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Abstract

This paper introduces a Stein-like shrinkage method for estimating slope coefficients and
forecasting in first order dynamic regression models under structural breaks. The model allows
for unit root and non-stationary regressors. The proposed shrinkage estimator is a weighted
average of a restricted estimator that ignores the break in the slope coefficients, and an
unrestricted estimator that uses the observations within each regime. The restricted estimator
is the most efficient estimator but inconsistent when there is a break. However, the unrestricted
estimator is consistent but not efficient. Therefore, the proposed shrinkage estimator balances
the trade-off between the bias and variance efficiency of the restricted estimator. The averaging
weight is proportional to the weighted distance of the restricted estimator, and the unrestricted
estimator. We derive the analytical large-sample approximation of the bias, mean squared error,
and risk for the shrinkage estimator, the unrestricted estimator, and the restricted estimator.
We show that the risk of the shrinkage estimator is lower than the risk of the unrestricted
estimator under any break size and break points. Moreover, we extend the results for the model
with a unit root and non-stationary regressors. We evaluate the finite sample performance of
our proposed method via extensive simulation study, and empirically in forecasting output

growth.
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1 Introduction

A sizeable strand of the literature in economics and finance focuses on autoregressive (AR) models.
These models are heavily used in forecasting economic and financial variables and are frequently
considered as benchmarks in forecast competitions, as they are difficult to beat. Nevertheless,
since many time series data in economics and finance are characterized by parameter instability,
which is now widely recognized as an important source of forecast failure as recorded by Stock
and Watson (1996), Hansen (2001), Giacomini and Rossi (2009), Rossi and Sekhposyan (2010),
Inoue and Rossi (2011), Clements and Hendry (2006, 2011), and Rossi (2013) inter alia, there is an
increasing evidence that parameters of AR models in many economic and financial time series are
unstable and subject to structural breaks. For example, Mankiw and Miron (1986) and Mankiw
et al. (1987) considered AR(1) models and find parameter instability in the short-term interest
rate. Phillips et al. (2011) find parameter instability for 1990’s NASDAQ stock prices. See also
Garcia and Perron (1996), and Stock and Watson (1996) who document instability related to the
autoregressive terms in a wide variety of economic time series. This suggests a need to study the
forecasting performance of AR models when they are subject to structural breaks.

This paper considers an ARX model that contains structural breaks, and proposes a Stein-like

1 Our proposed estimator

shrinkage estimator that exploits observations in neighboring regimes.
is a weighted average of a restricted estimator (which uses full-sample of observations under the
restriction of no breaks in the parameters) with an unrestricted estimator (which uses observations
within each regime). The restricted estimator is inconsistent when there is a break while it is the
most efficient. On the other hand, the unrestricted estimator is consistent but the consistency comes
at the cost of losing efficiency. Hence, the proposed shrinkage estimator trades off an increased
bias introduced by the restricted estimator against a reduction in error variance resulting from
using a full-sample of observations. The averaging weight depends on the weighted distance of

the restricted and unrestricted estimators, which is similar to the James-Stein weight, cf. Stein

(1956) and James and Stein (1961).2 Therefore, it assigns appropriate weights to each of the

LOver the past decades, a considerable literature on the merits of forecasts averaging obtained from different models
has been developed, reviewed by Clemen (1989), Newbold and Harvey (2002), Stock and Watson (2004), and
Timmerman (2006). Specifically under structural break models, forecast averaging procedures have been shown to
improve forecast performance in the sense of mean squared forecast errors (MSFE), see Pesaran and Timmermann
(2002, 2007), Hansen (2009), Clark and McCracken (2010), Pesaran and Pick (2011), Pesaran et al. (2013), Inoue
et al. (2017), and Lee et al. (2022a, 2022b, 2022c), among others.

2See also Massoumi (1978), Hansen (2016, 2017), and Mehrabani and Ullah (2020) for similar use of the James-Stein
weight in different contexts.



two estimators by measuring the magnitude of the structural break. We derive the analytical
large-sample approximation of the bias, mean squared error (MSE) and risk for our proposed
shrinkage estimator, the unrestricted estimator, and the restricted estimator.> We derive the
condition under which the risk of the shrinkage estimator is lower than the risk of the unrestricted
estimator under any break size and break points. We also show how the method can be used in
out-of-sample forecasting. Furthermore, we extend the results to the model with unit root and

non-stationary regressors.

To the best of our knowledge, this is the first paper that analytically derives the asymptotic
approximation of the bias, and risk up to order 7-!, and MSE up to order 7~2 in ARX models
under structural breaks, where 7' is the total number of observations. Furthermore, we provide new
results to the model with unit root and non-stationary regressors under structural breaks, which
have not been considered before in the literature. Because of these considerations, we would like
to point out that our results differ from the recent work by Lee et al. (2022a, 2022b, 2022c) who
consider different types of combined estimators to improve forecasts under structural breaks in a
static stationary time series model without lagged dependent variable and using different weights.
For example, in Lee et al. (2022a) the combination weight is different and set to be a constant
between zero and one, Lee et al. (2022b) consider Stein-like combined estimator, however, the
optimal weights in this paper are different due to the presence of lagged dependent variable and
theoretical frameworks. Lee et al. (2022c¢) consider another type of combined estimators which
assigns a full weight of one to the post-break sample observations and a weight between zero and
one to the pre-break sample observations. In addition, there are three additional main differences
that have not been discussed in the previous works by Lee et al. (2022a, 2022b, 2022¢). First, this
paper considers a dynamic ARX model and allows for unit roots (or integrated of higher order) and
non-stationary regressors. Second, in this paper the dominance property of the proposed Stein-like
shrinkage estimator holds for any fixed deviations from the restrictions. This complements the “local
asymptotic” argument discussed in Lee et al. (2022b). Third, we derive the analytical large sample
approximation, using Nagar (1959) method, of the bias and risk up to order 7~!, and MSE up
to order T2 for the proposed shrinkage estimator, the unrestricted estimator, and the restricted
estimator under structural breaks. This allows us to theoretically and numerically compare the

performance of these estimators. Because of the presence of the lagged dependent variable in the

3The bias and MSE of the unrestricted estimator are provided in the Supplementary Online Appendix B. The detailed
derivations of bias and MSE of the restricted estimator are available upon request.



model considered in this paper, the theoretical results presented here are noticeably different than
those in Lee et al. (2022a, 2022b, 2022c). Even in the special case of no lagged variable, our results
are different with them because the combined estimator in Lee et al. (2022a) has different weights,
and in Lee et al. (2022b, 2022c) they either derive only local asymptotic theory results instead of

large sample approximation results and/or their weights in combined estimator are different.

