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Abstract

Progressivity, inequality reductionandmerging-proofnessare three well-known axioms
in taxation. We investigate implications of each of the three axioms through character-
izations of several families of taxation rules and their logical relations. We also study
the preservation of these axioms under two operators on taxation rules, the so-called
convexity operator and minimal-burden operator, which give intuitive procedures of de-
termining a tax schedules.
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1 Introduction

In modern welfare states, income tax is a major source of state funds and is an essential
policy measure for the enhancement of distributive justice. In the framework introduced
by O’Neill (1982), Aumann and Maschler (1985) and Young (1988),1 we study two prin-
ciples of distributive justice, known asprogressivity(tax rates are in the order of income)
and inequality reduction(taxation reduces income inequality). We investigate how the two
principles are related to each other and to another principle that prevents any gain from strate-
gic merging among taxpayers. This third principle, calledmerging-proofness, is studied by
de Frutos (1999) and Ju (2003). We also study the robustness of the three principles, or
axioms, of taxation under the application of two operators, known as convexity operator and
minimal-burden operator (to be explained later).

∗We thank William Thomson for detailed comments. All remaining errors are ours.
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e-mail:bgju@ku.edu
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1We refer readers to Young (1994), Moulin (2002) and Thomson (2003, 2005) for extensive treatments of

taxation problems and other related problems such as bankruptcy, cost sharing, surplus sharing, etc.
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Merging-proofnessand its motivation seem to have no bearing on the two principles of
distributive justice. However, we find that they are in fact related. Based on two characteri-
zation results imposingmerging-proofnessor progressivityas well as some standard axioms
in the literature, we show that anyprogressivetaxation rule ismerging-proof. This gives an
extra advantage of imposingprogressivity.

We establish a close connection betweenprogressivityandinequality reductionthat has
long been perceived by a number of authors in the literature of tax function, which is a
function fromR (the set of real numbers) toR. A formal proof in the tax function framework,
however, is provided rather recently by Eichhorn et al. (1984). As far as we know, no earlier
work provides a parallel result in our framework.

A recent study by Thomson and Yeh (2001) gives a novel classification of rules and ax-
ioms based onoperatorsthat map a rule into another, possibly the same, rule. Two types of
operators we consider here capture intuitive proposals of determining tax schedules. When
two rules compete, a natural compromise is mixing the two rules by taking a convex combi-
nation of them, which is what aconvexity operator(Thomson and Yeh 2001) does. In this
way, we are able to mix two different ideas of taxation embedded in two rules. Theminimal-
burden operator(Thomson and Yeh 2001) gives us an intuitive procedure of identifying tax
schedules. If the aggregate income of all agents except, say, agenti is lower than the tax
revenue to be collected, this difference can be interpreted as the minimal tax burden imposed
on agenti (he is the only person who can contribute for this portion because the maximum
aggregate tax payment by the remaining agents cannot cover it). Thus, the following two-
step procedure, as suggested by the minimal-burden operator, seems interesting. First, let
each agent pay his minimal burden. Second, the remainder of the tax revenue is collected by
considering the remaining income profile.

The application of an operator may be problematic if it fails to preserve some appeal-
ing axioms, in particular, our three main axioms,progressivity, inequality reductionand
merging-proofness(preservation of an axiom means that if a rule satisfies an axiom so does
the rule obtained by applying the operator). We show that the two types of operators preserve
progressivityand inequality reduction. Regardingmerging-proofness, the minimal-burden
operator is slightly disruptive as it requires an additional, but mild, axiom to preserve it.

The rest of the paper is organized as follows. In Section 2, we present the model and
basic concepts. In Section 3, we define axioms. In Section 4, we state and prove the char-
acterization results. In Section 5, we state and prove our results on operators. For a smooth
passage, we defer some proofs and provide them in the appendix.

2 Model and basic concepts

We study taxation problems in a variable population model. The set of potential taxpayers,
or agents, is identified by the set of natural numbersN. Let N be the set of finite subsets of
N, with generic elementN. For eachi ∈N, letyi ∈R+ bei’s (taxable)incomeandy≡ (yi)i∈N

the income profile. A (taxation)problemis a triple consisting of a populationN ∈ N , an

2



income profiley∈RN
+, and a tax revenueT ∈R+ such that∑i∈N yi ≥ T. LetY≡∑i∈N yi . To

avoid unnecessary complication, we assumeY = ∑i∈N yi > 0. Let DN be the set of taxation
problems with populationN andD ≡ ∪N∈N DN.

Given a problem(N,y,T) ∈ D , a tax profileis a vectorx∈ RN satisfying the following
two conditions: (i) for eachi ∈ N, 0≤ xi ≤ yi and (ii) ∑i∈N xi = T. We refer to (i) asbound-
ednessand (ii) asbalancedness.2 A (taxation) rule on D , R: D → ∪N∈N RN, associates
with each problem(N,y,T) ∈ D a tax profileR(N,y,T) for the problem. Each ruleR gives
the associatedpost-tax income functionSR(·) defined as follows: for each(N,y,T) ∈ D ,
SR(N,y,T)≡ y−R(N,y,T). Throughout the paper, for eachN ∈N , eachM ⊆N, and each
z∈ RN, let zM ≡ (zi)i∈M.

We now provide some examples of rules. We start with three well-known rules. The
head taxdistributes the tax burden equally, provided no agent ends up paying more than
her income. Theleveling taxequalizes post-tax income across agents, provided no agent is
subsidized. Theflat taxequalizes tax rates across agents. These three rules are examples of
rules in the following family introduced by Young (1987).

Definition 1 (Parametric Rules). A rule R is a parametric ruleif there is a functionf :
[a,b]×R+ →R, wherea,b∈R∪{±∞}, such that (i)f is continuous and non-decreasing in
the first variable; (ii) for eachx∈R+, f (a,x) = 0 and f (b,x) = x; (iii) for each(N,y,T) ∈D

and eachi ∈N, Ri (N,y,T) = f (λ ,yi), whereλ ∈ [a,b] satisfies∑i∈N f (λ ,yi) = T.3 We call
f aparametric representation ofR.

The three rules mentioned earlier have the following parametric representations:

• Head tax:f H(λ ,y) = min{− 1
λ ,y}, for eachλ ∈ R− and eachy∈ R+.

• Leveling tax: f L(λ ,y) = max{y− 1
λ ,0}, for eachλ ∈ R+ and eachy∈ R+.

• Flat tax: f F(λ ,y) = λ ·y, for eachλ ∈ [0,1] and eachy∈ R+.

