or
negatively, or they may abstain. Thus, we call it a voting rule.
We next define families of voting rules that are similar to the family known as

“voting by committees” (BSZ). For these rules, the decision on each issue is made
according to a predetermined set of ordered pairs of disjoint groups, called a “power
structure”. Each issue x is accepted if and only if the group of “supporters”, N+

x (R),
and the group of “objectors”, N−

x (R), constitute a pair in the power structure. Let
C̄ ≡ {(C1, C2) : C1, C2 ⊆ N and C1 ∩C2 = ∅} be the set of all pairs of disjoint groups.
A power structure is a subset of C̄. Given a power structure C ⊆ C̄, we say that C1
overpowers C2 if (C1, C2) ∈ C. A profile of power structures is a list (Cx)x∈A of power
structures indexed by issues.6

Definition (Families Φ and Φo). A rule ϕ belongs to the Family Φ if it can be
represented by a profile of power structures (Cx)x∈A as follows: for each (R,X) ∈ V
and each x ∈ X,

x ∈ ϕ (R,X) if and only if
¡
N+

x (R) , N
−
x (R)

¢ ∈ Cx.
A rule ϕ belongs to the Family Φo if there is ϕ0 ∈ Φ such that for each (R,X) ∈ V and
each x ∈ X\Null (R),

x ∈ ϕ (R,X) if and only if x ∈ ϕ0 (R,X) .

5For strict separable preferences, votes-only and votes-onlyo are identical and coincide with “tops-
only” by BSZ.

6The definition is due to Ju (2003).
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In this case, we say that ϕ coincides, except for nulls, with ϕ0.7

A profile (Cx)x∈A satisfies monotonicity, if for each x ∈ A, whenever group C1
overpowers group C2, each supergroup of C1 also overpowers each disjoint subgroup of
C2: that is, for each x ∈ A and each (C1, C2) ∈ Cx, if (C 0

1, C
0
2) ∈ C̄ is such that C 0

1 ⊇ C1
and C 0

2 ⊆ C2, then (C 0
1, C

0
2) ∈ Cx.

Definition (Families Φm and Φom). Family Φm is composed of rules in Φ represented
by a monotonic profile (Cx)x∈A. Family Φom is composed of rules that coincide, except
for nulls, with rules in Φm.

For example, plurality rule is the rule in Φm, represented by the following profile
(Cx)x∈A: for each x ∈ A, (C1, C2) ∈ Cx if and only if |C1| > |C2|.8
We next define rules that embody the most extreme form of discrimination among

agents. For each X ⊆ A and each Ri ∈ S, let Max[Ri : X ] ≡ {Y ∈ X : for each
Y 0 ∈ X , Y Ri Y

0} be the set of best alternatives for Ri in X . A rule ϕ is dictatorial if
there is i ∈ N such that for each (R,X) ∈ V, ϕ (R,X) ∈Max[Ri : 2

X ]. Let π : N → N

be a permutation on N . Let R ∈ SN . Let M1(R,X, π) ≡ Max[Rπ(1) : 2
X ]. For each

k ∈ {2, · · · , n}, let Mk(R,X, π) ≡ Max[Rπ(k) : M
k−1(R,X, π)]. A rule ϕ is serially

dictatorial if there is a permutation π on N such that for each (R,X) ∈ V and each
k ∈ N , ϕ(R) ∈ Mk(R,X, π). Note that if ϕ is a serially dictatorial rule in Φ and is
associated with permutation π : N → N , then ϕ is represented by the profile (Cx)x∈A
such that for each x ∈ X and each pair of disjoint groups C1, C2 ⊆ N with C1, C2 6= ∅,
(C1, C2) ∈ Cx if and only if for some k ∈ {1, · · · , n}, π (k) ∈ C1 and for each k0 < k,

π (k0) /∈ C1 ∪ C2. It is easily shown that each serially dictatorial rule coincides, except
for nulls, with a serially dictatorial rule in Φ.

3 Axioms

We are interested in rules satisfying the following axioms. First, it should not be
possible to make an agent better off without making someone else worse off.

Efficiency. For each (R,X) ∈ V, there is no Y ⊆ X such that for each i ∈ N, Y Ri

ϕ(R,X) and for some j ∈ N, Y Pj ϕ(R,X).

The next axiom says that no one should ever benefit by misrepresenting his prefer-
ences, independently of the others’ announcements. This axiom is studied by BSZ in

7A larger family of rules can be defined by using extended profiles of power structures¡
(Cx,X)x∈X

¢
X∈A that may vary across agendas.

8Samet and Schmeidler (2003) call this rule “majority rule” on a simple domain without any null
issue (when there is no null for anyone, plurality means majority). Likewise, on the domain of strict
separable preferences, we will use the two terms, majority and plurality, interchangeably. This rule
belongs to the family of rules which BSZ call voting by quota.
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the fixed agenda model with strict separable preferences.

Strategy-Proofness. For each (R,X) ∈ V and each i ∈ N , there is no R0i ∈ S such
that ϕ ((R0i, R−i) ,X) Pi ϕ (R,X) .

For each (R,X) ∈ V, agent i ∈ N is a dummy (player) at (R,X) if i is indifferent
between any two subsets of X, that is, for each pair Y, Y 0 ⊆ X, Y Ii Y

0. Note that
a dummy may rank infeasible alternatives, namely alternatives outside 2X , in various
ways. Now, consider two problems that only differ in the preference of a dummy.
Then, there is no reason for making different (in terms of welfare) choices for the two
problems.

Dummy Independence. For each pair (R,X) , (R0,X 0) ∈ V and each i ∈ N with
R−i = R0−i and X = X 0, if agent i is a dummy at both problems, then for each j ∈ N ,
ϕ (R,X) Ij ϕ (R

0, X 0).

Preferences in each problem (R,X) contain information on how agents rank infea-
sible alternatives. Some rules may depend on this information. Dummy independence
prevents rules from depending on the irrelevant information of a dummy’s preference.
Of course, one may wish to prevent rules to depend on the irrelevant information of
all agents (both dummies and non-dummies). To formally define such a requirement,
we use the following notation. For each pair Ri, R

0
i ∈ S and each X ∈ A, we write

Ri|X ≡ R0i|X if Ri and R0i rank alternatives in 2
X identically, that is, for each pair

Y, Y 0 ⊆ X, Y Ri Y
0 if and only if Y R0i Y

0. A rule ϕ satisfies independence (of irrel-
evant issues) if for each pair R,R0 ∈ SN and each X ∈ A, if Ri|X = Ri|X for each
i ∈ N , then ϕ (R,X) Ii ϕ (R

0,X) for each i ∈ N . Both dummy independence and
independence are stated in welfare terms. They could be stated in terms of set equal-
ity, replacing “for each i ∈ N , ϕ (R,X) Ii ϕ (R0, X)” with “ϕ (R,X) = ϕ (R0,X)”.
Obviously, this replacement strengthens the axioms.9

The next axiom says that the names of agents should not matter. Let π : N → N be
a permutation on N . For each R ∈ SN , let Rπ be such that for each i ∈ N, Rπ

i ≡ Rπ(i).