We present an extensive Monte Carlo simulation study to evaluate the finite sample forecasting
performance of the proposed shrinkage method. The results support our theoretical findings,
and show the outperformance of our shrinkage estimator relative to the unrestricted estimator in
finite sample. In particular, our numerical results show the benefits of exploiting the neighboring
observations in estimation and forecasting relative to using only the observations within each regime.
Furthermore, we undertake an empirical analysis for forecasting the output growth using 131
macroeconomic and financial time series to compare the forecasting performance of the shrinkage
estimator with the unrestricted estimator, the restricted estimator, and a range of alternative
methods existing in the literature. The empirical results suggest the out-performance of our method

relative to the alternative methods, in the sense of mean squared forecast errors (MSFE).

Analysis of AR models subject to structural breaks have been also considered by Clements
and Hendry (1998, 1999) and Pesaran and Timmermann (2005), but they focus on the analysis
of forecast errors decomposition, while the focus of this paper is developing an estimator to deal
with the parameter instability. Specifically, Clements and Hendry (1998, 1999) analyze the forecast
errors from AR models subject to structural change by assuming that the parameters of the AR
models remain unchanged during the estimation period. Pesaran and Timmermann (2005) consider
the small sample properties of forecasts from AR models estimated from windows of different sizes.
See also Banerjee and Urga (2006) for a comprehensive review of developments in the fields of

modelling structural breaks.

The analysis of approximating the moments of estimators in autoregressive models dates back
to Bartlett (1946), who finds a first-order variance approximation in an autoregressive gaussian
process (see also Hurwicz (1950)). White (1961), Shenton and Johnson (1965) give approximations
of the first two moments in the AR(1) model. Kendall (1954) and Marriott and Pope (1954) consider
AR(1) models with intercepts, and find the approximate bias of the least-squares estimator of the
lagged dependent variable coefficient. Recently, a number of papers have studied the small sample

bias of the ordinary least-squares estimator in single dynamic regression models, see for example



Grubb and Symons (1987), and Kiviet and Phillips (1993). Kiviet and Phillips (1994) extend the
analysis of Kiviet and Phillips (1993) to the higher-order dynamic regression models. More recently,
Kiviet and Phillips (2012) found the higher-order approximate bias of the least-squares estimator of
the slope coefficients in a stable ARX(1) model. Kiviet and Phillips (2005) extend these results to
non-stable ARX(1) models, and examine the moments of the least-squares estimator in the single
normal ARX(1) model with an arbitrary number of exogenous regressors when the true coefficient

of the lagged-dependent variable is unity.

The paper is organized as follows. Section 2 describes the model. For simplicity, we discuss the
problem under a single break, which simplifies the essential idea without complicating notation.
However, the generalization of the method for the multiple breaks is straightforward. In Section
3, we introduce the estimators. We give the bias, MSE, and the risk of the Stein-like shrinkage
estimator using large-sample approximations in Section 4, while those of the unrestricted estimator
are provided in the Supplementary Online Appendix B. We extend the results of Section 4 to a
model where the slope coefficient of the lagged dependent variable is unity in Section 5. Monte
Carlo results are given in Section 6. Results from our empirical example are given in Section 7.

Conclusions are given is section 8. Proofs and detailed calculations are provided in Appendix A.

Notation: Throughout the paper we adopt the following notation. I, and 0,4 denote the p x p
identity matrix and p x ¢ matrix of zeros, respectively. tr(-) denotes trace, ® denotes Kronecker
products, and 1(-) denotes the indicator function. For an m x n real matrix A = (a;;j), we write the
transpose A’. We write A = O(b) when the non-zero elements of A are of order b, i.e., a;; = O(b).
For a stochastic matrix A, we write A = Op(b) when the non-zero elements of A are of order b, i.e.,

aij = Op(b).

2 The Model

Consider the following first-order linear dynamic regression model (ARX(1) model)* defined over

the period t = 1,2,...,T, which is subject to a single structural break at time T}

Myi—1 + xp B +ug, fort <Th
(2.1)

Yt
Xoyr—1 + xy Py +ug, fort > T4,

40ur findings can be generalized—though will not yield qualitatively different results as it seems—for models with
higher order lags. For ease of exposition we thus restrict ourselves to the relatively simple ARX(1) model.



where y; is the dependent variable, z; = (z¢1,...,2:x) is a k x 1 vector of exogenous regressors,
and u; is the unobserved error term.® The (k+ 1) x 1 vectors of the pre-break and post-break slope
coefficients are denoted by ay = (A1, 31)’, and s = (A2, 85)’, respectively, which are the parameters

of interest. In a matrix form, the model can be expressed as

= Zatu. (2.2)

where y = (y(V',y@') is a T x 1 vector of the dependent variables, y(1) = (y,,.. S Yr)s y? =

(Yr, 115+ --»Yp) The T'x 2(k + 1) matrix of observations on the regressors is denoted by Z =
. j . 1 2

diag(Z1, Z2), where Z; = (y(_z)l,X,-) for i = 1,2, y(_l) = (yOa-'-vyqu)/a y(_l) = (yTl,...,nyl)’,

Xi=(zy,...,2p) and Xo = (z

1 Tp) o w=(uy, ... uy) i a T x 1 vector of disturbances,

and o = (o), ab) is a 2(k + 1) x 1 vector of the unknown slope coefficients.

Assumption 1 (i)|\;| < 1, fori = 1,2; (i) the matriz Z is such that Z'Z = Opy(T); (iii) the
T x 2(k + 1) matriz Z has rank 2(k + 1) with probability one; (iv) the regressors in X are strongly
exzogenous; (v) the disturbances follow u ~ N(0,€Y,), where Q, = diag(c3lr,, 05l 7,) with 0 <
02 < 0o; (vi) the start-up value follows yo = o + dug ~ N(¥o, d?03), with 0 < d < oo; (vii) yo and

u are mutually independent.

We note that wg is the start-up error term, i.e., the error term at time 0. d = 0 represents
the fixed start-up, and if d # 0 the start-up is random. Assumption 1(ii) excludes non-stationary
regressors including deterministic or stochastic trends, but the presence of such variables will not
change the approximation bias, MSE, MSFE, and risk formulas in Section 4. Their inclusion only
reduces the order of magnitude of the moments and the order of their remainder terms (for a similar
discussion see Kiviet and Phillips (2012)). We demonstrate in Section 5 that our results are still
applicable under a unit root (relaxing Assumption 1(i)) and non-stationary regressors (relaxing
Assumption 1(iz)). Assumption 1(v) assumes that the error terms are normally distributed and
excludes serial correlation in the errors. This assumption can be relaxed at the expense of extra
terms to be added in the bias and MSE of the estimators. However, since the model in (2.1) has a

dynamic structure, it captures much of the serial correlation.

Remark 1 A main difference between the model considered in (2.1) and those considered in Lee

SFor simplicity, we consider a single break in (2.1), however, the extension to multiple breaks is straightforward.



et al. (2022a, 2022b, 2022c) is that the model considered here is a dynamic ARX, and allows for

a unit root (or higher order integration), and non-stationary regressors.

