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Abstract

This paper develops a tractable dynamic term structure models
under jump-diffusion and regime shifts with time varying transition
probabilities. The model allows for regime-dependent jumps while both
jump risk and regime-switching risk are priced. Closed form solution
for the term structure is obtained for an affine-type model under log-
linear approximation.
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1 Introduction

The Fed conducts monetary policy by targeting the short-term interest rate.
Many dynamic models of the term structure of interest rates have included a
Poisson jump component to reflect the impact of the policy actions.! A no-
table feature of the monetary policy behavior is that those discrete changes
in the interest rate target of the same direction are very persistent. For
example, the Fed decreased the interest rate target 12 times consecutively
between January 2001 and November 2002, and since June 2003 there have
been 11 interest rate hikes by the Fed without a single decrease. Presumably
such shifts in the overall monetary policy stance (from accommodative to
tightening or vice versa) have more important effects on interest rates than
a single interest rate change does.

In this paper we propose a regime-dependent jump-diffusion model of the
term structure of interest rates to capture the effects of not only discrete
jumps in the interest rate target, but also shifts in the policy regime. The
paper is based on a strand of recent studies on term structure models with
regime shifts, including Landen (200), Bansal and Zhou (2002), Dai, Sin-
gleton and Yang (2003) and Wu and Zeng (2005) among others. The main
contribution of the present paper is that it proposes a simple framework to
model both discrete jumps and regime shifts in interest rates.

2 The Model

2.1 State variables

We assume that the first L state variables, X, are described by the following
equation

dXt = @(Xt,, St,)dt + Z(Xt,7 St,)th + J(Xt,, St,)dNt (1)

where S; is another state variable following a K-regime continuous-time
Markov chain to be specified below; X; and ©(X;_,S;_) are both L x 1
vectors; X(X;—,S;-) is a L x L matrix; Wy is a L x 1 vector of inde-
pendent standard Brownian motions; Ny is a L x 1 vector of independent

!Some recent studies include Ahn and Thompson (1998), Das (2002), Piazzesi (2005)
among others.



Poisson processes with L x 1 time-varying and regime-dependent intensity
07(X—,Si—); J(X¢—,Si—) is a L x L matrix of regime-dependent random
jump size with a conditional density g(J|X;—,S;—). Given {X;_,S;_}, we
assume that J(X;—, S;_) is serially independent and is also independent of
Wi and Ng.

To get a convenient representation of Sy, we define the mark space E as

E={(,j):ie{l,.,K},je{1,2,..K},i#j}

with o-algebra & = 2¥. Let z = (i,j) be a generic point in £ and A
a subset of E. A marked point process, pu(t, A), counts the cumulative
number of regime shifts that belong to A during (0, ¢]. u(t,-) can be uniquely
characterized by its stochastic intensity kernel,?, which is assumed to be

Yu(dt,dz) = h(z, X;— ) I{S;— = i}te.(dz)dt, (2)

where h(z, X;_) is the regime-shift (from regime ¢ to j) intensity at z = (4, j),
I{S;— =i} is an indicator function, and €,(A) is the Dirac measure (on a
subset A of E) at point z (defined by €,(A) =1 if z € A and 0, otherwise).
Heuristically, for z = (7,7), y.(dt,dz) is the conditional probability of a
shift from regime 7 to regime j during [t, ¢+ dt) given X;_ and S;— = i. The
compensator of u(t, A) is then given by

vty A) = /O /A h(z, Xo VIS, = iYe.(d2)dr. (3)

This simply implies that p(t, A) —7,(¢, A) is a martingale.

Using the above notations, the evolution of the regime Sy can be conve-
niently represented as

as, /E C(2)uldt, dz2) (4)

with its compensator given by
st = [ ceplat.dz) )

where ¢() = C((i, ) = j — i.

2See Last and Brandt (1995) for detailed discussion of marked point process, stochastic
intensity kernel and related results.




Without loss of generality, we assume that the instantaneous short-term
interest r; is a linear function of the state variables X; given S;

re = o(St) +1(S1)' Xy (6)
where 1y(S;—) is a scalar and 11 (S;—1) is a L x 1 vector.
We further specify the pricing kernel M; as®

dM,
Vf = —rdt — Np , dWy — X, (AN; — §5,dt)

t_
(7)

—/EAs(z,Xt—)[u(dt,dZ)—’m(dtadz)]

where Ap; = Ap(Xy—,Si—) is a L x 1 vector of market prices of diffusion
risk; Ajr = Aj(Xy—,Si—) is a L x 1 vector of market prices of jump risk
conditioning on X;_ and S;_; and Ag(z, X;_) is the market price of regime-
switching (from regime ¢ to regime j) risk given X;_. Wu and Zeng (2005)
provided a general equilibrium interpretation of the regime-switching risk.