Anonymity.10 For each (R,X) ∈ V, each permutation π on N , and each i ∈ N ,

ϕ(R,X) Ii ϕ(R
π,X).

When all rules in a family violate anonymity, we may look for those members of the

9To explain why the axiom is stronger after the replacement, consider the following example. For
each i ∈ N , let {a} Ii {b} and R0i|{a,b} = Ri|{a,b}. Let ϕ (R, {a, b}) ≡ {a} and ϕ (R0, {a, b}) ≡ {b}.
Then for each i ∈ N , ϕ (R, {a, b}) Ii ϕ (R0, {a, b}), but ϕ (R, {a, b}) 6= ϕ (R0, {a, b}).
10A stronger formulation is strong anonymity saying that for each (R,X) ∈ V and each permutation

π on N , ϕ (R,X) = ϕ (Rπ,X). Our results involving anonymity do not hold with strong anonymity
because of nulls.
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family that minimally violate the property. We say that a rule ϕ violates anonymity
at (R,X) ∈ V if there are a permutation π : N → N and an agent i ∈ N such that
ϕ (R,X) Pi ϕ (R

π,X) or ϕ (Rπ, X) Pi ϕ (R,X).

Definition (Minimal Violation of Anonymity within Family Ψ). Given a family
of rules Ψ, a rule ϕ ∈ Ψ minimally violates anonymity within Ψ if for each (R,X) ∈ V,
whenever ϕ violates anonymity at (R,X), all other rules in Ψ also violate anonymity
at (R,X).

In concrete environments, some unforeseen features associated with institutional
specifications, informational imperfection, etc. may have an undesired impact on the
outcome of the rule adopted. This concern calls for robustness requirements. Several
axioms of this kind have been introduced in various models. Examples are “path in-
dependence” in the Arrovian social choice model (Plott 1973), its extension for social
choice functions (Kalai and Megiddo 1980), “composition up” and “composition down”
axioms in the model of claims adjudication (Thomson 2003), etc. The problems we
consider here often occur in organizations where provisions regulate how proposals or
issues are raised and agendas formed. These provisions enable some agents inside or
outside the organization to exert influence on agenda formation, in particular, sepa-
ration of some issues in an agenda from other issues. Our next axiom is a robustness
requirement associated with agenda division.
To motivate the axiom from a different angle, suppose that the members of a society

have chosen a decision from an agenda X. After the decision, however, they realize
that some issues have been missed or that some new issues have arisen. Denote the
set of these missed or newly raised issues by X 0. Some members may argue that the
original decision on X should be respected and X 0 should be considered independently
as a new agenda. Others may argue that a new decision should be made reconsidering
the whole set X ∪ X 0. The next axiom frees society from this potential conflict. It
requires rules not to depend on which perspective is taken.

Division Indifference. For each R ∈ SN , each disjoint pair X,X 0 ∈ A, and each
i ∈ N ,

ϕ (R,X ∪X 0) Ii [ϕ (R,X
0) ∪ ϕ (R,X)] .

Among the rules that depend only on preference information over feasible alter-
natives, those satisfying division indifference have the advantage of “informational
efficiency”. This is because dividing a large agenda into subagendas enables society
to solve its problem at a smaller informational cost (after an agenda division, prefer-
ence information associated with any set of two divided issues becomes irrelevant). Of
course, if the solution obtained after the agenda division differs from the solution for
the original problem, then this idea of dividing the agenda will be problematic. But,
this is not something society needs to worry about as long as it adopts a rule satisfying

7



division indifference.
Finally, note that since preferences are separable, division indifference is very easy

to satisfy. Indeed, any rule in Φo satisfies this axiom.

4 Results

We state first our preliminary results (Theorems 1-3) and the main result (Theorem 4)
on the separable domain. Then we state corollaries (Corollaries 2-4) on the strict
separable domain. All proofs are collected in Section 5. All our results on the separable
domain hold on the additive domain.
First is a characterization of the family of rules satisfying strategy-proofness, divi-

sion indifference, and dummy independence. This family is Φom.

Theorem 1. A rule on the separable domain satisfies strategy-proofness, division in-
difference, and dummy independence if and only if it coincides, except for nulls, with
a rule that is represented by a monotonic profile of power structures.

This theorem extends the possibility result by BSZ established on the strict sep-
arable domain (their Theorem 1). However, to deal with the difficulty caused by the
admissibility of non-strict preferences (Le Breton and Sen 1995), we have to rely on the
variable agenda feature of our model and division indifference. On the other hand, we
do not need the full-range condition, known also as “voter sovereignty”, which plays a
critical role in BSZ.
Adding efficiency, we obtain a dictatorship result parallel to one in BSZ (Theo-

rem 4).

Theorem 2. Assume that the agenda domain A has an agenda with at least three
issues. Then a rule on the separable domain satisfies strategy-proofness, division in-
difference, dummy independence, and efficiency if and only if it is serially dictatorial.

Remark 1. The two theorems characterize the same families of rules as in Theorems 1
and 2 by Ju (2003). This paper imposes strategy-proofness, votes-only, and “null-
independence” (a weaker version of the issue-wise voting property to be defined in
Section 6) in a fixed agenda model. The three axioms together with division indifference
will lead to similar results in our variable agenda model. In fact, it can be shown
that given division indifference, the three axioms in Ju (2003) are logically “almost”
equivalent to strategy-proofness and dummy independence (this can be proven using
Lemma 1).11 Note that our dummy independence is much weaker and has clearer

11The three axioms in Ju (2003) (defined in our variable agenda model) together imply dummy
independence but not division indifference. Strategy-proofness and dummy independence together
imply neither votes-only nor null-independence in Ju (2003). But given division indifference, this
implication almost holds, as we can show using Lemma 1: “almost” because we get votes-onlyo
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motivation than votes-only and null-independence.

By Theorem 2, no efficient rule satisfies strategy-proofness, division indifference,
dummy independence, and non-dictatorship. As stated in the assumption of the agenda
domain, this impossibility occurs because we require efficiency for problems whose
agendas contain more than two issues.
The next axiom restricts efficiency to agendas with at most two issues.

Restricted Efficiency. For each (R,X) ∈ V with |X| ≤ 2, there is no Y ⊆ X such
that for each i ∈ N , Y Ri ϕ(R,X) and for some j ∈ N, Y Pj ϕ(R,X).