We analyze the model conditional on the observed matrix X in Section 4. Therefore, in order
to distinguish the fixed and zero mean stochastic elements of the regressor matrix Z;, i = 1,2, we
decompose Z; = Z; + Zi, where Z; is defined as the expectation of Z; conditional on X and 7. For

notational simplicity, we denote E(-) = E(-|X, go). Hence,

Zi=E(Z) = (E@Y), X)) = (517, X)), fori=12, (2:3)
and
Zi=2i—7Z; = (gj,l @, OTiXk) - ?]9 s, fori=1,2, (2.4)

where ¢; = (1,0,...,0)" is a vector of (k+ 1) x 1, and T, = T — T} is the number of post-break

sample observations. Define the T; x T matrix A; = (F;, A;) for ¢ = 1,2. Then, we define gfll) =

-1

A; ]jjl, where gjil = (gjg,:c’lﬁl,. . .,x;lﬁ1,$;,1+152,. . .,.CC/T_I/BQ),, F = (1,)\1,.. . ,)\1 )/ is 71 x 1,
Fy = (A A A2, AP A2 ) s Ty x 1, and

0 0 0

1 0 0

AT OATTT 0 N 10 ... 0]
ALy 10 0 ... .. 0]
A AT e s M 1 0 ... ... 0
2: . . . . . . . . . )
TN AT AT AT L L 1

are T1 x (T'— 1) and Ty x (T — 1), respectively. Moreover, define the (7' + 1) x 1 random vector
v = (ug, ') = (ug,uy,...,u) ~ N(0,Q,), where Q, = diag(o?Ir,11,0311,), and the T x (T + 1)
matrix G = (G, GS)', with the T; x (T'+1) matrix G; = (dF;, C;), and C; = (A;, 01, x1), for i = 1,2.
Then, it can be easily verified that Z; = Givs) for i = 1,2. Therefore, we have Z = Z + Z, where



7 = diag(Zy, Z), and Z = diag(Z1, Z2) = Yo, LiGve} ;, where the 2(k + 1) x 1 vectors e =
Ir O« Oy« Oy xm
(1, 01x(k+1))" and e12 = (01 (g+1),51)'s and Ly = ' VL Ly = S
OT2 X T1 0T2 X T2 OT2 X T1 ITQ
are T' x T selection matrices.

Remark 2 In our analysis below, we assume that the break point is known. In practice, one has
to estimate the break point from data. There are several methods in the literature that can be used
to estimate the break point, e.g., Bai and Perron (1998, 2003), who also show that the estimated
break fraction converges to its true value at rate T or lower, which is sufficient to establish the
consistency of the estimators. In the simulation study and the empirical example in Sections 6 and

7, initially we have estimated the break point, and then applied our method.5

3 Estimation

Our goal is to estimate the vector of slope parameters, «, in equation (2.2). We consider three
estimators of the slope parameters: (i) an unrestricted least squares estimator that estimates
the slope parameters of each regime only using the observations within the same regime, (ii) a
restricted estimator that shrinks the unrestricted estimator towards a restricted parameters space
which ignores the break in the slope coefficients, and (iii) a Stein-like shrinkage estimator which
is a weighted average of the restricted estimator and the unrestricted estimator, and the averaging

weight is proportional to a weighted quadratic loss function.

3.1 Unrestricted Estimator

If we allow for the structural break in the slope coefficients, the standard estimator of « is an

unrestricted least-squares estimator. The unrestricted estimator, denoted by &, is defined as

a=(2'2)"2'y=a+(2'2)" 1 Z'u, (3.1)

5We note that the literature under structural breaks divides into two strands. The first strand of the literature

focuses on break points estimation. There are extensive contributions in this area. The second strand of the
literature focuses on forecast improvement under given structural breaks. This paper falls into the second strand of
the literature. It would be interesting to include the estimation uncertainty of the estimated break point into the
theoretical derivations. This is beyond the scope of this paper due to additional technical challenges that will be
introduced to the model, and we defer such analysis to future research.



or equivalently,

aq a1 n (Z{Zl)*lZ{ul

g s (Z425) = Zhus

joN
Il
Il

(3.2)

3.2 Restricted Estimator

Because of a belief that the break in slope parameters may be small, it can be assumed that the
parameter values may be close to a restricted parameter space Zg = {o € R2*¥+1) : (o) = 0}, where
r(a) = Ra : R2(+1) 5 RF+1. Thus, we shrink & towards the restriction space Zg. For example, a
restriction matrix R that considers no break in all slope parameters is R = (I(;41), —1 (k+1)).7 Thus,
the restricted least-squares estimator is obtained as the solution to the following minimization

Minimize (y — Za) (y — Za) subject to r(a) = 0. (3.3)

s.t. «

Therefore, the restricted least-squares estimator, denoted by &, can be formulated as
-1
ad=a— (22)\R [R(Z’Z)—lR’] Ra. (3.4)

3.3 Stein-like Shrinkage Estimator

We use the restricted estimator and the unrestricted estimator to construct a Stein-like shrinkage
estimator. Then, we show that the proposed Stein-like shrinkage estimator improves efficiency. The
improved efficiency is a result of making an appropriate trade-off between the bias due to possible

incorrect restrictions and variance efficiency gains from imposing the restrictions.

Our proposed Stein-like shrinkage estimator of the slope coefficients, denoted by &, is a weighted

"In the case of m breaks in the model of (2.1), a restriction matrix that ignores breaks in all slope parameters takes
the following form

—Dwr Iesr O 0 0 0
0  —Iny1 Iess 0 0 0
R _ o
m(k+1)x (m+1) (k+1) -
0 0 0 ~Tey1 Tesr O
0 0 0 0  —Iny D



average of the unrestricted estimator and the restricted estimator defined as

a=wa+(l-w)a, (3.5)
where the weight takes the form

W= (1-%), D(&,a)=(4—&)Z'Z(a - a), (3.6)

where D( &, @) measures the weighted distance between & and &, and 7 is a positive shrinkage
parameter that controls the degree of shrinkage. We will defer describing the optimal choice for
shrinkage parameter in Section 4. One may consider the positive part version of the weight (w)4 =
w1 (w > 0) which ensures the weight is bounded between zero and one. Let ¢4 denotes the Stein-like
shrinkage estimator with the positive part weight. Then as shown by Hansen (2016), the Risk of
(4 is strictly smaller than that of &. Hence, in the Monte Carlo simulations and the empirical

study of the paper in Sections 6 and 7, we use the positive part version of the weight.

The shrinkage estimator defined above shrinks the unrestricted estimator towards the restricted
estimator by the ratio 7/D(é&, &). When the difference between these two estimators is small
(D(é&, &) is small, and (1 — w) is large), the shrinkage estimator gives a larger weight to the
restricted estimator, as it is the most efficient estimator. However, when the difference between
the two estimators is substantial or large (D(&, &) > 7), the bias of the restricted estimator
could be more than its variance efficiency gain. Thus, the shrinkage estimator becomes a weighted
average of the restricted estimator and the unrestricted estimator, while giving a larger weight to
8

the unrestricted estimator. Therefore, the shrinkage estimator prevails regardless of the break size.