3 Axioms

We now define our three main axioms of taxation.
Progressivitypostulates that for any pair of agents, the one with higher income should

pay at least as high a rate of tax as the other.

Progressivity. For each(N,y,T) ∈D and eachi, j ∈ N, if 0 < yi ≤ y j ,

Ri (N,y,T)
yi

≤ Rj (N,y,T)
y j

.

2Note thatboundednessimplies that each agent with zero income pays zero tax.
3Existence of suchλ is guaranteed by the first two conditions (i) and (ii).
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Our second axiom requires that the post-tax income profile should have at least as low
“income inequality” as the original income profile. This axiom is based on the following
basic inequality relation over income profiles. For each populationN ≡ {1, . . . ,n} and each
pair of income profilesy,y′ ∈ RN

+, y Lorenz dominatesy′ if, for eachk = 1, . . . ,n− 1, the
proportion of the sum of thek lowest incomes to the total income aty is greater than or equal
to the same proportion aty′: that is, wheny1≤ y2≤ ...≤ yn andy′1≤ y′2≤ ...≤ y′n, for each
k = 1, ...,n−1,

∑k
i=1yi

∑n
i=1yi

≥ ∑k
i=1y′i

∑n
i=1y′i

.

Inequality reduction. For each(N,y,T)∈D , the post-tax income profileSR(N,y,T) Lorenz
dominatesy.

Our third axiom prevents a rule from being manipulated by a pair of agents through
merging their incomes.

Merging-proofness.For each(N,y,T) ∈D and each pairi, j ∈ N with i 6= j, if y′ ∈ RN\{ j}
+

is such thaty′i = yi +y j andy′N\{i} = yN\{i, j},

Ri (N,y,T)+Rj (N,y,T)≤ Ri(N\{ j},y′,T).

We will investigate logical relations between the three axioms, invoking in the process
some of the following standard axioms.4

The next axiom requires that a rule should give the same tax profile when it is applied for
any subset of agents as when it is applied for the whole population.

Consistency.For each(N,y,T) ∈D , eachM ⊂ N, and eachi ∈M,

Ri(M,yM, ∑
i∈M

xi) = xi ,

where(xi)i∈N ≡ R(N,y,T) andyM ≡ (yi)i∈M.

The next two axioms require that tax contributions and post-tax incomes be in the order
of pre-tax income (Aumann and Maschler 1985).

Tax order preservation. For each(N,y,T)∈D and each pairi, j ∈N, if yi ≥ y j , Ri(N,y,T)≥
Rj(N,y,T).

Income order preservation. For each(N,y,T) ∈ D and each pairi, j ∈ N, if yi ≥ y j , yi −
Ri (N,y,T)≥ y j −Rj (N,y,T).

Note thatprogressivityimplies tax order preservation.
Finally, the next axiom says that small changes in incomes or revenue do not produce a

jump in tax schedules.

4We refer readers to Thomson (2003, 2005) for a detailed discussion on these axioms.
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Continuity. For eachN∈N , each sequence{(N,yn,Tn) : n∈N} in DN, and each(N,y,T)∈
DN, if (yn,Tn) converges to(y,T), thenR(N,yn,Tn) converges toR(N,y,T).

4 Characterizations and logical relation among axioms

4.1 Progressivity and merging-proofness

Lemma 1 gives a necessary and sufficient condition for a parametric rule to satisfyprogres-
sivity. A parametric representationf : [a,b]×R+ → R is superhomogeneous in incomeif
for eachλ ∈ [a,b], eachy0 ∈ R+ and eachα ≥ 1, f (λ ,αy0)≥ α f (λ ,y0).

Lemma 1. A parametric rule satisfies progressivity if and only if it has a parametric repre-
sentation that is superhomogeneous in income.

Proof. Let R be a parametric rule andf : [a,b]×R+ → R a parametric representation of
R. Assume thatR is progressive. Let λ ∈ [a,b], y0 > 0 andα ≥ 1. Let Tλ ≡ f (λ ,y0) +
f (λ ,αy0) andN ≡ {1,2}. Then,R(N,(y0,αy0),Tλ ) = ( f (λ ,y0), f (λ ,αy0)). By progres-
sivity, f (λ ,y0)/y0 ≤ f (λ ,αy0)/(αy0). Thusα f (λ ,y0) ≤ f (λ ,αy0), which shows thatf
is superhomogeneous in income.

Conversely, assume thatf is superhomogeneous in income. Let(N,y,T)∈D andi, j ∈N
be such that0 < yi ≤ y j . Let λ ∈ [a,b] be such thatR(N,y,T) = ( f (λ ,yi))i∈N. Then, by
superhomogeneity,f

(
λ ,y j

)
= f (λ ,

y j
yi
·yi)≥ y j

yi
· f (λ ,yi).Thus

Rj (N,y,T)
y j

=
f (λ ,y j)

y j
≥ f (λ ,yi)

yi
=

Ri (N,y,T)
yi

,

which shows theprogressivityof R.

It is evident thatprogressivityimplies the following axiom, which says that any two
agents with the same income should pay the same tax.

Equal treatment of equals. For each(N,y,T) ∈ D and each pairi, j ∈ N with yi = y j ,
Ri (N,y,T) = Rj(N,y,T).

Young (1987, Theorem 1) shows that the parametric rules are the only rules satisfy-
ing consistency, equal treatment of equals, andcontinuity. Therefore, using his result and
Lemma 1 we obtain:

Proposition 1. A rule satisfies progressivity, consistency, and continuity if and only if it has
a parametric representation that is superhomogeneous in income.5

5It is worth noting that, although there might be different representations of a parametric rule, superhomo-
geneity in income is invariant; that is, either every representation is superhomogeneous in income or none of
them is superhomogeneous in income.
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Remark 1. Marshall and Olkin (1979, p.453) and Bruckner and Ostrow (1962, Lemma 3)
offer similar results for tax functionsξ : R+→R.6 The main difference between their model
and ours is that our rules aremultivariate vector valuedfunctions with the two constraints
of (income)boundednessor balancedness. Despite the differences, Proposition 1 shows
that, thanks to Young’s (1987) characterization of parametric rules, the earlier results can be
extended in our model without much difficulty.

Lemma 2 gives a necessary and sufficient condition for a parametric rule to satisfy
merging-proofness. A parametric representationf : [a,b]×R+ → R is superadditive in in-
comeif for eachλ ∈ [a,b] and each pairy0,y′0 ∈ R+, f

(
λ ,y0 +y′0

)≥ f (λ ,y0)+ f
(
λ ,y′0

)
.7

Ju (2003, Proposition 1) offers the following result:

Lemma 2 (Ju 2003). A parametric rule satisfies merging-proofness if and only if it has a
parametric representation that is superadditive in income.