We show that within rules in Φo, restricted efficiency implies monotonicity as well
as the following additional properties of power structures. A profile (Cx)x∈A satisfies
unanimity if for each x ∈ A and each non-empty S ⊆ N , (S, ∅) ∈ Cx and (∅, S) /∈ Cx.
It satisfies neutrality if for each pair x, y ∈ A, Cx = Cy. It satisfies duality if for each
x ∈ A and each (C1, C2) ∈ C̄ with (C1, C2) 6= (∅, ∅), (C1, C2) ∈ Cx if and only if
(C2, C1) /∈ Cx.
Theorem 3. A rule on the separable domain satisfies strategy-proofness, division in-
difference, dummy independence, and restricted efficiency if and only if it coincides,
except for nulls, with a rule that is represented by a profile of power structures satisfying
monotonicity, unanimity, duality, and neutrality.

Note that duality embodies a form of discrimination among agents; for example,
when two disjoint subsets C1, C2 ⊆ N have the same number of agents, different
decisions have to be made on x for (C1, C2) and for (C2, C1). Therefore, we obtain:

Corollary 1. No anonymous rule on the separable domain satisfies strategy-proofness,
division indifference, dummy independence, and restricted efficiency.

However, we show that there are rules that violate anonymity in a minimal way.
Our main result, Theorem 4, is a characterization of these rules. To define them, let
CTie ≡ {(C1, C2) ∈ C̄ : |C1| = |C2| 6= 0} be the set of pairs of disjoint non-empty
groups of the same size. A tie-breaking function is a function τ : CTie → {0, 1} such
that for each (C1, C2) ∈ CTie, either τ(C1, C2) = 1 or τ(C2, C1) = 1 but not both (or
equivalently, for each (C1, C2) ∈ CTie, τ(C1, C2) = 1 if and only if τ(C2, C1) = 0).
We call this property the tie-breaking condition. We now define a family of rules that
make the same decision as plurality rule on each issue unless the sets of supporters
and objectors have the same size. In that case, the decision on the issue relies on a
tie-breaking function. For example, there is a chair, say agent 1, who decides which one
of the tied groups wins, that is, for each (C1, C2) ∈ CTie with 1 ∈ C1∪C2, τ (C1, C2) = 1
instead of votes-only. Division indifference in our variable agenda model plays a similar role to the
combination of votes-only and null-independence in the fixed agenda model of Ju (2003).
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if and only if 1 ∈ C1.12

Definition (TBD-Plurality Rules). A rule is a “tie-breaking-discrimination-plurality
rule”, briefly, a TBD-plurality rule associated with a tie-breaking function τ , denoted
by TBDτ , if for each (R,X) ∈ V and each x ∈ X,

(i) when |N+
x (R)| 6= |N−

x (R)|,

x ∈ TBDτ(R,X) if and only if |N+
x (R)| > |N−

x (R)|;

(ii) when |N+
x (R)| = |N−

x (R)|,

x ∈ TBDτ(R,X) if and only if τ
¡
N+

x (R), N
−
x (R)

¢
= 1.

Although plurality rule is very close to all TBD-plurality rules, it is not one of these
rules. Clearly, all profiles of power structures representing TBD-plurality rules satisfy
monotonicity, unanimity, and neutrality. By the condition imposed in the definition
of tie-breaking functions, they also satisfy duality. And because of duality, the TBD-
plurality rules violate anonymity. However, violations occur only when the sets of
supporters and objectors for an issue have the same size, which is exactly when all
rules represented by a profile of power structures with duality violate anonymity. This
is why we speak of minimal violations of anonymity.

Theorem 4. A rule on the separable domain minimally violates anonymity within
rules satisfying strategy-proofness, division indifference, dummy independence, and
restricted efficiency if and only if it coincides, except for nulls, with a TBD-plurality
rule.

We next establish the independence of our axioms in this theorem.

Example 1 (Dropping strategy-proofness). We define a rule that satisfies di-
vision indifference, dummy independence, and restricted efficiency and that violates
anonymity at least as rarely as any TBD-plurality rule. This will show that Theorem 4
fails without strategy-proofness. Assume that A is finite and A ≡ 2A. Let τ be a tie-
breaking function. Let ϕ be defined as follows. For each R ∈ SN , if {Y ⊆ A : for each
i ∈ N , Y Ii TBD

τ(R,A)}\{Y ⊆ A : Y \Null (R) = TBDτ (R,A) \Null (R)} 6= ∅, pick
any element from this set and call it Y (R,A). If this set is empty, let Y (R,A) ≡
TBDτ (R,A). Thus, when Y (R,A) 6= TBDτ (R,A), there are non-null issues in
Y (R,A) \TBDτ (R,A) or TBDτ (R,A) \Y (R,A). For each R ∈ SN , let ϕ (R,A) ≡
Y (R,A). For each (R,X) ∈ V with X 6= A, let ϕ (R,X) ≡ TBDτ (R,X). Then, since

12To complete the definition of such a tie-breaking function, we need to specify a priorty ordering
π of agents, say, π (1) = 1, · · · , π (n) = n. Then for each (C1, C2) ∈ CTie , whenever 1 /∈ C1 ∪ C2
and 2 ∈ C1 ∪ C2, τ (C1, C2) = 1 if and only if 2 ∈ C1. Whenever 1, 2 /∈ C1 ∪ C2 and 3 ∈ C1 ∪ C2,
τ (C1, C2) = 1 if and only if 3 ∈ C1. We proceed in this way, according to π.
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for each (R,X) ∈ V, ϕ (R,X) Ii TBDτ (R,X), ϕ violates anonymity at least as rarely
as any TBD-plurality rule. It is easy to show that ϕ satisfies division indifference,
dummy independence, and restricted efficiency. But ϕ violates strategy-proofness. To
see this, suppose that R ∈ S is such that Y (R,A) = ∅ and TBDτ (R,A) = A. Let
i ∈ N and R0i be such that Y (R

0
i, R−i, A) = A and ∅ P 0i A. Then ϕ (R,A) = ∅ P 0

i

ϕ (R0i, R−i, A) = A.

Example 2 (Dropping division indifference). Let ϕ be a rule that coincides with
a TBD-plurality rule if the agenda has at most two issues and with an anonymous rule
(such as plurality rule) in Φm otherwise. Then ϕ violates division indifference. Since ϕ
satisfies anonymity for any problem with more than two issues, ϕ violates anonymity
less often than any TBD-plurality rule.

Example 3 (Dropping dummy independence). For simplicity, let us assume
N ≡ {1, 2, 3}. Define a tie-breaking function τ 1 as follows. For each i = 2, 3, let
τ 1 ({1}, {i}) ≡ 1 and τ 1 ({i}, {1}) ≡ 0. Let τ 1 ({2}, {3}) ≡ 1 and τ 1 ({3}, {2}) ≡ 0. De-
fine another tie-breaking function τ 2 as follows. For each i = 2, 3, let τ 2 ({1}, {i}) ≡ 1
and τ 2 ({i}, {1}) ≡ 0. Let τ 2 ({3}, {2}) ≡ 1 and τ 2 ({2}, {3}) ≡ 0. Let a, b ∈ A. For
each (R,X) ∈ V, let ϕ be defined as follows:

ϕ (R,X) ≡
½

TBDτ1 (R,X) , if {a} P1 {b},
TBDτ2 (R,X) , otherwise.