We also show this theoretically in the following section.

4 Large-Sample Approximation of the Shrinkage Estimator

We employ the large-sample approximation method developed by Nagar (1959), to analyze the
bias, MSE, and risks of the shrinkage estimator (conditional on X) under Assumption 1. To find

8We note that if there is no structural breaks but a structural break is assumed, the Stein-like shrinkage estimator
assigns a large weight to the restricted estimator and a small weight to the unrestricted estimator. At the same
time, since D(&, @) is very small in this case, the weight is likely to be negative, hence the weight assigned to the
unrestricted estimator is zero (using the positive part weight), while a full weight of one is assigned to the restricted
estimator. On the other hand, if there is no structural breaks and no structural break is assumed, then the restricted
estimator, the unrestricted estimator, and the Stein-like shrinkage estimator are all the same.

10



moment approximations using the Nagar approach, we begin by expressing the estimation error in

term of stochastic components which are of decreasing order of magnitude in terms of the sample

size.?

Theorem 1 Under Assumption 1, the bias of the Stein-like shrinkage estimator up to order T—1

18
Bias(a) = E(a — a) = © — —Pa, (4.1)

where ¢ = o’P'Q7'Pa = O(T), P = QR (RQR)™'R = 0(1), Q = [E(Z'2)]"! = O(T™!),
and the first term above is the bias of the unrestricted estimator up to order O(T~') which is
0=-Q%2, [Z’LiCQuZQeM + o1 (QZ'LiCQZ) + 261, ,Qer; tr(LiGQ,G'LiCQ,)|, C =
(C],C5), and the MSE of the Stein-like shrinkage estimator up to order T—2 is

2
MSE (&) =E [(07 —a)(d - a)’] = MSE (@) + %Paa’ﬁ” - % [PQE +3QP' + 0d'P' + Pa®
/ 27— D ! D/ -1 p D/ / -1 ! D/
+x11+x11] + 55| Paa'PQ [PQE+@} + [EQP +\II}Q Paa'P
+ é [Pao/ﬁ'q) + CID'PQO/P'} , (4.2)
where ¥ = (P — 1)Q®, & = Y7 € PaZ'LiCUZQ + Y i e PZ'LiCAZQ +

257, 23:1 0']26171'6/17]-6;) tr(G’Q,,G’LZ-CLj)e’MPa, and MSE (@) is given in equation (B.20) in the

Supplementary Online Appendiz B.

Further, for any fixred symmetric positive definite weight matrizc W of order O(T), the risk of the

Stein-like shrinkage estimator up to order T—' is

2 _ _ 2 _ B
Risk (&) =E [(d — Q)W (& — a)| = Risk (&) + %o/P’WPa - ?T [tr(WPQZ) +d/P'WO + tr(WD)
) _ _ _ _ _ _ _
+ ¢—2 [20/P’Q1PQEWP04 +2d/P'Q 1 OW Pa + a’P’(DWPa} ,

(4.3)

where ¥ = diag(0? 4 1,05141), and Risk (@) = tr(MSE (Q) W).

9For example, for an estimator & of the unknown parameter a, we determine a positive constant g such that we have
T9a—a) =eco+T 21+ T e+ T3 2e5 - 4T, + 0, (T~ "+Y/2) where g for j = 0,...,r are all Op(1)
as T' — oo. The value of g for least-squares estimators in stationary models is 1/2, but it may take other values in
non-stationary models (e.g., see Remarks 5-6).

11



Proof: See Appendix A, page 29.

Theorem 1 gives the bias, MSE, and Risk of the Stein-like shrinkage estimator. The bias and
MSE of the unrestricted estimator is given in Lemma B.3 in the Supplementary Online Appendix.
We note that the risk of the Stein-like shrinkage estimator is generalized to allow for any positive
definite weight matrix, W, of order O(T'). Two arbitrary choices of W' are T'I5(1), and Wy defined
in Section 4.1, where the former provides an unweighted mean squared error, and the latter gives

the mean squared forecast error studied in the next section.

Remark 3 The large sample approximations of the bias and MSE of the unrestricted estimator are
provided in the Supplementary Online Appendix B. To the best of our knowledge, this is the first

paper that provides these theoretical results under structural breaks.'°

In the following Corollary we show the dominance conditions of the Stein-like shrinkage
estimator relative to the unrestricted estimator. Let ¢, = o/ P’'W Pa, u = tr(W PQX)+o/ P'WO +
tr(WW), and n = 2/ P'Q ' PQEW Pa + 20/ P'Q 1O W Pa + o/ P'®W Pa.

Corollary 1.1 Under Assumption 1, if > én, and 0 < 7 < ;—d’(,u — én), then the risk of the
w

Stein-like shrinkage estimator up to order T~ is
Risk (&) < Risk (@). (4.4)

In addition, the optimal shrinkage parameter, denoted by Top:, that minimizes the risk of the

Stein-like shrinkage estimator up to order T™!, is

Topt = f(,u - ;77) (45)

w

Therefore, the risk of the optimal Stein-like shrinkage estimator up to order T is'!

1

Risk (Gopt) = Risk (@) — o
w

(i — ;m?- (4.6)

Proof: See Appendixz A, page 33.

10The detailed derivations of large sample approximations of bias and MSE of the restricted estimator are also
available upon request.
"' The Stein-like shrinkage estimator defined in (3.5) using the optimal shrinkage parameter, Top¢.

12



Corollary 1.1 shows that the proposed shrinkage estimator dominates the unrestricted estimator
in terms of having a smaller risk when the shrinkage parameter satisfies the condition 0 < 7 <
%(,u — %77) In addition, as the choice of the shrinkage parameter is user-specified, its optimal
value and our ideal choice that minimizes the risk of the Stein-like shrinkage estimator up to O(T 1),
is Topt. This implies that the Stein-like shrinkage estimator always performs better or performs equal

to the unrestricted estimator which is one of the common methods of estimating the coefficients

under structural breaks.!2

Since 7., depends on 02,02, Q, Z, C, G, w, a, and 7y, which are unobserved, we consider the
estimated optimal shrinkage parameter, denoted by 7, defined as

Fop = (B — =) . (4.7)
In equation (4.7), [, 7, ngS and QASW correspond to u, 1, ¢ and ¢, respectively, after replacing
(02, ,Q, Z, C, G) with their estimates, denoted by (62, &,Q, Z, C, G), where & and 67 are the
unrestricted estimators, Q = (Z'2)7 1, 7 = diag(Zl,Zg), with Z; = (F,-yo + CiXiﬁi,Xi), C and F
correspond to C' = (C},C}) and F = (F], F})" after replacing A1, and Ay by A, and Xo. Similarly,
@, ¥, and P correspond to ©, WU, and P after replacing the unobserved parameters with their
estimates. Since we define the Stein-like shrinkage estimator with positive shrinkage parameter in
(3.5), we set Topt to zero when the condition j > iﬁ does not hold. In this case, the Stein-like
shrinkage estimator assigns a weight one to the unrestricted estimator and a zero weight to the

restricted estimator.