2.2 The Term Structure of Interest Rates

The specifications above complete the model for the term structure of inter-
est rates, which can be solved by a change of probability measure. Specifi-
cally, for fixed T' > 0, we define the equivalent martingale measure Q by the
Radon-Nikodym derivative 40

P /8o
where for t € [0, 7]
£ = <e— Jo Ny AW (W)= % f A'D,uAD,udu) y

<ef§ N 8sudutf log<1—AJ,u>'dNt) « (8)

<€f5 Jo As (X0 yu(dudz)+ [ [ 10%(1*>\5(Z7Xu—))u(du7dZ))

In the absence of arbitrage, the price at time t of a default-free pure

3 Absence of arbitrage is sufficient for the existence of the pricing kernel under certain
technical conditions, as pointed out by Harrison and Kreps (1979)



discount bond that matures at T', P(¢,T"), can be obtained as ,
P(t,T) = E}(e™ )i ) (9)

with the boundary condition P(T,T') = 1.

Moreover, under probability measure Q,
dX; = O(X;_,S; )dt +%(X;_,S;_)dW; + J(X;—, S;_)dN;  (10)
ds; = / C(z)a(dt,dz) (11)

where é(Xt_, St_) = (")(Xt ,St ) (Xt ,St ))\D(Xt_, St_); Wt isalLx1
standard Brownian motion under Q; Ny is a L x 1 vector of Poisson processes
with intensity 67(X,_,S;_) whose elements are given by 0i.7(Xi—,Si) =
1 — X g (X, Se—)]0i, (X, Sp—) for i = 1,- 4 fi(t, A) is the marked
point process with intensity matrix H(X;_) = {h(z X)) ={h(z, X )(1—
As(z,X;—))}. The compensator of fi(t, A) under Q becomes

Auldt,dz) = (1 = As(z, Xi—))yu(dt,dz) = h(z, X; )I{S;_ =ile.(dz)dt
Without loss of generality, let P(¢,T) = f(t, X, S, T). The follow-

ing proposition gives the partial differential equation determining the bond
price.

Proposition 1 The price of the default-free pure discount bond f(t, X, S,T)
defined in (9) satisfies the following partial differential equation

of = of °f /
o " 8X’®+ ir (aan/Zz

+/ Asf h(2)I{S;— =i}e.(dz) + 05 Axf=rf
E

(12)

with the boundary condition f(7, X, S,T) = 1. Where Agf = f(t—, X;—, St—+

4Note that if the market price of jump risk Ay also depends on the jump size, the
conditional density of the jump size J;(X¢—, S:—) under Q (conditioning on X;_ and S;_)

is given by §(J; | Xi—, S¢—) = %g(l | X¢—,S:—), where A is the conditional

mean of the jump size given X and S.



¢(2),T)— f(t—, Xy—,S;—,T), and

ft— Xee + J1,Se—) — f(t—, X4—, Se—)
Axf= :
f(t_aXt— + JL7St—) - f(t_vXt—v St—)

and Axf = E?(Axf) = [Axfg(J|Xi—,X;_)dJ, ie. the mean of Axf
conditioning on X;_ and S;_ under Q.

3 An Affine Model with Regime-Dependent Jumps

In general equation (12) doesn’t admit a closed form solution for bond prices.
In this section we provide an example of the term structure model that can
be solved in analytical form using log-linear approximation. The example
falls into the class of affine term structure models. Duffie and Kan (1996)
and Dai and Singleton (2000), among other, have detailed discussions of
affine term structure models under diffusions. Duffie (2002) introduces a
broader class of semi-affine models that have more flexible specifications
for the market prices of risk. Duffie, Pan and Singleton (2000) deals with
general asset pricing under affine jump-diffusions. Dai, Singleton and Yang
(2003), Bansal and Zhou (2002) and Landen (2000) also use affine structure
for their regime-switching models. Following this literature, we make the
following assumptions:

(1) O(Xy—, Si—) = O9(Si=)+0O1(S;—) Xi— where ©(S;—) is a L x 1 vector
and O1(S;_) is a L x L matrix;

(2) (X, Si—) is a L x L diagonal matrix with the ith diagonal element
given by [¥(X;—, Si )i = \/Uo,i(stf) +01,;(Si-) Xy fori =1, L;

(3) 65(X¢—,St—) = 5(Si—), which is a L x 1 vector;

(4) [eV BT=tS)g(J| X,_, Sy )dJ = G(T—t,S;_) for some Lx 1 vector
B(T —t,5-);
(

5) h(z, X;_) = eho(2)+hi ()X
(6) Ap(Xy—, Si—) = B(Xy—, S¢—) Ap(S;—) for some L x 1 vector Ap(S;—);

(7) /\J(Xt ,St—) = Aj(Si—), which is a L x 1 vector and A\ j(S;—) < 1 for
all Sy



(8) Ag(z, Xp_) = 1 — 05T sEXem here A1,5(2) is L x 1 vector.