Thus ϕ depends on the ordering between {a} and {b}, even if both a and b are not
in the agenda. So ϕ violates dummy independence. It is easy to show that ϕ satisfies
division indifference and restricted efficiency, and that ϕ violates anonymity at least as
rarely as any TBD-plurality rule. To show strategy-proofness, it is enough to consider
agent 1. Let (R,X) be such that {a} P1 {b} (the same argument applies for the other
case). If there is x ∈ X such that (N+

x (R) , N
−
x (R)) = ({1}, {i}) or ({i}, {1}) for some

i = 2, 3, then the decision on x is made according to whether it is a good or a bad for
agent 1. Thus agent 1 has no incentive to misrepresent his preference. If there is no
such issue, then for each x ∈ X, either x is a null for R1 or |N+

x (R) | 6= |N−
x (R) |. In

the former case, agent 1 is indifferent to the decision on x. In the latter case, if agent 1
is in the larger group between N+

x (R) and N−
x (R), he has no incentive to change the

decision on x; if agent 1 is in the smaller group, he has no power to change the decision
on x.

Example 4 (Dropping restricted efficiency). Let (Cx)x∈A be a profile of power
structures satisfying monotonicity and for each x ∈ A, if (C1, C2) and (C 0

1, C
0
2) are

pairs of disjoint subsets of N with |C1| = |C 0
1| and |C2| = |C 0

2|, then

(C1, C2) ∈ Cx if and only if (C 0
1, C

0
2) ∈ Cx.
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Let ϕ be the rule represented by (Cx)x∈A, called a counting rule (Ju 2003). It is easy
to show that ϕ satisfies the remaining four axioms.

Example 5 (Dropping anonymity). Any rule ϕ in the family characterized in
Theorem 3 satisfies the remaining four axioms.

Strict Separable Preferences

Next are three corollaries of Theorems 1 and 4 on the strict separable domain VStrict.
If preferences are strict, there is no dummy. Thus dummy independence is satisfied
vacuously by any rule, and our corollaries are stated without this axiom.
We first define a family of rules introduced by BSZ in a fixed agenda model. We

extend their definition to our variable agenda model.

Definition (Voting by Committees). A rule ϕ is a scheme of voting by committees
if for each x ∈ A, there is a nonempty collection Cx of groups of agents such that (i)
for each C0 ∈ Cx and each C 0

0 ⊇ C0, C
0
0 ∈ Cx; (ii) for each (R,X) ∈ V, x ∈ ϕ (R,X) if

and only if N+
x (R) ∈ Cx.13

We call Cx the committee structure for x. Any scheme of voting by committees
ϕ represented by a profile (Cx)x∈A can also be represented by the profile of power
structures (Cx)x∈A defined as follows: for each x ∈ A, let Cx ≡ {(C1, C2) ∈ C̄ : C1 ∈ Cx,
C2 ⊆ N\C1}. By condition (i), (Cx)x∈A satisfiesmonotonicity. Hence schemes of voting
by committees are in Φm. It is easy to show that the converse inclusion also holds on
the strict separable domain VStrict, because any pair of disjoint groups (C1, C2) with
C1 ∪ C2 6= N is useless.
Applying the same argument as that used for proving Theorem 1, we obtain:

Corollary 2. A rule on the strict separable domain satisfies strategy-proofness and
division indifference if and only if it is a scheme of voting by committees.

Majority rule (Samet and Schmeidler 2003) is the scheme of voting by committees
represented by (Cx)x∈A such that for each x ∈ A and each C0 ⊆ N , C0 ∈ Cx if and only
if |C0| ≥ (n+ 1) /2. On the strict separable domain VStrict, majority rule coincides with
plurality rule. So, we can use the two terms interchangeably. For the same reason, we
call each TBD-plurality rule as a TBD-majority rule.
Adding restricted efficiency and anonymity, we obtain:

Corollary 3. A rule on the strict separable domain minimally violates anonymity
within rules satisfying strategy-proofness, division indifference, and restricted efficiency
if and only if it is a TBD-majority rule.

13Our definition of voting by committees is slightly weaker than the definition by BSZ. To get their
definition, we need to add the following: for each x ∈ A, ∅ /∈ Cx.
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When the number of agents is odd, there is no need for tie-breaking. Thus, majority
rule is the only TBD-majority rule. Therefore, we obtain:

Corollary 4. When the number of agents is odd, a rule on the strict separable domain
satisfies strategy-proofness, division indifference, restricted efficiency, and anonymity
if and only if it is majority rule.

5 Proofs

We use the following additional properties of rules. A rule ϕ satisfies division invariance
if for each (R,X) ∈ V and each X 0 ⊆ X, ϕ (R,X 0) ∪ ϕ (R,X\X 0) = ϕ (R,X) .14 It
satisfies division invarianceo if for each (R,X) ∈ V, each i ∈ N , each x ∈ X\Null (R),
and each X 0 ⊆ X, x ∈ ϕ (R,X 0) ∪ ϕ (R,X\X 0) if and only if x ∈ ϕ (R,X). For each
(R,X) ∈ V and each i ∈ N , let

G (Ri,X) ≡ {x ∈ X : {x} Pi ∅} and B(Ri,X) ≡ {x ∈ X : ∅ Pi {x}}

be the set of goods and the set of bads in X for Ri, respectively.
We first establish two useful lemmas.

Lemma 1. Strategy-proofness, division indifference, and dummy independence to-
gether imply division invarianceo, votes-onlyo, and independence.

Proof. Let ϕ be a rule satisfying strategy-proofness, division indifference, and dummy
independence. We first show that ϕ satisfies division invarianceo and then, that ϕ
satisfies votes-onlyo. Finally, independence follows directly from votes-onlyo. Let
(R,X) ∈ V be such that |X| ≥ 2. By division indifference, for each i ∈ N ,

ϕ (R,X) Ii
S
x∈X

ϕ (R, {x}) .