The proof of the lemma is given in the appendix.
The next lemma says thatconsistencyandmerging-proofnesstogether implyequal treat-

ment of equals.

Lemma 3. Merging-proofness and consistency together imply equal treatment of equals.8

Combining Lemmas 2 and 3 and Young’s (1987) characterization of parametric rules, we
obtain:

Proposition 2. A rule satisfies merging-proofness, consistency, and continuity if and only if
it has a parametric representation that is superadditive in income.9

Now, due to Propositions 1 and 2, the logical relation betweenprogressivityandmerging-
proofnesscan be established from the following relation between superhomogeneity and
superadditivity.

Lemma 4. Superhomogeneity in income implies superadditivity in income.

Proof. Let y0 andy′0 be such that0 < y0 ≤ y′0. Let α ≡ (y0 + y′0)/y′0. Then, bysuperho-
mogeneity, f

(
λ ,αy′0

) ≥ α f
(
λ ,y′0

)
, that is, f

(
λ ,y0 +y′0

)
/
(
y0 +y′0

) ≥ f (λ ,y′0)/y′0. Thus,
f (λ ,y0 +y′0)≥ f (λ ,y′0)+ y0

y′0
f (λ ,y′0). By superhomogeneity, y0

y′0
f (λ ,y′0)≥ f (λ ,y0). Hence

f (λ ,y0 +y′0)≥ f (λ ,y′0)+ f (λ ,y0) , which shows thatf is superadditivein income.

It follows from Propositions 1 and 2 and Lemma 4 that:

6See also Proposition 2 in Thon (1987).
7Like superhomogeneity, superadditivity in income is also invariant with respect to the choice of the repre-

sentation.
8Chambers and Thomson (2002, Lemma 3) show thatconsistencyandequal treatment of equalstogether

imply anonymity, which says that the chosen tax profile should not depend on the names of agents. Combining
this with our lemma,merging-proofnessandconsistencyimply anonymity.

9This strengthens Theorem 2 in Ju (2003) by droppingequal treatment of equals.
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Corollary 1. Let R be a rule satisfying consistency and continuity. IfR is progressive, then
R is merging-proof. But the converse does not hold.10

Remark 2. Without consistencyandcontinuity, the logical relation betweenprogressivity
andmerging-proofnessin Corollary 1 does not hold, as shown by Example 1 in Section 5.

Remark 3. Since rules take only non-negative values, if a parametric representation issu-
peradditive in income(or superhomogeneous, by Lemma 4), then it isnon-decreasing in
income. Thus the corresponding parametric rule satisfiestax order preservation. Therefore,
among parametric rules,merging-proofness(or progressivity) impliestax order preservation.

Note that any convex function that crosses the origin is superhomogeneous. This, to-
gether with Proposition 1 and Corollary 1, gives the following:

Corollary 2. Any rule with a parametric representation that is convex in income is progres-
sive and merging-proof.

Both the leveling tax and the flat tax have parametric representations that are convex in
income. Thus, they are bothprogressiveandmerging-proof. The same argument applies to
show that two other classical tax rules, such as the proposals by Cohen-Stuart and Cassel
(and formulated as rules by Young, 1988), areprogressiveandmerging-proof.

4.2 Progressivity and inequality reduction

We now investigate the logical relation betweenprogressivityandinequality reduction. The
following additional axioms are also considered.

Revenue continuity.For eachN ∈N , eachy∈RN
+, each sequence{Tn : n∈N} in R+ and

eachT ∈ R+, if Tn converges toT, thenR(N,y,Tn) converges toR(N,y,T).

Revenue monotonicity.For each(N,y,T) ∈D and eachT ′ ≥ T, R(N,y,T ′) = R(N,y,T).

Young (1987) offers the following useful lemma:

Lemma 5 (Young 1987). Equal treatment of equals, revenue continuity, and consistency
together imply revenue monotonicity.

Now we are ready to prove the following result.

Proposition 3. The following statements hold:
(i) Progressivity and income order preservation together imply inequality reduction.
(ii) Inequality reduction and consistency together imply progressivity.
(iii) Inequality reduction, together with consistency and revenue continuity(or revenue monotonic-
ity), implies income order preservation.

10An example of a rule satisfyingmerging-proofnessbut violatingprogressivitycan be provided upon re-
quest.
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Proof. The proof of parts (i) and (ii) will be provided in the appendix. Here we prove
part (iii). Let R be a rule satisfyingconsistency, revenue continuityandinequality reduction
(the same argument applies whenrevenue continuityis replaced withrevenue monotonicity).
Then by the second statement,Rsatisfiesprogressivityand alsoequal treatment of equals.By
Lemma 5,R also satisfiesrevenue monotonicity. Suppose, by contradiction, thatR violates
income order preservation. Then, there exist(N,y,T) ∈D andi, j ∈ N such thatyi < y j and
yi − xi > y j − x j , wherex≡ R(N,y,T). By consistency, R

({i, j},(yi ,y j),xi +x j
)

= (xi ,x j).
Let n∈ N be such that

n−1 >
(y j −x j)(y j −yi)

yi(yi−xi−y j +x j)
. (1)

Consider the problem(N′,y′,T ′)∈D with N′ = {i, j}∪M such that|M|= n−1, M∩N = /0,
y′j = y j , y′k = yi for eachk∈M∪{i}, andT ′ = nxi +x j . By equal treatment of equals, there
exist a,b∈ R+ such that for eachk ∈ M ∪{i}, Rk (N′,y′,T ′) = a andRj(N′,y′,T ′) = b. If
a+ b > xi + x j , then byconsistencyand revenue monotonicity, R

({i, j},(yi ,y j),a+b
)

=
R({i, j},(y′i ,y′j),a+ b) = (a,b) ≥ (

xi ,x j
)

= R
({i, j},(yi ,y j),xi +x j

)
. Thenna+ b > nxi +

x j = T ′, contradictingbalancedness. A similar contradiction occurs ifa+b< xi +x j . There-
fore,a+b = xi +x j . This, together withna+b = nxi +x j , impliesa = xi andb = x j . There-
fore, for eachk∈M∪{i, j},

Rk
(
N′,y′,T ′

)
=

{
xi if k∈M∪{i}
x j if k = j

Thus, byinequality reduction,

yi

y j +nyi
=

mink∈N′{y′k}
∑n

k=1y′k
≤ mink∈N′{y′k−Rk (N′,y′,T ′)}

∑n
k=1(y

′
k−Rk (N′,y′,T ′)

=
y j −x j

(y j −x j)+n(yi−xi)
,

which implies that

n≤ (y j −x j)(y j −yi)
yi(yi−xi−y j +x j)

,

contradicting (1).