In the following corollary, we show that the estimated optimal shrinkage parameter, 7.y, is an
unbiased estimator of the infeasible optimal shrinkage parameter 7,,; up to order T—1. Hence, when
the sample size is large enough the risk of the Stein-like shrinkage estimator using the estimated

optimal shrinkage parameter is smaller than the risk of the unrestricted estimator.

12We note that since the model in (2.1) includes dynamic structures, the unrestricted estimator is biased and the
terms that contribute to the bias will contribute to the risk of the Stein-like shrinkage estimator as well. Thus, the
dominance condition, 7 > 0, or equivalently u > 7/¢, is more mathematically involved compared to the models
without the dynamic structures (classical models). If the dynamic structure of the model is excluded, it can be
easily verified that the proposed Stein-like shrinkage estimator dominates the unrestricted estimator in terms of
having a smaller risk when the number of restrictions is more than 2 (which is the same as the classical Stein
dominance condition).
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Corollary 1.2 Under Assumption 1, if y > én, we have
E(Fopt) = Topt + O(T ). (4.8)
Proof: See Appendiz A, page 33.

Remark 4 The risk of the Stein-like shrinkage estimator presented in Theorem 1 is noticeably
different from the risk of the proposed estimators derived in Lee et al. (2022a), Lee et al. (2022b),
and Lee et al. (2022c). In this paper, we derive the large sample approxzimation of risk for any break
size, while Lee et al. (2022b) derive the asymptotic risk for their proposed combined estimator under
local-to-zero asymptotic framework. Also, we consider a dynamic regression model, while the model
considered in Lee et al. (2022a) and Lee et al. (2022c) is a static stationary model. Furthermore,
we allow for non-stationary regressors and unit roots (discussed in Section 5) which have not been

considered in Lee et al. (2022a), Lee et al. (2022b), and Lee et al. (2022c).

4.1 Forecasting under Structural Instability

In this section, we explain how the proposed shrinkage estimator can be used for the out-of-sample
forecasting. The true parameters that enter the forecasting period are the coefficients in the most
recent regime. Thus, we define a selection matrix S = [O(kﬂ)x(k“), Ij41] to select the post-break
slope parameters. By pre-multiplying the selection matrix to the shrinkage estimator, we get
Sa = w S& + (1 —w) S&, where for example g = S& denotes the estimated post-break slope

parameters of the shrinkage estimator.

We define the one-step-ahead mean squared forecast error (MSFE) of the shrinkage estimator

MSFE(ds) =E [(d — ) W — a)] , (4.9)

where Wy = T'S'z} . 2,,,,S, where z,,,, = (yr,2p,,). Since Wy contains lagged dependent

variables and is random, we give the MSFE in the following theorem.

Theorem 2 Under Assumption 1, the MSFE of the Stein-like shrinkage estimator up to order T~
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18
o . 2 27 - _ -
MSFE(a2) = MSFE(42) + ?o/P’WfPoz — E [tr(WfPQE) + o/P'WfG + tr(Wy )

+a'P'T1+ ' P'Ys+ tT’(PTg) + ir ((P - IQ(k+1))QT4):|

o (4.10)

+ g 2a'P’Q_1PQEWf]5a + 2a']3’Q_1\IIWfPa + a’P’(I)V_VfPa

+ o/ P'TyPa + 20/ P'Q 1 PYyPa + 2o/ P'Q™H(P — Ig(k+1))QT4Pa] ,

where Wy = TE(S'z! | =z

ot sr19), and the expressions for Y1-Y4 are given in equations
(A.19)-(A.22).

Proof: See Appendix A, page 34.

The following Corollary shows the conditions under which the MSFE of the Stein-like shrinkage
estimator is less than the MSFE of the post-break unrestricted estimator (& = S&). Before stating
the Corollary, we define some notations. Let ¢, = o P'WiPa, py = tr(WrPQX) + o/ PW;O +
tr(W¥) + o’ P'Y1 4+ o/ P'Y3 + tr(PY2) + tr((P — Iy41))QY4), and 1y = 20/ P'Q™ 1 PQEWPa +
20/ P'Q 1 UWPa+a P ®WsPa+a P'YyPa+20/P'Q 1 PTyPa+2a' P'Q™ 1 (P — Iy 41))QT4Pa.

Corollary 2.1 Under Assumption 1, if iy > %Uf; and 0 <71 < %(,uf — %nf), then the MSFE of

the Stein-like shrinkage estimator up to order T—! is
MSFE(&2) < MSFE(Go). (4.11)

In addition, the optimal shrinkage parameter, denoted by 71, that minimizes the MSFE of the

opt’
Stein-like shrinkage estimator up to order T™!, is
F_9 1
Tow = — (s — =1r). 4.12
opt b; ( f & f) ( )

Proof: See Appendix A, page 37.

We note that the optimal shrinkage parameter is data dependent. Therefore, when it is used
for forecast evaluations, it needs to be calculated for each estimation window of the sample (rolling

or recursive window).
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4.2 Non-Stationary Regressors

Our analysis can also allow for the unit root and non-stationary regressors. It is possible for the
y; process to contain a unit root (be integrated of order 1, I(1)) or be integrated of higher order
in both of the regimes. In this section, we demonstrate the results of Theorem 1 while we relax
Assumption 1(i7) on the stationarity of the exogenous regressors. We extend the results of Theorem
1 by relaxing Assumptions 1(7)—(¢7) on the stability, and the stationarity of the exogenous regressors

in Section 5.

Following Kiviet and Phillips (2005), we rescale the regressors and the coefficients so that all
elements of the estimation error vector are of the same stochastic magnitude. We assume that for
J=1,...,k + 1, the series of real positive constants g, is given, such that 7'7 = O,(T), where
Z=ZN,and N =1L ® diag(T~9,..., T 9%+1). In practice, one needs to determine the orders of
integration. The Augmented Dickey-Fuller test statistic is a commonly used method to determine
the order of integration of a time series. The basic idea is to test for the level of difference at which
the series is stationary. For more discussion and alternative approaches, we refer the readers to

chapter 14 of Gourieroux and Monfort (1997), and Smeekes and Wijler (2020).

Remark 5 Non-Stationary Regressors: In the model of equation (2.1), if Assumption 1(i)
holds but the 1™ column of exogenous regressors is a linear trend or an I(1) process while others

are stationary, then we have g, =1, and g,,, = 1, while g, =0 for j=2,..., [, +2,...,k+ 1.

Remark 6 Unit Root, and Non-Stationary Regressors: In the unit root model of equation
(2.1) (i.e. \1 = Ao = 1), if the exogenous regressors are stationary, then we have g, = 1, and
g, =0, forj=2,....k+1. When the 1" column of X is a linear trend or an I(1) process, then
g, = 2 because of the unit root, g,., =1, and g; =0 for j=2,...,[,1 +2,...,k+ 1.