Suppose by contradiction that there is a ∈ X\Null (R) such that a ∈ ϕ (R,X) \ϕ(R, {a})
or a ∈ ϕ(R, {a})\ϕ(R,X). Consider the case a ∈ ϕ (R,X) \ϕ(R, {a}) (the same ar-
gument applies for the other case). Since a /∈ Null (R), there is j ∈ N for whom a is
either a good or a bad for Rj. Assume {a} Pj ∅ (the same argument applies when ∅ Pj

{a}). Let R0j be such that G(R0j, X) = G(Rj,X), B(R0j ,X) = B(Rj,X), and for each
pair Y, Y 0 ⊆ X\{a},

Y ∪ {a} P 0j Y 0 or Y 0 P 0
j Y ∪ {a}, (†)

14This is similar to Plott’s (1973) path independence, which can be formulated as follows: for each
R ∈ SN and each X,Y ∈ A, ϕ(R,X ∪ Y ) = ϕ(R,ϕ(R,X) ∪ ϕ(R, Y )). Division invariance implies
path independence but the converse is not true.
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and
if Y ∪ {a} Rj Y

0, Y ∪ {a} P 0
j Y

0.15 (††)
Let x ∈ X. If x ∈ G(Rj,X) ∪ B(Rj,X), then since G(R0j, X) = G(Rj,X) and
B(R0j, X) = B(Rj,X), by strategy-proofness, ϕ(R0j, R−j, {x}) = ϕ(R, {x}). If x /∈
G(Rj,X) ∪ B(Rj, X), then since j is a dummy for both (R0j, R−j, {x}) and (R, {x}),
by dummy independence, ϕ(R0j, R−j, {x}) Ii ϕ(R, {x}) for each i ∈ N . Thus, for
each x ∈ X\Null (R), ϕ(R0j, R−j, {x}) = ϕ(R, {x}). Since a /∈ Sx∈X ϕ (R, {x}) and
a /∈ Null (R), a /∈ Sx∈X ϕ

¡
R0j, R−j, {x}

¢
. On the other hand, by division indifference,

ϕ
¡
R0j, R−j, X

¢
I 0j

S
x∈X

ϕ
¡
R0j, R−j, {x}

¢
. (†††)

Thus by (†) and (†††), a /∈ ϕ
¡
R0j, R−j, X

¢
. Then since a ∈ ϕ (R,X), again by (†),

ϕ (R,X) P 0j ϕ
¡
R0j, R−j,X

¢
or ϕ

¡
R0j, R−j, X

¢
P 0
j ϕ (R,X) .

In the latter case, by (††), ϕ ¡R0j, R−j, X¢ Pj ϕ (R,X). Thus, ϕ (R,X) P 0
j ϕ
¡
R0j, R−j,X

¢
or ϕ

¡
R0j, R−j,X

¢
Pj ϕ (R,X), contradicting strategy-proofness.

Therefore for each a ∈ X\Null (R), a ∈ ϕ (R,X) if and only if a ∈ ϕ (R, {a}). This
shows that ϕ satisfies division invarianceo.

To show votes-onlyo, let R,R0 ∈ SN and X ∈ A be such that for each i ∈ N ,
G (Ri, X) = G (R0i,X) and B (Ri, X) = B (R0i,X). Assume x ∈ X\Null (R) (and
x ∈ X\Null (R0)). By division invarianceo, x ∈ ϕ (R,X) if and only if x ∈ ϕ (R, {x}).
Similarly, x ∈ ϕ (R0,X) if and only if x ∈ ϕ (R0, {x}). Applying strategy-proofness
and dummy independence, and changing Ri into R0i for each i ∈ N , we deduce that
x ∈ ϕ (R, {x}) if and only if x ∈ ϕ (R0, {x}). Thus, x ∈ ϕ (R,X) if and only if
x ∈ ϕ(R0, X).

Lemma 2. A rule satisfies division invarianceo and votes-onlyo if and only if it is in
Φo.

Proof. It is easy to show that each rule in Φo satisfies division invarianceo and votes-
onlyo. Conversely, let ϕ be a rule satisfying the two axioms. For each x ∈ A, let
Cx ≡ {(C1, C2) ∈ C̄ : (C1, C2) ≡ (N+

x (R) , N
−
x (R)) and x ∈ ϕ (R, {x}), for some

R ∈ SN}. We show that ϕ coincides, except for nulls, with the rule ϕ̂ that is represented
by (Cx)x∈A. Let (R,X) ∈ V. Let x ∈ X\Null (R). Suppose x ∈ ϕ (R,X). Then
by division invarianceo, x ∈ ϕ (R, {x}) and so (N+

x (R) , N
−
x (R)) ∈ Cx. Hence x ∈

ϕ̂ (R,X). Conversely, let x ∈ ϕ̂ (R,X). Then (N+
x (R) , N

−
x (R)) ∈ Cx. Hence for

15For example, let R0j be such that G(R
0
j ,X) = G(Rj ,X), B(R0j ,X) = B(Rj ,X), and for each

Y, Y 0 ⊆ X\{a}, Y ∪ {a} P 0j Y 0. That is, for R0j , having a is always better than not having a,
independently of other issues.
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some R0 ∈ SN , (N+
x (R

0) , N−
x (R

0)) = (N+
x (R) , N

−
x (R)) and x ∈ ϕ (R0, {x}). By

votes-onlyo, x ∈ ϕ (R, {x}). By division invarianceo, x ∈ ϕ (R,X).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let ϕ be a rule in Φom. Then there is ϕ̂ ∈ Φm that coincides,
except for nulls, with ϕ. Let (Cx)x∈A be the monotonic profile representing ϕ̂. Since
ϕ̂ satisfies division invariance, ϕ satisfies division indifference. Since ϕ̂ satisfies inde-
pendence, ϕ satisfies independence and so dummy independence. To prove strategy-
proofness, let (R,X) ∈ V. Let i ∈ N. Let R0i ∈ S. If x ∈ ϕ̂ (R0i, R−i, X) ∩ G (Ri, X),
then since x ∈ G (Ri,X), by monotonicity, x ∈ ϕ̂ (R,X). Thus,

ϕ̂ (R0i, R−i,X) ∩G (Ri,X) ⊆ ϕ̂ (R,X) ∩G (Ri,X) . (B)

If x ∈ B (Ri,X)∩ϕ̂ (R,X), then since x ∈ B (Ri, X), bymonotonicity, x ∈ ϕ̂ (R0i, R−i,X).
Thus,

ϕ̂ (R0i, R−i,X) ∩B (Ri,X) ⊇ ϕ̂ (R,X) ∩B (Ri,X) . (BB)

Let Y be the set of nulls for Ri in ϕ̂ (R,X). Let Y 0 be the set of nulls for Ri in
ϕ̂ (R0i, R−i, X). By (B), (BB), and separability, ϕ̂ (R,X) \Y Ri ϕ̂ (R

0
i, R−i,X) \Y 0. Since

all issues in Y or Y 0 are nulls for Ri, then by separability, ϕ̂ (R,X) Ri ϕ̂ (R
0
i, R−i, X).

Thus, ϕ (R,X) Ri ϕ (R
0
i, R−i, X).