The next result follows directly from Proposition 3.

Corollary 3. For consistent and revenue continuous(or revenue monotonic) rules, the com-
bination of progressivity and income order preservation is equivalent to inequality reduction.

Remark 4. A similar result is established for tax functions by Eichhorn et al. (1984). In
order to extend that result in our model, we need the two additional axioms,consistencyand
revenue continuity(or revenue monotonicity).

It follows from Proposition 3 that since the leveling tax and the flat tax satisfy bothpro-
gressivityand income order preservation, they satisfyinequality reduction. After strength-
eningrevenue continuityto (full) continuity, we obtain the following result.
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Proposition 4. A rule satisfies inequality reduction, consistency and continuity if and only
if it has a parametric representationf : [a,b]×R+ → R such thatf is superhomogeneous
in income and for eachλ ∈ [a,b], the functiongλ (x) = x− f (λ ,x) is non-decreasing.11

Proof. Let Rbe a rule satisfyinginequality reduction, consistency, andcontinuity. By Propo-
sition 3,R satisfiesprogressivityandincome order preservation. Then, by Proposition 1,R
has a parametric representationf : [a,b]×R+ →R, wherea,b∈R∪{±∞}, which is super-
homogeneous in income. Letλ ∈ [a,b]. Let gλ : R+ → R be such thatgλ (x) = x− f (λ ,x)
for all x ∈ R+. Suppose, by contradiction, that there existx,y ∈ R+ such thatx < y and
gλ (x) > gλ (y). Let T ≡ f (λ ,x)+ f (λ ,y). Consider the problem({1,2},(x,y),T). Then,
R({1,2},(x,y) ,T) = ( f (λ ,x), f (λ ,y)). Thus,

x−R1({1,2},(x,y) ,T)) = gλ (x) > gλ (y) = y−R2({1,2},(x,y) ,T)),

contradictingincome order preservation.

Conversely, letR be a rule with parametric representationf : [a,b]×R+ → R such that
f is superhomogeneous in income and for eachλ ∈ [a,b], gλ (x) = x− f (λ ,x) is non-
decreasing. By Proposition 1,R satisfiesprogressivity, continuityandconsistency. Then
by Proposition 3, we only have to showincome order preservation. Suppose, by contra-
diction, that there exist(N,y,T) ∈ D and i, j ∈ N such thatyi < y j andyi −Ri(N,y,T) >

y j −Rj(N,y,T). Let λ ∈ [a,b] be such thatR(N,y,T) = ( f (λ ,yi))i∈N. Then

yi− f (λ ,yi) = yi−Ri(N,y,T) > y j −Rj(N,y,T) = y j − f
(
λ ,y j

)
,

contradicting the non-decreasing property ofgλ (·).

5 Operators: what axioms are preserved?

An operatoris a function that maps a rule into another, possibly the same, rule. An axiom is
said to bepreservedunder an operator if any rule that satisfies the axiom is mapped by the
operator into a rule that also satisfies the axiom. We consider two operators introduced by
Thomson and Yeh (2001) and study preservation of our three main axioms.

5.1 Convexity operators

When two rules compete, a natural compromise is to mix the two rules by a convex combi-
nation as suggested byconvexity operators. Formally, given a “reference rule”̄R(·) and a
weightα ∈ [0,1], theconvexity operatorassociated with̄R andα maps each ruleR(·) into
the convex combination(1−α)R(·)+αR̄(·).12 The idea of mixing two rules is also useful

11This property is also invariant.
12This definition is slightly different from the definition in Thomson and Yeh (2001). The convexity operator

in Thomson and Yeh (2001) maps an ordered list of a finite number of rules into the weighted average rule.
Our results can easily be adapted to establish the same results for their convexity operator.
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for a smooth transition from one rule to another when such a transition is required.
Mixing two rules may lose its appeal if such an operation does not preserve some basic

axioms of taxation. Fortunately, all of our three main axioms are preserved:

Proposition 5. Consider convexity operators associated with a reference ruleR̄(·). If R̄(·)
satisfies progressivity, then each of these convexity operators preserves progressivity. And
the same results hold for inequality reduction and merging-proofness.

Proof. We skip the proof of preservations ofprogressivityandmerging-proofness, which is
straightforward. Suppose thatR(·) andR̄(·) satisfyinequality reduction. Let α ∈ [0,1]. Let
(N,y,T) ∈ D , x̄≡ R̄(N,y,T), x≡ R(N,y,T) andxα ≡ Rα (N,y,T). Without loss of gen-
erality, assume thatN ≡ {1, . . . ,n} and thaty1 ≤ y2 ≤ ·· · ≤ yn. Let σ̄ , σ andπ : N → N
be permutations onN such that for eachi ∈ {1, . . . ,n−1}, yσ̄(i)− x̄σ̄(i) ≤ yσ̄(i+1)− x̄σ̄(i+1),
yσ(i)− xσ(i) ≤ yσ(i+1)− xσ(i+1), andyπ(i)− xα

π(i) ≤ yπ(i+1)− xα
π(i+1). Let i ∈ {1, . . . ,n−1}.

Note that∑i
j=1

(
yπ( j)− x̄π( j)

) ≥ ∑i
j=1

(
yσ̄( j)− x̄σ̄( j)

)
because, by definition of̄σ , the right-

hand side is the sum of thei lowest post-tax incomes associated with the tax profilex̄. Simi-
larly, ∑i

j=1

(
yπ( j)−xπ( j)

)≥ ∑i
j=1

(
yσ( j)−xσ( j)

)
. Therefore,

i

∑
j=1

(
yπ( j)−xα

π( j)

)
= (1−α)

i

∑
j=1

(
yπ( j)−xπ( j)

)
+α

i

∑
j=1

(
yπ( j)− x̄π( j)

)

≥ (1−α)
i

∑
j=1

(
yσ( j)−xσ( j)

)
+α

i

∑
j=1

(
yσ̄( j)− x̄σ̄( j)

)
.

By inequality reductionof R(·) andR̄(·),

∑i
j=1

(
yσ( j)−xσ( j)

)

Y−T
≥ ∑i

j=1y j

Y
and

∑i
j=1

(
yσ̄( j)− x̄σ̄( j)

)

Y−T
≥ ∑i

j=1y j

Y
.