Using the rescaled regressors, we write the model in (2.2) as
y=ZN(N'a)+u, (4.13)

where N~ 'a, are the rescaled coefficients. Moreover, the rescaled unrestricted estimator can be

formulated as

N YWa—a)=(Z2'2)" Z'v=N"12'2)""Z"u, (4.14)
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the rescaled restricted estimator can be formulated as

NYa-a)=N"Ya—a) - (Z'2)7'R [R(Z"Z')—lR’} RN 4

. (4.15)
= N"Ya—a)- N"YZ2)'R [R(Z’Z)”R’} Ra,
and the rescaled Stein-like shrinkage estimator is
Nl a-a)=w N a-a)+ (1 -w) N !a-a). (4.16)

Therefore, in order to find the bias and MSE of the Stein-like shrinkage estimator, we need to
pre-multiply the bias of the estimator in Theorem 1 by N, and pre- and post- multiply the MSE
of the estimator by V.

Theorem 3 The bias and MSE formulas of the Stein-like shrinkage estimator in Theorem 1 also
apply when the exogenous regressors contain non-stationary components. However, the jth element
of bias is approzimated up to order T=1795, and the (7, l)th element of MSFE is approximated up to

order T—279i—9t,

Proof: The proof follows from proof of Theorem 1, and we omit it for brevity.

5 Unit Root

In this section, we extend the results of Theorem 1 by relaxing Assumption 1(i)—(i7) on the stability,
and the stationarity of the exogenous regressors. We assume that for j = 1,...,k + 1, the series
of real positive constants g, is given, such that 77 = Op(T), where Z=ZN,and N = L, ®
diag(T~ 9, ..., T 9%k+1).

Theorem 4 Under Assumption 1(iii)—(vii), when the coefficients of the lagged dependent variable

is equal to unity, the bias of the rescaled Stein-like shrinkage estimator up to order T—' is

Bias(d) =E(& —d) = © — ;Pa, (5.1)

where ¢ = &' P'Q~ P& = O(T), P = QR(ROR)™'R = 0(1), Q = [E(Z)E(Z)]"! = O(TY),

and the first term above is the bias of the unrestricted estimator up to order T—' which is © =

17



-Q Z?:l [Z"LiC"QuZ'QNeM + Ney tr(QZ’LiC’QuZ)], and C has zeroes on and above its main
diagonal and components unity below. Also, the MSE of the rescaled Stein-like shrinkage estimator

up to order T2 is
2 ~ o T . « . . ~ .
MSE (&) =E [(& — &) (& - a)’] = MSE (&) + ;213@(5/13' - ; [PQE +XOP + 04 P + Pad
. -, 2T L EIA—l] S . A A1 S sy
+x11+\11] —I—d.)Q[PaaPQ [PQZ—HI/} + [EQP +\I/}Q PozaP]
+ d; [ﬁaa’f?’cb v é’ﬁaa’f)’} , (5.2)

where U and & are given in equations (A.35)-(A.36), and MSE () is given in equation (C.5) in

the Supplementary Online Appendiz C.

Further, for the fixed symmetric positive definite weight matriz W of order O(T'), the risk of the

Stein-like shrinkage estimator up to order T—! is

~ 2 - o . - . .
Risk (&) =E [(oi — &)W (& — &)| = Risk (&) + ;Qd’P’WPd - ZT [tr(WPQE) + &' P'WO + tr(WW)

2 T, . T . = T, . . < <. =
+ g; [QQ’P’QlPQEWPd +2&'P'Q 1 OW Pa + d’P’(I)WPo‘z} ,

(5.3)

where ¥ = diag(0? 4 1,051;41), and Risk (&) = tr(MSE (&) W).

Proof: See Appendixz A, page 37.

Remark 7 We note that the bias and MSE of the Stein-like shrinkage estimator can be obtained

using the bias and MSE of the rescaled Stein-like shrinkage estimator as follows:
Bias(&) = E(& — o) = N Bias(d),

MSE (&) =E [(& — a)(é — a)’] — N MSE (&)N,

where the j" element of bias is approzimated up to order T~179 , and the (j,1)"* element of MSE

is approximated up to order T—279 9,

Similar to Section 4.1, we define the one-step-ahead mean squared forecast error (MSFE) of the
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shrinkage estimator as
MSFE(ds) = E [(d — ) W6 — a)] ~E [(& — &)W —a), (5.4)

where Wf = NW¢N = Op(T). In the following Theorem, we give the MSFE of the Stein-like

shrinkage estimator when the model contains a unit root.

Theorem 5 Under Assumption 1(iii)—(vii), when the coefficients of the lagged dependent variable

is equal to unity, the MSFE of the Stein-like shrinkage estimator up to order T~ is

2
o 92 o _ _ _
MSFE(G3) = MSFE(Gs) + %a'P’WfPa - i tr(W;PQY) + o/ P'WO + tr(W¥) + o/ P'Y
+ 3; 20/ P'Q - PQEW; Pa + 2o/ P'Q U, Pa + o/ P&, Pal,

(5.5)

where Wy = TE(S'2 )E(z

. r —1 Y . Y . . .
T S), and the expression for T = N=*Y with T given in equation
(A.40).

2,T+1

Proof: See Appendix A, page 41.

6 Monte Carlo Simulation

In this section, we report the finite sample performance of our proposed Stein-like shrinkage
estimator. We compare the forecasting performance of the shrinkage estimator with those of the
unrestricted estimator and the restricted estimator. We consider the following data generating

process (DGP)

ai + Myi—1 + 2,61 + o016, fort <1
as + Xoyi—1 + P2 + o2e, for t > T,

where a; = (1—)\1) is the intercept in the first regime, x; follows a multivariate normal distribution
with mean zero and unit variance, and ¢ ~ ii.d. N(0,1).' By is a k x 1 unit vector of slope

parameters of the exogenous regressors. We consider 7' = 100, b; = T1/T € {0.2,0.4,0.6,0.8}, and

13We also consider the case where the error term is distributed from a non-normal distribution. These simulation
results are reported in Appendix D of the Supplementary Online Appendix, and are consistent with the results
reported here under normal distributions.
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k € {3, 5, 8}, where the results for k € {3, 8} are available in the Supplementary Online Appendix
D. The break size in the slope coefficients of the exogenous regressors, dvi, = S1 — B2, takes values of
0 €40,0.25,0.5,0.75, 1}, where ¢ is a k x 1 vector of ones, and the intercept in the second regime
is ag = (14 6)(1 — A2).* For the initial observation, yy, we consider a fixed start-up by setting

d=0, and o = a1 /(1 — \1).