To prove the converse, let ϕ be a rule satisfying strategy-proofness, division indif-
ference, and dummy independence. Then by Lemma 1, ϕ satisfies division invarianceo

and votes-onlyo. Hence by Lemma 2, there is ϕ̂ ∈ Φ such that ϕ̂ coincides, except for
nulls, with ϕ. Let (Cx)x∈A be the profile representing ϕ̂. To show that (Cx)x∈A satisfies
monotonicity, let x ∈ A and (C1, C2) ∈ Cx. Let R ∈ SN be such that N+

x (R) = C1
and N−

x (R) = C2. Then ϕ(R, {x}) = {x}. For each i /∈ C1 ∪C2, if (C1 ∪ {i}, C2) /∈ Cx,
then for each R0i ∈ S with {x} P 0

i ∅, ϕ (R0i, R−i, {x}) = ∅ and ϕ (R, {x}) = {x}.
Then ϕ (R, {x}) P 0

i ϕ (R
0
i, R−i, {x}), contradicting strategy-proofness. Thus, for each

i /∈ C1 ∪ C2,
(C1 ∪ {i}, C2) ∈ Cx. (†)

By the same argument, for each i ∈ C2,

(C1, C2\{i}) ∈ Cx. (††)

It is easy to show that (†) and (††) together imply monotonicity.
Lemma 3. Given a rule ϕ ∈ Φo, the following are equivalent:
(i) Rule ϕ satisfies restricted efficiency.
(ii) There is a profile of power structures (Cx)x∈A satisfying monotonicity, unanimity,
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neutrality, and duality, such that ϕ coincides, except for nulls, with the rule that is
represented by (Cx)x∈A.

Proof. Let ϕ be a rule in Φo. Let ϕ̂ be the rule in Φ with representation (Cx)x∈A.
Assume that ϕ and ϕ̂ coincide, except for nulls, with each other. The proof is in two
steps.

Step 1 : (ii) implies (i).

Assume that (Cx)x∈A satisfies monotonicity, unanimity, neutrality, and duality. By
unanimity, no alternative in each singleton agenda problem Pareto dominates the choice
made by ϕ. So, we only have to consider agendas with two issues. Let X ≡ {a, b}. Let
R ∈ SN . We show, case by case, that no subset of X Pareto dominates ϕ(R,X).

Case 1 : ϕ(R,X) = ∅. Then (N+
a (R), N

−
a (R)) /∈ Ca and (N+

b (R), N
−
b (R)) /∈ Cb.

Hence by duality, (N−
a (R), N

+
a (R)) ∈ Cb and (N−

b (R), N
+
b (R)) ∈ Ca. Thus, N−

a (R) 6⊆
N+

b (R) or N
+
a (R) 6⊇ N−

b (R). Let i ∈ N−
a (R)\N+

b (R) or i ∈ N−
b (R)\N+

a (R). Then ∅
Pi {a, b}. Since there is at least one such i, then {a, b} does not Pareto dominate ∅.
Clearly, neither {a} nor {b} Pareto dominates ∅ (if {a} does, then a should have been
chosen because of unanimity).

Case 2 : ϕ(R,X) = {a} or {b}. Let ϕ(R,X) = {a} (a similar argument applies to
the case ϕ(R,X) = {b}). Suppose that for each i ∈ N, {b} Ri {a} and for some j ∈ N,

{b} Pj {a}. Then clearly, N+
b (R) ⊇ N+

a (R) and N
−
b (R) ⊆ N−

a (R). Hence by neutrality,
(N+

b (R), N
−
b (R)) ∈ Cb and so b ∈ ϕ(R), contradicting the assumption. Thus {b} does

not Pareto dominate {a}. If ∅ Pareto dominates {a}, then a should not have been
chosen because of unanimity. If {a, b} Pareto dominates {a}, then b should have been
chosen. Thus, no alternative Pareto dominates {a}.
Case 3 : ϕ(R) = {a, b}. Then (N+

a (R), N
−
a (R)) ∈ Ca and (N+

b (R), N
−
b (R)) ∈ Cb.

Hence by duality, (N−
a (R), N

+
a (R)) 6∈ Cb and (N−

b (R), N
+
b (R)) 6∈ Ca. Thus, N+

a (R) 6⊆
N−

b (R) or N
−
a (R) 6⊇ N+

b (R). Let i ∈ N+
a (R)\N−

b (R) or i ∈ N+
b (R)\N−

a (R). Then {a, b}
Pi ∅. Since there is at least one such i, then ∅ does not Pareto dominate {a, b}. Clearly,
neither {a} nor {b} Pareto dominates {a, b} (if {a} or {b} does, then a or b should not
have been chosen because of unanimity).

Step 2 : (i) implies (ii).

Unanimity of (Cx)x∈A follows immediately from restricted efficiency. In the next
three substeps, we show neutrality, duality, andmonotonicity, successively. LetX ∈ A
be an agenda with at least two issues, say x, y.

Substep 2.1 : Neutrality. Without loss of generality, we may assume that (∅, ∅) ∈ Cx
if and only if (∅, ∅) ∈ Cy.16 We now show Cx\{(∅, ∅)} = Cy\{(∅, ∅)}. Let (C1, C2) ∈
16When (∅, ∅) ∈ Cx and (∅, ∅) /∈ Cy, we can change Cy to Cy ∪ {(∅, ∅)} or change Cx to Cx\{(∅, ∅)}.
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Cx\ {(∅, ∅)}. Suppose (C1, C2) /∈ Cy. Then there isR ∈ SN such that (N+
x (R), N

−
x (R)) =

(N+
y (R), N

−
y (R)) ≡ (C1, C2) and for each i ∈ C1 ∪ C2, {y} Pi {x}. Then since

(C1, C2) ∈ Cx\Cy, ϕ(R, {x, y}) ≡ {x}. Since everyone weakly prefers {y} to {x} and all
agents in C1∪C2, which is non-empty, prefer {y} to {x}, then we have a contradiction
to restricted efficiency. Thus, Cx\{(∅, ∅)} ⊆ Cy\{(∅, ∅)}. The proof of the opposite
inclusion is similar. To complete the proof, we use the connectedness assumption on
the agenda domain.

Substep 2.2 : Duality. By neutrality, we may suppose that C0 ≡ Cx for each x ∈ A.
We show that for each (C1, C2) ∈ C̄ with (C1, C2) 6= (∅, ∅), (C1, C2) ∈ C0 if and only
if (C2, C1) /∈ C0. Suppose to the contrary that (C1, C2) ∈ C0 and (C2, C1) ∈ C0.
Let R ∈ SN be such that (N+

x (R), N
−
x (R)) ≡ (C1, C2), (N+

y (R), N
−
y (R)) ≡ (C2, C1),

and for each i ∈ C1 ∪ C2, ∅ Pi {x, y}. Then since (C1, C2) ∈ C0 and (C2, C1) ∈ C0,
ϕ̂(R, {x, y}) ≡ {x, y}. Since everyone weakly prefers ∅ to {x, y} and all agents in
C1∪C2, which is nonempty, prefer ∅ to {x, y}, then we have a contradiction to restricted
efficiency.