Therefore,

∑i
j=1

(
yπ( j)−xα

π( j)

)

Y−T
≥ ∑i

j=1y j

Y
.

showinginequality reductionof R.

5.2 Minimal-burden operator

At each problem(N,y,T), if T −∑ j∈N\{i} y j > 0 for an agenti ∈ N, this part of the rev-
enue cannot be covered even if everyone other thani pays his full income. Thus this part
can be viewed as the minimal burden imposed on agenti. For eachi ∈ N, let mi(N,y,T) ≡
min{0,T−∑ j 6=i y j} bei’s minimal burden. Letm(N,y,T)≡ (mi(N,y,T))i∈N andM(N,y,T)≡
∑N mi(N,y,T). Theminimal-burden operatorassociates with each ruleR the ruleRm defined
by the following two-step payment procedure. For each problem, first each agent pays his
minimal burden; second, each agent pays his tax according toR at the revised problem ob-
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tained by reducing agents’ incomes by the amounts of their minimal burdens and the tax
revenue by the total minimal burdens. That is, for each(N,y,T) ∈D ,

Rm(N,y,T)≡m(N,y,T)+R(N,y−m(N,y,T),T−M(N,y,T)).

The next proposition shows what axioms are preserved under the minimal-burden opera-
tor.

Proposition 6. The minimal burden operator preserves progressivity and inequality reduc-
tion. However, it does not preserve merging-proofness.

The proof is provided in the appendix.
Example 1 below shows that the minimal-burden operator does not preservemerging-

proofness.

Example 1. For each(N,y,T) ∈D , let

R(N,y,T)≡
{

RL (N,y,T) if T ≥ 10
RF (N,y,T) if T < 10

,

whereRL denotes the leveling tax andRF the flat tax. Since bothRL andRF aremerging-
proof, R is merging-proof. However,Rm is not merging-proof. To show this, consider the
problem(N,y,T) = ({1,2,3},(5,55,100),70). Then,

Rm(N,y,T) = (0,0,10)+RL ({1,2,3},(5,55,90),60) =
(

0,
25
2

,
115
2

)
.

Consider now the resulting problem in which agents2 and3 merge their incomes and are
represented by agent3, i.e.,(N\{2},y′,T) = ({1,3},(5,155),70). Then,

Rm(
N\{2},y′,T)

= (0,65)+RF ({1,3},(5,90),5) =
(

5
19

,
1325
19

)
.

Consequently,
Rm

3 (N\{2},y′,T) < Rm
2 (N,y,T)+Rm

3 (N,y,T) ,

which shows thatRm is not merging-proof. Note thatR is progressive. By Proposition 5,
so isRm. Therefore,Rm is an example showing thatprogressivitydoes not implymerging-
proofness, as claimed in Remark 2.

For rules satisfying the following very mild axiom, we show that the minimal-burden
operator preservesmerging-proofness.

Suppose that an agent donates part of his income and that the donation is used to finance
tax revenue. Then both the donor’s income and the tax revenue go down by the amount of
the donation. The next axiom says that the donor’s total payment (tax plus donation) should
not be lower than his total payment without donation.

11



No Donation Paradox.For all (N,y,T) ∈D , all i ∈ N and allt ∈ [0,min{T,yi}],

Ri (N,y,T)≤ t +Ri (N,(yi− t,y−i) ,T− t) .13

Ju and Moreno-Ternero (2005) characterize a large family of rules satisfyingno donation
paradoxand some other axioms. The family includes most of the well-known parametric
rules, which showsno donation paradoxis a very mild condition.

Note that the rule in Example 1 violatesno donation paradox. To show this, consider the
problem(N,y,T) = ({1,2},(3,15),11). Then,R(N,y,T) = (0,11) andR(N,(3,13),9) =
(27/16,117/16). Thus,R2(N,y,T) = 11> 2+117/16= 2+R2(N,(3,13),9).

Proposition 7. On the family of rules satisfying no donation paradox, the minimal-burden
operator preserves merging-proofness.

The proof is provided in the appendix.

6 Concluding remarks

We conclude with some remarks associated with two other operators in Thomson and Yeh (2001)
and the axioms that are dual to our main axioms.

Truncation and Duality Operators

Truncation Operatormaps each ruleR(·) into Rt (·) defined as follows: for each(N,y,T) ∈
D and eachi ∈ N,

Rt
i (N,y,T)≡ Ri(N,(min{y j ,T}) j∈N,T).

Progressivityis not preserved under truncation operator.To show this, we can use the flat
tax (Thomson 2005, Table 3.2, p.205). Let us call the image of the flat tax under truncation
operator truncated flat tax. It is easy to show that the truncated flat tax satisfiesregressivity
and differs from the flat tax. Thus it violatesprogressivitybecause the flat tax is the only rule
satisfying bothprogressivityandregressivity.

Inequality reductionis not preserved under truncation operator.This is shown in Exam-
ple 2.

Merging-proofnessis not preserved under truncation operator.This is shown in Exam-
ple 2. We can also use the flat tax and a similar argument to the above one provided for
progressivity.

Example 2. Consider the leveling taxL. It is easy to show that, in the two-agent case,
Lt (the image ofL under the truncation operator) coincides with the so-calledconcede-
and-divide(Thomson 2003). This rule has the following expression, for the problems with

13In bankruptcy problems, this axiom is introduced by Thomson and Yeh (2001). It is the dual of “claims
monotonicity” (see p.100 and p.161 in Thomson 2005).
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({1,2},(y1,y2),T) such thaty1≤ y2:

CD({1,2},(y1,y2),T) =





(
T
2 , T

2

)
if T ≤ y1(y1

2 ,T− y1
2

)
if y1≤ T ≤ y2(

y1− Y−T
2 ,y2− Y−T

2

)
if y2≤ T

.

If T = 1 and(y1,y2) = (1,3), we have

CD1({1,2},(y1,y2),T)
y1

=
1
2

>
1
6

=
CD2({1,2},(y1,y2),T)

y2
,

which shows that concede-and-divide (and thereforeLt) violatesprogressivity. Similarly,

CD1({1,2},(y1,y2),T)
T

=
1
2

>
1
4

=
y1

Y
,

which shows that concede-and-divide (and thereforeLt) violatesinequality reduction. Fi-
nally, consider the problemP≡ ({1,2,3},(1,2,3),2) ∈ D and the resulting problemP′ ≡
({1,2},(1,5),2) ∈ D in which agents 2 and 3 merge their incomes. Then, it is straightfor-
ward to show thatLt(P) = (0,1,1) andLt(P′) = CD(P′) = (1

2, 3
2). Thus,Lt

2(P)+ Lt
3(P) >

Lt
2(P

′), which shows thatLt is notmerging-proof.