For the break in the autoregressive slope coefficients, we study different experiments summarized
in Table 1. Experiment 1 considers no break in the autoregressive parameters. Small breaks,
moderate breaks, and large breaks in the autoregressive slope coefficients in either direction are
considered in Experiments 2-7. Higher post break volatility (oo > o01) and lower post-break
volatility (o2 < o1) are considered in Experiments 8 and 9. Experiments 10-12 consider a unit root
process (A1 = Ay = 1) with no break in the error variance, higher post break volatility, and lower
post break volatility, respectively. In all simulations, we estimate the unknown parameters, such

as the break point, and the break size in the slope coefficients and in the error variance.
Table 1: Break specifications

Experiments A1 Ao o1 09
#1 : No break 0.9 0.9 1 1
#2 : Small break in A 0.8 0.9 1 1
#3 : Small break in A\ (decline) 0.9 0.8 1 1
#4 : Moderate break in A 0.3 0.6 1 1
#5 : Moderate break in A (decline) 0.6 0.3 1 1
#6 : Large break in A 0.2 0.8 1 1
#7 : Large break in A (decline) 0.8 0.2 1 1
#8 : Higher post-break volatility 0.9 0.9 0.5 1
#9 : Lower post-break volatility 0.9 0.9 1 0.5
#10 : Unit root 1 1 1 1
#11 : Unit root with higher post-break volatility 1 1 0.5 1
#12 : Unit root with lower post-break volatility 1 1 1 0.5

The results of 5000 Monte Carlo simulations are reported in Table 2. The first column in each
table represents the experiment number based on Table 1, the second column shows the break size
in the slope coefficients (), and the rest report the relative mean squared forecast error (RMSFE)

of the post-break slope coefficients of the shrinkage estimator, and the restricted estimator for

The intercepts in both regimes are set equal to zero in the presence of unit roots in v, to avoid the possibility of
generating linear trends.

20



different break points. Thus, the RMSFE of the shrinkage estimator, and the restricted estimator
are denoted by RMSFE(&2) = MSFE(&2)/MSFE(G2), and RMSFE(&2) = MSFE(a2)/MSFE(é2),

respectively.

The Monte Carlo results support our theoretical findings presented in Section 4. The results
show that the RMSFE of our proposed shrinkage estimator is uniformly less than or equal to that
of the unrestricted estimator over different break sizes and break points. This shows the superiority
of the shrinkage estimator relative to the unrestricted estimator. For small break sizes in the slope
coefficients (small §), the restricted estimator performs better than the unrestricted estimator. This
is expected, because under small breaks, the bias of the restricted estimator will be dominated by
its variance efficiency. In this case, the shrinkage estimator tends to gain more from the efficiency
of the restricted estimator by assigning a larger weight to this estimator, and therefore remains one
of the best choices. When there is a large break in the slope coefficients, the shrinkage estimator
performs much better than the restricted estimator, and remains close to the unrestricted estimator.
This happens because under a large break, the restricted estimator has a large bias, so the shrinkage

estimator assigns more weight to the unrestricted estimator.

When the break occurs towards the end of the sample (e.g., by = 0.8), there are a few
observations in the post-break sample, which results in a poor performance of the unrestricted
estimator as it uses fewer observations. consequently, in this case, the RMSFE(as2) tends to be
smaller relative to the case where the break occurs towards the beginning of the sample (e.g.,
by = 0.2). However, since the shrinkage estimator is a weighted average of the restricted and

unrestricted estimators, it prevails.

When the pre-break sample is less volatile compared to the post-break sample (o7 < o2),
the shrinkage estimator gains from exploiting the less volatile pre-break sample observations.
Therefore, the shrinkage estimator provides a better estimation of the post-break slope coefficients
and outperforms the unrestricted estimator. On the other hand, when o; > o9, the gain obtained
from exploiting the pre-break sample observations decrease as the pre-break sample is more volatile.
In this case, the shrinkage estimator gives a larger weight to the unrestricted estimator. We also
find that as the number of regressors increases, the shrinkage estimator performs better. A similar

results hold when the dependent variable follows a unit root process in Experiments 10-12.

Furthermore, the results show that for a high degree of dependence or persistency (e.g.,

experiments #2 and #3 in which we also have a small break in the autoregressive slope coefficients
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A), the gain obtained by using the Stein-like shrinkage estimator over the unrestricted estimator is
around 10%-23.5% for a small to moderate break in the slope coefficients of the exogenous regressors
(6 <0.5), i.e., the MSFE decreases around 10%-23.5% by using the Stein-like shrinkage estimator
relative to the unrestricted estimator. On the other hand, when there is a large break in the slope
coefficients of the exogenous regressors (6 > 0.5), this gain is almost less than 5%. However, it
is worth mentioning that the Stein-like shrinkage estimator never under-performs the unrestricted
estimator. We see a similar pattern when the coefficient in one of the regime is persistent (e.g.,
experiments #6 and #7 in which we also have a large break in the autoregressive slope coefficients
A). When we have a unit root (e.g., experiments #10, #11, and #12), the gain obtained by using
the Stein-like shrinkage estimator over the unrestricted estimator is around 7%-15% for a small
to moderate break in the slope coefficients of the exogenous regressors. Under these experiments,
when there is a large break in the slope coefficients of the exogenous regressors, the Stein-like
shrinkage estimator performs equivalent to the unrestricted estimator. This is expected since for a
large break size, the bias created by the restricted estimator is greater than its variance efficiency.
Thus, the Stein-like shrinkage estimator assigns a weight one to the unrestricted estimator and a
zero weight to the restricted estimator. In general, we find that the shrinkage estimator performs

well under any break sizes and break points.

7 Empirical Analysis

In this section, we present an empirical application that highlights the utility of the proposed
shrinkage estimator in forecasting. In particular, we provide empirical analysis of forecasting the
output growth using 131 macroeconomic and financial time series from the St. Louis Federal Reserve
(FRED-MD) database. The 131 series are split into 8 groups: output and income, labor market,
consumption and orders, orders and inventories, money and credit, interest rates and exchange

rates, prices and stock market.

We use the monthly data from January 1959 up to March 2020. The data are described by
McCracken and Ng (2016), who suggest various transformations to render the series stationary and
to deal with missing values. Since the number of macroeconomic and financial variables is large, to
reduce dimension, we estimate static factors by principal component analysis adapted to allow for
missing values, see McCracken and Ng (2016). We select the number of significant factors using

a generalization of the Mallow’s C), criteria for large dimensional panels developed in Bai and Ng
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(2002). The criterion finds eight factors which can be interpreted as real activity/employment,
term spreads, inflation, housing, interest rate variables, stock market variables, and output and

inventories factors.

We adopt the following h-step ahead forecasting equation

Yeth = A\nYe + i Bn + Uprp, t=1,...,T, (7.1)

where the dependent variable is the output growth over the next h months, that is, yp =
(1200/h) In(IP¢yp /IP;), I P, denotes index of industrial production in levels, and f; is the estimated

eight factors at time t.