Substep 2.3 : Monotonicity. Let (C1, C2) ∈ C0 and (C 0
1, C

0
2) ∈ C̄ be such that C 0

1 ⊇
C1 and C 0

2 ⊆ C2. Suppose, by contradiction, that (C 0
1, C

0
2) /∈ C0. By duality, (C 0

2, C
0
1) ∈

C0. Since C 0
1 ⊇ C1 and C 0

2 ⊆ C2, then there is R ∈ SN such that (N+
x (R) , N

−
x (R)) =

(C1, C2),
¡
N+

y (R) , N
−
y (R)

¢
= (C 0

2, C
0
1), for each i ∈ C 0

1 ∪ C2, ∅ Pi {x, y}, and for each
i /∈ C 0

1 ∪ C2, ∅ Ii {x, y}. Since (C1, C2) ∈ C0 and (C 0
2, C

0
1) ∈ C0, then ϕ (R, {x, y}) =

{x, y}. Then by construction of R, ∅ Pareto dominates {x, y}, contradicting restricted
efficiency.

A rule satisfies issue-wise monotonicity if for each (R,X) ∈ V, each R0 ∈ SN , and
each x ∈ X satisfying N+

x (R) ⊆ N+
x (R

0) and N−
x (R) ⊇ N−

x (R
0), x ∈ ϕ (R, x) implies

x ∈ ϕ (R0, x). For each agenda X ∈ A with at least three issues, each efficient and
issue-wise monotonic rule is serially dictatorial on the set of problems with agenda X
(Lemma 9 in Ju 2003). Let V(X) ≡ {(R,X) : R ∈ SN} be the subdomain of problems
with the fixed agenda X.

Lemma 4 (Ju 2003). If a rule satisfies efficiency and issue-wise monotonicity, then
for each X ∈ A with |X| ≥ 3, it is serially dictatorial on the fixed agenda subdomain
V (X).
Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Assume that A has at least one agenda with at least three
issues, say X. We will prove only the non-trivial direction. Let ϕ be a rule satisfy-
ing strategy-proofness, division indifference, dummy independence, and efficiency. By

Then the new profile of power structures represents another rule that still coincides, except for nulls,
with ϕ.
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Lemmas 1, 2, and 3, there is a profile (Cx)x∈A that satisfies monotonicity, unanim-
ity, neutrality, and duality, and ϕ coincides, except for nulls, with the rule ϕ̂ that is
represented by (Cx)x∈A.
Since ϕ̂ satisfies efficiency and objectwise monotonicity, then by Lemma 4, ϕ̂ is

serially dictatorial on the fixed agenda subdomain V (X). Thus, there is a permuta-
tion π : N → N such that for each R ∈ SN , each X 0 ⊆ X, and each k ∈ {2, · · · , n},
ϕ(R,X 0) ∈ Mk(R,X 0, π), where Mk(R,X 0, π) ≡ Max[Rπ(k) : M

k−1(R,X 0, π)] and
M1(R,X 0, π) ≡ Max[Rπ(1) : 2

X0
]. This implies that for each x ∈ X and each dis-

joint pair of non-empty groups C1, C2 ⊆ N, (C1, C2) ∈ Cx if and only if there is
k ∈ {1, · · · , n} such that π (k) ∈ C1 and for each k0 < k, π (k0) /∈ C1 ∪C2. By neutral-
ity, the same holds for Cy for each y ∈ A. Thus, ϕ̂ is serially dictatorial on the entire
domain V.
Proof of Theorem 3. Theorem 3 follows directly from Theorem 1 and Lemma 3.

We next prove the main result, Theorem 4.

Proof of Theorem 4. Let ϕ be a rule that coincides, except for nulls, with a TBD-
plurality rule ϕ̂. Note that each TBD-plurality rule is represented by a profile of power
structures that satisfies monotonicity, unanimity, neutrality, and duality. Thus, by
Theorem 3, ϕ̂ satisfies strategy-proofness, division indifference, dummy independence,
and restricted efficiency. Finally, we show that ϕ̂ (and ϕ)minimally violates anonymity
within the family of rules satisfying the four axioms.
Let (R,X) ∈ V. If for each x ∈ X, |N+

x (R) | 6= |N−
x (R) |, then the choice

made by ϕ coincides with the choice made by plurality rule. Since plurality rule
satisfies anonymity, ϕ̂ satisfies anonymity at (R,X). Now, suppose that there is
x ∈ X\Null (R) such that |N+

x (R) | = |N−
x (R) |. Then there is a permutation π

on N such that (N+
x (R

π) , N−
x (R

π)) = (N−
x (R) , N

+
x (R)) . By Theorem 3, each rule

ϕ0 satisfying strategy-proofness, division indifference, dummy independence, and re-
stricted efficiency coincides, except for nulls, with the rule ϕ̂0 that is represented by a
profile of power structures with duality. Because of duality, x ∈ ϕ0 (R,X) if and only
if x /∈ ϕ0 (Rπ,X). Since x /∈ Null (R), there is i ∈ N such that x is either a good or a
bad for Ri. Suppose that x is a good for Ri (the same argument applies when x is a
bad). Let R̄i ∈ S be such that G

¡
R̄i,X

¢
= G (Ri,X), B

¡
R̄i,X

¢
= B (Ri,X), and for

each pair Y, Y 0 ⊆ X\{x},

Y ∪ {x} P̄i Y
0 or Y 0 P̄i Y ∪ {x}. (B)

Let R̄ ≡ ¡R̄i, R−i
¢
. Then x ∈ ϕ0

¡
R̄,X

¢
if and only if x /∈ ϕ0

¡
R̄π,X

¢
. By (B), either

ϕ0
¡
R̄,X

¢
P̄i ϕ

0 ¡R̄π,X
¢
or ϕ0

¡
R̄π,X

¢
P̄i ϕ

0 ¡R̄,X¢. Thus, ϕ0 violates anonymity at
(R,X).
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In order to prove the converse, let ϕ be a rule that minimally violates anonymity
within rules satisfying strategy-proofness, division indifference, dummy independence,
and restricted efficiency. By Theorem 3, ϕ coincides, except for nulls, with the rule
ϕ̂ that is represented by a profile of power structures (Cx)x∈A satisfying monotonicity,
unanimity, neutrality, and duality. Let (R,X) ∈ V. Suppose x ∈ X\Null (R) and
|N+

x (R) | 6= |N−
x (R) |. Then each TBD-plurality rule satisfies anonymity at (R, {x}).