Duality Operatormaps each ruleR(·) into Rd (·) defined as follows: for each(N,y,T) ∈ D

and eachi ∈ N,
Rd

i (N,y,T)≡ yi−Ri(N,y, ∑
j∈N

y j −T).

Progressivityis not preserved under duality operator.This is becauseregressivityis the
dual property ofprogressivityand so for anyprogressiverule R(·) that differs from the flat
tax, its dualRd (·) satisfiesregressivitybut notprogressivity.

Inequality reductionis not preserved under duality operator.To show this, consider the
leveling tax, of which the dual is the head tax. Note that the leveling tax satisfiesprogres-
sivity and income order preservation. Thus by Proposition 3-(i), it also satisfiesinequality
reduction. On the other hand, the head tax satisfiesregressivityandconsistency. Thus by
Proposition 3-(ii), it must violateinequality reduction.

Merging-proofnessis not preserved under duality operator.This is becausemerging-
proofnessis the dual property ofsplitting-proofnessand so for anymerging-proofrule R(·)
that differs from the flat tax, its dualRd (·) satisfiessplitting-proofness. Since the flat tax
is the only rule satisfying bothmerging-proofnessandsplitting-proofness, thenRd (·) must
violatemerging-proofness.

Minimal-burden Truncation Duality
Progressivity Y N N
Inequality reduction Y N N
Merging-proofness N (Y under no donation paradox) N N
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1 2 3, . . . ,n n+1 n+2
a a y−{1,2}
a a y−{1,2} 0 0

a y−{1,2} a 0
a y−{1,2} a

0 a y−{1,2} a 0
a a y−{1,2} 0
a a y−{1,2}

(a) Income profiles

1 2 3, . . . ,n n+1 n+2
x1 x2 x−1,2

x1 x2 x−{1,2} 0 0
x′2 x′−{1,2} x′n+1 0
x′2 x′−{1,2} x′n+1

0 x′2 x′−{1,2} x′n+1 0
x1 x2 x−{1,2} 0
x1 x2 x−{1,2}

(b) Tax profiles

Table 1: Proof of Lemma 3.

Dual Axioms

As shown in Thomson (2005), dual axioms ofprogressivityandmerging-proofnessare
regressivityandsplitting-proofnessrespectively. Proposition 3.9 in Thomson (2005) says that
an axiom is preserved under truncation operator if and only if the dual axiom is preserved un-
der minimal-burden operator. Therefore, from Proposition 6 we obtain: truncation operator
preservesregressivityand the dual axiom ofinequality reduction, but notsplitting-proofness.
Also from Proposition 7, we obtain: on the family of rules satisfyingincome monotonicity
(which is the dual ofno donation paradox), truncation operator preservessplitting-proofness.

A Proofs

Proof of Lemma 3. Let (N,y,T) ∈ D and i, j ∈ N be such thati 6= j andyi = y j . For sim-
plicity, let i = 1 and j = 2 and N ≡ {1, . . . ,n} (this problem is illustrated in the second
row of Table 1-(a)). Letx≡ R(N,y,T) anda≡ y1 = y2 (x is illustrated in the second row
of Table 1-(b)). LetN′ ≡ N ∪ {n+ 1,n+ 2}. Consider the problem(N′,(y,0,0),T)(=
(N′,(a,a,y−{1,2},0,0),T)) wheren+ 1 and n+ 2 have zero income and all agents inN
have the same incomes as in(N,y,T) (see the third row of Table 1-(a)). Byboundedness,
R{n+1,n+2}(N′,(y,0,0),T) = (0,0). By balancednessandconsistency, RN(N′,(y,0,0),T) =
R(N,y,T) (see the third row of Table 1-(b)). Now consider the problem(N′\{1},(a,y−{1,2},a,0),T)
obtained by merging the incomes of agents1 andn+ 1 at (N′,(y,0,0),T) into the income
of agentn+ 1 (see the fourth row of Table 1-(a)). Letx′ ≡ R(N′\{1},(a,y−{1,2},a,0),T)
(see the fourth row of Table 1-(b)). Thenx′n+2 = 0 and bymerging-proofness, x′n+1≥ x1. By
consistency, (x′2,x

′
−{1,2},x

′
n+1) = R({2, . . . ,n+1},(a,y−{1,2},a),T).

Consider the problem(N′,(0,a,y−{1,2},a,0),T) where1 andn+2 have zero income and
all others inN′ have the same incomes as in({2, . . . ,n+1},(a,y−{1,2},a),T) (see the sixth
row of Table 1-(a)). Then, byboundednessandconsistency, R(N′,(0,a,y−{1,2},a,0),T) =
(0,x′2,x

′
−{1,2},x

′
n+1,0). Now making the reverse argument but merging the incomes of1 and

n+1 at (N′,(0,a,y−{1,2},a,0),T) into 1’s income and applyingmerging-proofness, we can
showx1≥ x′n+1, asx1 = R1(N′\{n+1},(a,a,y−{1,2},0),T).
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Therefore,x1 = x′n+1. By balancedness, x2 + · · ·+ xn = x′2 + · · ·+ x′n. Thus, the two re-
duced problems of(N,y,T) and({2, . . . ,n+1},(a,y−{1,2},a),T) for the coalition{2, . . . ,n}
are identical. Byconsistency, (x2, . . . ,xn) = (x′2, . . . ,x

′
n).

To summarize, by replacing agent1’s income at(N,(a,a,y−{1,2}),T) with agent(n+1)’s
income, we transformed the problem into({2, . . . ,n,n+ 1},(a,y−{1,2},a),T) and showed
that1’s tax at the original problem is equal to(n+1)’s tax in the new problem and the taxes
of all others do not change.

Now, transforming({2, . . . ,n,n+1},(a,y−{1,2},a),T) into ({3, . . . ,n,n+1,n+2},(y−{1,2},a,a),T)
and lettingx̄≡ R({3, . . . ,n,n+ 1,n+ 2},(y−{1,2},a,a),T), we can show that̄x{3,...,n+1} =
x′{3,...,n+1} = (x{3,...,n},x′n+1) = (x{3,...,n},x1) andx2 = x̄n+2. Therefore,x1 = x̄n+1 andx2 =
x̄n+2.

Applying the symmetric argument (the whole argument above) switching the role ofn+1
and the role ofn+2, we can show thatx2 = x̄n+1 andx1 = x̄n+2. Therefore,x1 = x2.