Notice that, among the above assumptions, (3) and (4) imply that both
the intensity and magnitude of the discreet jump dN; are regime-dependent.
This specification can capture the feature of the interest rate movements
that jumps of the same direction are persistent. The model can be easily
generalized so that the jump intensity also depends on state variable X;_.
Assumption (5) allows the transition probability of regime shifts to be time-
varying. The last three assumptions deal with the market prices of risk.
We assume in (6) that the market price of the diffusion risk is proportional
to the diffusion term of the state variable X; as in the conventional affine
models. A natural extension would be to use the semi-affine specification
of Duffie (2002). We assume in (7) and (8) that the market price of the
jump risk is a regime-dependent constant and the market price of regime
switching risk is an affine function under log-linear approximation.

Under these parameterizations, the state variable X; and the Markov
chain Sy will preserve the affine structure under the risk-neutral measure Q.
In particular, let

20(Si-) = [001(Se-), -+ 00,L(Si-)]
Y1(St-) = [01,1(Se-), -+, 01,0(Se-)]

and
Ap1(St-) AJ1(Se-)
Ap(Si-) = . Ag(Si-) = .
Ap,L(St-) AL (Se-)

The drift term O, the regime switching intensity h and the jump intensity
07 in (12) of Proposition 1 are given by

O(X,S) = ©y(5)+6,(5)X (13)
= [00(S) = Ap(8)Z0(5)] + [01(S) — Ap(S)E1(S)]X
Wz, X) = eho@HmEX (14)

—  elho(2)+A0,5(2)]+[h1(2)+A1,5(2))' X

and

0(S) = (= A;(5))d,s(S) (15)



Using a log-linear approximation similar to that in Bansal and Zhou
(2002), we can solve for the term structure of interest rates as follows

Proposition 2 Under the assumption (1)-(8) and that ri = 1o(St)+11(St)' X,
the price at time t of a default-free pure discount bond with maturity T is
given by P(t,7) = eAmS)TBTS)'Xe ond the T-period interest rate is given
by R(t,T) = —A(T;St) - B(T’STt)/Xt, where A(t,S) and B(t,S) are determined

by the following differential equations

_9BIS) | 6 (8YB(r.S) + L5.(8)B(r.9)
or 2 (16)

+ / [ AAB + I (2) = In(2)] OIS = i)ex(d2) = 11(S)
E

and

_ 0A(1,5)
or

+/ [eAsA —1] eﬁO(z)l(S =1i)e;(dz) = ¢o(S)
E

+600(S)'B(r,8) + %B(T, S)'$o(S)B(r,S) + 6,(S) Esle” P9 — 1]

(a7)

with boundary conditions A(0,S) = 0 and B(0,5) = 0, where A;A =
A(1,S +((2)) — A(1,S), AsB = B(1,S8 + ((2)) — B(7,S), and B*(t,S)
(B%(T,S), aB%(Ta S)>/

Note that Proposition 2 nests many of the existing regime-switching
models of the term structure of interest rates. For example, neither Landen
(2000), Bansal and Zhou (2002) nor Dai, Singleton and Yang (2003) include
a jump component, therefore E;[e’ P(™) —1] = 0. Both Landen (2000) and
Bansal and Zhou (2002) assume constant transition probabilities for the
Markov process, hence hy(z) = hi(z) = 0. Dai, Singleton and Yang (2003)
allows for time-varying transition probabilities under the physical measure.
But in order to obtain exact analytical solution, they impose that the tran-
sition probabilities is constant under the risk-neutral measure, hi (z) = 0,
and assume Gaussian distribution for state variable Xy, therefore A;B = 0.
The latter specification is also shared by Landen (2000). Moreover, while
Landen (2000) is silent on the market price of risk, Bansal and Zhou (2002)
assumes that the risk of regime shifts is not priced, i.e. Bo(z) = ho(z). The

®Under these assumptions, (16) and (17) yield the exact solution for the term structure
of interest rates.



model proposed in the present paper relaxes those restrictions in a tractable
way, and it can be estimated by simulation-based method such as Efficient
Method of Moments.
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