Thus, ϕ̂ (and ϕ) also satisfies anonymity at (R, {x}). That is, for each permutation
π : N → N and each i ∈ N , ϕ̂ (R, {x}) Ii ϕ̂ (Rπ, {x}). Since x /∈ Null (R), ϕ̂ (R, {x}) =
ϕ̂ (Rπ, {x}). Now, using division invariance of ϕ̂, we obtain:
Condition A. For each (R,X) ∈ V, each x ∈ X\Null (R) with |N+

x (R) | 6= |N−
x (R) |,

and each permutation π : N → N , x ∈ ϕ̂ (R,X) if and only if x ∈ ϕ̂ (Rπ, X).

By neutrality, there is a power structure C0 such that for each x ∈ A, Cx = C0.

Without loss of generality, we may assume that (∅, ∅) /∈ C0.17

Claim 1. For each pair of disjoint groups C1, C2 ⊆ N with C1 ∪ C2 6= ∅ and
|C1| 6= |C2|, (C1, C2) ∈ C0 if and only if |C1| > |C2|.
Proof. Let (C1, C2) be given as above. In order to show that (C1, C2) ∈ C0 implies

|C1| > |C2|, suppose by contradiction that (C1, C2) ∈ C0 and |C1| < |C2|. Then by
Condition A and monotonicity, for each disjoint pairs, C 0

1 and C 0
2, if |C 0

1| ≥ |C1| and
|C 0
2| ≤ |C2|, then (C 0

1, C
0
2) ∈ C0. Thus (C2, C1) ∈ C0, contradicting duality.

In order to show the converse, suppose |C1| > |C2|. Then as shown above, (C2, C1) /∈
C0. Thus, by duality, (C1, C2) ∈ C0. ¤
We next consider pairs of disjoint groups of the same size. We skip the trivial proof

of Claim 2.

Claim 2. For each (C1, C2) ∈ CTie , (C1, C2) ∈ C0 if and only if there are R ∈ SN

and x ∈ A such that (|N+
x (R)|, |N−

x (R)|) = (C1, C2) and x ∈ ϕ̂(R, {x}).
Now, let τ be the tie-breaking function defined as follows: for each (C1, C2) ∈ CTie,

τ(C1, C2) = 1 if and only if (C1, C2) ∈ C0. Then by duality, τ satisfies the tie-breaking
condition and it is clear by construction that ϕ̂ = TBDτ .

Proof of Corollary 2. We only show the non-trivial direction. Let ϕ be a rule sat-
isfying strategy-proofness and division indifference. We first show that ϕ satisfies in-
dependence. Let X ∈ A and R,R0 ∈ SN

Strict be such that for each i ∈ N , Ri|X ≡ R0i|X0.
Let Y ≡ ϕ (R,X) and Y 1 ≡ ϕ ((R01, R−1) ,X). If Y 6= Y 1, then as preferences are
strict, Y P1 Y

1 or Y 1 P1 Y . In the former case, since R1|X ≡ R01|X , Y P 0
1 Y

1, agent 1
with true preference R01 is better off reporting R1; in the latter case, agent 1 with true

17If (∅,∅) ∈ C0, then we can define another rule that also coincides, except for nulls, with ϕ, by
using the power structure C0\{(∅,∅)}.
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preference R1 is better off reporting R01. This contradicts strategy-proofness. Thus,
Y = Y 1. Similarly, changing preferences of all other agents i ∈ N\{1} from Ri to R0i
successively, we can show that Y = Y 0.
Since preferences are strict, division indifference implies division invariance. Thus,

using Lemmas 1 and 2, we show that ϕ is represented by a profile of power structures
(Cx)x∈A. Since ϕ satisfies strategy-proofness, the profile (Cx)x∈A satisfies monotonicity.
Note that for strict preferences, only those elements (C1, C2) of Cx with C1 ∪ C2 = N

are used for defining ϕ. For each x ∈ A, let Cx ≡ {C1 ⊆ N : (C1, N\C1) ∈ Cx}. By
monotonicity of (Cx)x∈A, (Cx)x∈A satisfies condition (i) in the definition of voting by
committees. Thus ϕ is the scheme of voting by committees represented by (Cx)x∈A.
Proof of Corollary 3. The proof can be completed by applying Corollary 2 and the
same arguments as in the proofs of Lemma 3 and Theorem 4.

6 Issue-wise Voting versus Efficiency

Lemma 3 played a critical role in establishing our main result. In this section, we use
this lemma to derive an impossibility result involving the “issue-wise voting property”,
efficiency, and non-dictatorship.

Issue-wise Voting Property. For each pair (R,X) , (R0, X 0) ∈ V and each x ∈
X ∩ X 0 with N+

x (R) = N+
x (R

0) and N−
x (R) = N−

x (R
0), x ∈ ϕ (R,X) if and only if

x ∈ ϕ(R0, X 0).18

It is easily shown that a rule satisfies the issue-wise voting property if and only if it
is in Φ. Thus, this axiom implies both division indifference and dummy independence.
The proof of Lemma 3 is easily modified to show that if a rule on a fixed agenda domain
V (X) with |X| ≥ 3, satisfies the issue-wise voting property and efficiency, then it is
in Φm.19 Similarly, on the domain with strict separable preferences and a fixed agenda
X ∈ A, denoted by VStrict (X), if a rule in Φ satisfies efficiency, then it is a scheme
of voting by committees. Thus, the issue-wise voting property and efficiency together
imply strategy-proofness.
On each fixed agenda domain V (X) with |X| ≥ 3, Ju (2003) showed that among

rules in Φm, only serially dictatorial rules satisfy efficiency.20 This result can be
strengthened by replacing Φm with the larger family Φ.21 On VStrict (X) with |X| ≥ 3,
BSZ showed that strategy-proofness and the full-range condition together imply the

18Issue-wise voting property is called “independence” in Ju (2003) and “decomposability” in Le Bre-
ton and Sen (1999).
19We just need to consider preferences where all issues other than x, y ∈ X are bads and follow the

same argument as in Step 2 of the proof of Lemma 3.
20See Propositions 1 and 2 in Ju (2003).
21This means that “monotonicity” axiom in Proposition 2 of Ju (2003) can be dropped.
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issue-wise voting property. Combining this with the logical relation established above,
we can conclude that among efficient rules, the issue-wise voting property is a nec-
essary and sufficient condition for strategy-proofness. Thus, their impossibility result
(Theorem 4 in BSZ) still holds after replacing strategy-proofness with the issue-wise
voting property. Therefore, we obtain:

Proposition 1. Let X ∈ A be an agenda containing at least three issues.
(i) A rule on V (X) satisfies the issue-wise voting property and efficiency if and only
if it is a serially dictatorial rule in Φ.
(ii) A rule on VStrict (X) satisfies the issue-wise voting property and efficiency if and
only if it is dictatorial.

This result still holds for the variable agenda domains V and VStrict. Like our other
results, it still holds for domains with additive preferences.
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