Proof of Proposition 3, parts (i) and (ii). The proofs of parts (i) and (ii) below are similar
to Eichhorn et al. (1984).

(i) Let Rbe a rule satisfyingprogressivityandincome order preservation. Let (N,y,T) ∈
D . Assume, without loss of generality, that0< y1≤ y2≤ ·· · ≤ yn. Letx≡R(N,y,T). Then,
by progressivity,

x1

y1
≤ x2

y2
≤ ·· · ≤ xn

yn
. (2)

Let k ∈ {1, ...,n− 1}. By (2), xiy j ≤ x jyi , for all i = 1, ...,k and j = k+ 1, ...,n. Thus,

∑k
i=1xi ∑n

j=k+1y j ≤ ∑n
j=k+1x j ∑k

i=1yi . Equivalently,∑k
i=1xi ∑n

j=1y j ≤ ∑n
j=1x j ∑k

i=1yi , which
says that

n

∑
i=1

yi

k

∑
i=1

(yi−xi)≥
k

∑
i=1

yi

n

∑
i=1

(yi−xi) . (3)

By income order preservation, the post-tax income profile(yi−xi)i∈N preserves the order
of the pre-tax income profiley. Thus, (3) shows that the post-tax income profile Lorenz
dominates the pre-tax income profile.

(ii) Let R be a rule satisfyinginequality reduction. Suppose, by contradiction, thatR
is not progressive. Then, there exist(N,y,T) ∈ D and i, j ∈ N, such that0 < yi ≤ y j and

Ri(N,y,T)/yi > Rj(N,y,T)/y j . Let ai ≡ 1− Ri(N,y,T)
yi

anda j ≡ 1− Rj (N,y,T)
y j

. Then,ai < a j ,
and therefore,

yi

yi +y j
>

aiyi

aiyi +a jy j
≥ min{aiyi ,a jy j}

aiyi +a jy j
. (4)

Now, let T ′ ≡ Ri (N,y,T)+ Rj (N,y,T). Consider({i, j},(yi ,y j),T ′) ∈ D . By consistency,
Rk

({i, j},(yi ,y j),T ′
)
= Rk (N,y,T) for eachk= i, j, and therefore,yk−Rk

({i, j},(yi ,y j),T ′
)
=

akyk for eachk = i, j. Thus, (4) contradictsinequality reduction.

Proof of Proposition 6. Progressivity: LetRbe a rule satisfyingprogressivity. Let(N,y,T)∈
D and xm ≡ Rm(N,y,T). Assume, without loss of generality, thatN = {1,2, ...,n} and
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y1 ≤ y2 ≤ ·· · ≤ yn. Let k ∈ N be the first agent whose minimal burden is strictly posi-
tive, i.e.,yk−1 ≤Y−T < yk. Then,m1(N,y,T) = · · · = mk−1(N,y,T) = 0 < mk (N,y,T) ≤
mk+1(N,y,T) ≤ ·· · ≤ mn(N,y,T). For eachi ≥ k, mi (N,y,T) = yi −Y + T. Let y′ ≡ y−
m(N,y,T)= (y1, . . . ,yk−1,Y−T, . . . ,Y−T) andT ′≡T−∑n

i=1mi (N,y,T)= T−∑n
i=k (yi−Y +T).

Let x′ ≡ R(N,y′,T ′). Then

xm
i =

{
x′i if i ≤ k−1;
yi−Y +T +x′i if i ≥ k.

(5)

Let i, j ∈ N be such thatyi ≤ y j . There are three cases.

Case 1: yi ≤ y j < yk. By progressivityof R at (N,y′,T ′), xm
i /yi = x′i/y′i ≤ x′j/y′j = xm

j /y j .

Case 2: yk ≤ yi ≤ y j . By equal treatment of equalsof R at (N,y′,T ′) (implied by thepro-
gressivityof R), x′i = x′j = a. By boundedness,x′i = x′j = a≤ Y−T and soY−T − x′i =
Y−T−x′j = Y−T−a≥ 0. Therefore, sinceyi ≤ y j ,

xm
i

yi
=

yi−Y +T +x′i
yi

= 1−Y−T−a
yi

≤ 1−Y−T−a
y j

=
y j −Y +T +x′j

y j
=

xm
j

y j
.

Case 3: yi < yk ≤ y j . By progressivityof R at (N,y′,T ′),

x′i
yi
≤ x′j

Y−T
. (6)

Now, sinceY−T < y j and, byboundedness, x′j ≤Y−T, thenx′jy j ≤ (Y−T)
(

y j −Y +T +x′j
)

.
Hence,

x′j
Y−T

≤ y j −Y +T +x′j
y j

. (7)

Therefore, combining (6) and (7),

xm
i

yi
=

x′i
yi
≤ x′j

Y−T
≤ y j −Y +T +x′j

y j
=

xm
j

y j
.

Inequality Reduction: Let R be a rule satisfyinginequality reduction. Let (N,y,T) ∈ D ,
(N,y′,T ′), xm and x′ be given as in the above proof. Note thaty− xm = y′− x′. By the
inequality reductionof R at (N,y′,T ′), y′− x′ Lorenz dominatesy′. Thus, we only have to
show thaty′ Lorenz dominatesy.14 It is clear that for eachl ≤ k−1, ∑l

i=1y′i/Y′ ≥∑l
i=1yi/Y.

Assumel ≥ k. Note that∑l
i=1y′i/Y′ ≥ ∑l

i=1yi/Y is equivalent to

k

∑
i=1

yi

(
n

∑
i=l+1

(yi−Y +T)

)
≥ (Y−T)

(
(n− l)

l

∑
i=k+1

yi− (l −k)
n

∑
i=l+1

yi

)
,

14Note that ify is increasingly ordered, so isy′.
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which is true because the left-hand side is non-negative and the right-hand side is non-
positive.15

To prove Proposition 7, we need the following additional axiom and lemma.
No donation paradoxandmerging-proofnesstogether imply the following useful prop-

erty, as shown in the next lemma. Suppose that two agentsi and j merge their income into
j ’s income and agentj donatesi’s income. The property says that the total payment by the
two agents should not be lowered by such a donation.

Donation-Proofness.For all (N,y,T) ∈D and alli, j ∈ N, such thatT ≥ yi

Ri (N,y,T)+Rj (N,y,T)≤ yi +Rj
(
N\{i},yN\{i},T−yi

)
.

Lemma 6. Merging-proofness and no donation paradox together imply donation-proofness.

Proof. LetRbe a rule satisfyingmerging-proofnessandno donation paradox. Let(N,y,T)∈
D andi, j ∈ N such thatT ≥ yi . By merging-proofness,

Ri(N,y,T)+Rj(N,y,T)≤ Rj(N\{i},
(
yi +y j ,yN\{i, j}

)
,T).

By no donation paradox, applied to agentj with donationyi at
(
N\{i},(yi +y j ,yN\{i, j}

)
,T

)
,

Rj(N\{i},
(
yi +y j ,yN\{i, j}

)
,T)≤ yi +Rj(N\{i},

(
y j ,yN\{i, j}

)
,T−yi).

Combining the two inequalities, we obtain

Ri (N,y,T)+Rj (N,y,T)≤ yi +Rj
(
N\{i},yN\{i},T−yi

)
,

which showsdonation-proofness.

Now we are ready to prove Proposition 7.

Proof of Proposition 7. LetRbe a rule satisfyingno donation paradoxandmerging-proofness.
By Lemma 6,R satisfiesdonation-proofness.Let (N,y,T) ∈ D . Assume, without loss
of generality, thatN = {1,2, ...,n} and y1 ≤ y2 ≤ ·· · ≤ yn. Let k ∈ N be the first agent
whose minimal burden is strictly positive, i.e.,k is such thatyk−1≤Y−T < yk. Let i, j ∈ N
and ŷ ∈ RN\{i}

+ be such that̂y j = yi + y j and ŷN\{i, j} = yN\{i, j}. Let x ≡ R(N,y,T) and
x̂≡R(N\{i}, ŷ,T). Let xm≡Rm(N,y,T) andx̂m≡Rm(N\{i}, ŷ,T). We showxm

i +xm
j ≤ x̂m

j

below.
Let M ≡ M (N,y,T) andM̂ ≡ M (N\{i}, ŷ,T). Let y′ ≡ (y1, . . . ,yk−1,Y−T, . . . ,Y−T)

andx′ ≡ R(N,y′,T−M).

15Note that (n− l)∑l
i=k+1yi ≤ (n− l)∑l

i=k+1yl = (n− l)(l −k)yl and (l −k)∑n
i=l+1yi ≥

(l −k)∑n
i=l+1yl+1 = (l −k)(n− l)yl+1. The two inequalities imply(n− l)∑l

i=k+1yi − (l −k)∑n
i=l+1yi ≤

(n− l)(l −k)(yl −yl+1)≤ 0.
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Case 1: yi +y j ≤Y−T. Thenyi ,y j ≤Y−T and soxm
i = x′i andxm

j = x′j . Note thatM = M̂.
Then,Rm

j (N\{i}, ŷ,T) equals j ’s award underR(·) at the problem obtained fromy′ after
merging i and j ’s incomes. Therefore,merging-proofnessof R at (N,y′,T −M) implies
xm

i +xm
j ≤ x̂m

j .

Case 2: yi ,y j > Y−T. Without loss of generality, supposeyi ≤ y j . In this case,

xm
i +xm

j =




yi− (Y−T)+Ri(N,y1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

+y j − (Y−T)+Rj(N,y1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)


 ,

x̂m
j = yi +y j − (Y−T)+Rj(N\{i},y1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸

n−k

,T− M̂).

SinceM̂ = M +Y−T, then bydonation-proofness,

Ri(N,y1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)+Rj(N,y1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

≤ (Y−T)+Rj(N\{i},y1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k

,T− M̂).

Therefore,xm
i +xm

j ≤ x̂m
j .

Case 3: yi ≤Y−T < y j . Note thatM̂ = M +yi . We have

xm
i +xm

j =




Ri(N,y1, . . . ,yi−1,yi ,yi+1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)+y j − (Y−T)

+Rj(N,y1, . . . ,yi−1,yi ,yi+1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)


 ,

x̂m
j = yi +y j − (Y−T)+Rj(N\{i},y1, . . . ,yi−1,yi+1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸

n−k+1

,T− M̂).

SinceM̂ = M +yi , then bydonation-proofness,




Ri(N,y1, . . . ,yi−1,yi ,yi+1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

+Rj(N,y1, . . . ,yi−1,yi ,yi+1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)




≤ yi +Rj(N\{i},y1, . . . ,yi−1,yi+1, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T− M̂).

Therefore,xm
i +xm

j ≤ x̂m
j .
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Case 4: y j ≤Y−T < yi . Note thatM̂ = M +y j . We have

xm
i +xm

j =




yi− (Y−T)+Ri(N,y1, . . . ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

+Rj(N,y1, . . . ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)


 ,

x̂m
j = yi +y j − (Y−T)+Rj(N\{i},y1, . . . , Y−T

↑
j th income

, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k

,T− M̂).

By merging-proofness,




Ri(N,y1, . . . ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

+Rj(N,y1, . . . ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)




≤ Rj(N\{i},y1, . . . ,y j +Y−T
↑

j th income

, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k

,T−M).

By no donation paradoxapplied to agentj with donationy j ,

Rj(N\{i},y1, . . . ,y j +Y−T
↑

j th income

, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k

,T−M)

≤ y j +Rj(N\{i},y1, . . . , Y−T
↑

j th income

, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k

,T− M̂).

Combining the two inequalities, we obtain

Ri(N,y1, . . . ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)+Rj(N,y1, . . . ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

≤ y j +Rj(N\{i},y1, . . . , Y−T
↑

j th income

, . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k

,T− M̂),

which impliesxm
i +xm

j ≤ x̂m
j .

Case 5: yi ,y j ≤Y−T andyi +y j > Y−T. ThenM̂ = M +T− (Y− (yi +y j)). We have

xm
i +xm

j =




Ri(N,y1, . . . ,yi ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

+Rj(N,y1, . . . ,yi ,y j , . . . ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M),




x̂m
j = T− (Y− (yi +y j))+Rj(N\{i},y1, . . . , Y−T

↑
j th income

, · · · ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T− M̂).
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By merging-proofness,

xm
i +xm

j ≤ Rj(N\{i},y1, . . . , yi +y j
↑

j th income

, · · · ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M).

SinceT− M̂ = T−M− (T− (Y− (yi +y j))), then applyingno donation paradox forj with
donationT− (Y− (yi +y j)),

Rj(N\{i},y1, . . . , yi +y j
↑

j th income

, · · · ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T−M)

≤ T− (Y− (yi +y j))+Rj(N\{i},y1, . . . , Y−T
↑

j th income

, · · · ,yk−1,Y−T, . . . ,Y−T︸ ︷︷ ︸
n−k+1

,T− M̂).

Therefore,xm
i +xm

j ≤ x̂m
j .
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