In order to evaluate the performance of our proposed estimator, we compute h-step-ahead
forecasts using the shrinkage estimator and compare it with those from the existing methods: the
unrestricted estimator (labeled “Unrest.” in tables), the restricted estimator (“Rest.”), the method
proposed by Pesaran et al. (2013) (“PPP”), the methods used in Pesaran and Timmermann (2007),
namely, “Troff”, “Pooled”, “WA”, “CV”, and the average window forecast proposed by Pesaran
and Pick (2011) (“AveW”). The forecasts employ a recursive (or expanding) estimation window.
Each time that we expand the estimation window, we apply the Schwarz’s Bayesian Information
Criteria (BIC) to select among the nine predictors except the lag dependent variable (so the model
is dynamic). We estimate the break point using Bai and Perron (1998, 2003) method, by setting

the significance level at 5% and trimming rate at 0.2.

Table 3 reports the MSFEs for different methods. The first column in this table shows the
forecast horizon, h = 1,6, and 12. For comparison, we report the MSFE for different methods with
estimated break date under the label estimated break dates in columns 2-9 of Table 3. Besides,
as the “CV”, “WA” and “Pooled” methods can also be implemented without an estimation of
the break date, we report the MSFE of these methods without estimating the break date. The
results without estimating break date, treating the break date as unknown, are reported under
the label unknown break dates in columns 10-13 of Table 3. We consider different out-of-sample
forecast periods (Panels A-D in Table 3) running from 1980:01-2020:03 to 2005:01-2020:03 to see

the performmance of different methods with this choice.

We test for equal forecast performance of different methods compared to the unrestricted

forecast using the Diebold and Mariano (1995) test. Table 3 also shows the results for the Diebold
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and Mariano test statistic, indicated by asterisks. The 5% and 10% significance levels are denoted
by ** and *, respectively. Based on the results, the shrinkage forecasts perform better than the
unrestricted forecasts in the sense of MSFE, over different forecast horizons, and over different
out-of-sample forecast periods. The improvement is statistically significant at 5% or 10% levels.
The forecast improvement ranges from 2 to 5.3 percent. The other alternative methods often
outperform the unrestricted forecast, however, their out-performance is not statistically significant
which might be a sign of having high variations. Besides, there are some cases that the alternative

methods under-perform the unrestricted forecast.'®

8 Conclusion

We introduce a method of estimation and forecasting in ARX(1) models under structural breaks.
The theoretical results can be generalized to models with higher order lags, however, it will not yield
qualitatively different results. The proposed method has four main advantages relative to the other
model averaging and shrinkage estimation methods existing in the literature. First, our method
allows for a unit root and non-stationary exogenous regressors. This is important because it can be
used in a large class of economic empirical applications. Second, the dominance and optimality of
the shrinkage estimator is not limited to MSE and holds for any weighted quadratic loss function
where the weight is positive definite and symmetric. This allows to use the proposed Stein-like
shrinkage method for out-of-sample forecasting by choosing an appropriate weight. Third, the
averaging weight is proportional to the reciprocal of the weighted distance of the restricted estimator
and the unrestricted estimator, which provides a shrinkage estimator with a uniformly lower MSE
than the unrestricted estimator. Lastly, we provide the large-sample analytical approximations of
the bias, MSE and risk of the Stein-like shrinkage estimator, the unrestricted estimator, and the
restricted estimator. We also evaluate the performance of our estimator in Monte Carlo simulations,
and in an empirical application of forecasting output growth using macroeconomic and financial
variables, and show that the Stein-like shrinkage estimator performs well relative to alternative

methods.

5We also calculated the equal forecast performance of the Stein-like shrinkage estimator compared to the unrestricted
estimator using the Clark and West (2007) statistic. We found that the statistical significance results are similar to
those obtained using the Diebold and Mariano test, i.e., the Stein-like shrinkage estimator significantly out-performs
the unrestricted estimator at 5% or 10% significance levels.
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A Appendix A
Proof of Theorem 1:

From the proof of Lemma B.3 in the Supplementary Online Appendix, we have
a—a=(Z2) " Zu=¢1+E61+E& s +0,(T72), (A1)
2 2

where £ 1, €1, and £_3 are defined below, and the suffixes show the order of magnitude in
2 2

probability,

2
5_% =Q [Z/(O, IT)I/ + Z l//Hil/el,i] = Op(jj_§>7
i=1
2
£1=—-Q(A+B) [Z’(o, v+y V’Hiyel,i} = 0,(T™Y),
=1
2
f_% = Q(A + B)? {Z’(O, It)v + Z V'Hiyem} = Op(T_%).
i=1

Also, let Wp = Z'Z = Wp + Wp, where Wp = E(Z'Z2) = Z'Z + B(Z'Z) = Z'Z +
SL (G LG e et = Op(T), and Wp = 2'Z + 22 + (2'Z —B(Z'Z)) = (A+ B)Q™" =
Op(T %), where A and B are given in Lemma B.2 in the Supplementary Online Appendix.

Using equation (A.1) in the inverse of equation (3.6), we have

-1

_ {(a &) Wp(a - a)] T [a P Pa}

+0,(17)] (Wp + W) [P+ P

N|=

0] (o ¢y + 0y )]
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b1 = o/ PWpPa = O(TY?), and the last equality above holds by using the standard geometric
2

expansion. The terms with order Op(T*2) and smaller are dropped, because they will not enter

in the calculation of the bias and MSE of the Stein-like shrinkage estimator up to the orders of

interest.

Employing equations (A.1)—(A.2) in equation (3.5), we obtain

G—a=(@—a)—7|=— =D+ o,,(T—Zﬂ [P+ P +0,1rYa
¢ ¢ 2 (A.3)
= C_% + C—l + C % + Op(T_2)7
where (_ 1 ¢_1 and QL% are defined below
_1

(1 =81=0y(T72),

T —

1 =¢-1 — E o = Op(T_l),

T = T =~ T _ _3

C*% = 57% — gP@% — Epiéaﬁ- ED%PO[ = Op(T 2)

The bias of the Stein-like shrinkage estimator using the approximations in equation (A.3) up

to order O(T~1) is

E(d—a) =E(C_1 + (1) =B(¢_1) +E(£1) - gPa =0- gPa, (A4)

where the last equality holds because of (B.24) and (B.25) in Lemma B.3.

The MSE of the Stein-like shrinkage estimator up to order O(T~2) is
E [(d —a)(@—a)| =E(C 1 +T 3 +T ), (A.5)

where I'_1, I'_3 and I'_5 are

_3
2

r,= C,lC/,p
2 2
I s=¢a1¢ 1 +¢a¢ 4,
2 2 2

I o= c,%c’_% + c,gc’_% + (-1,

and we derive their expectations in the rest of the proof using Lemma B.1 and Lemma B.3.
E(T-1) = E(C_%C/ %) = E(f_%f/ %) =Q%, (A.6)
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where the last equality holds because of (B.27) in Lemma B.3.

E(F_%) = E(Q_%C/—ﬁ + ]E(Cflcl_%) = E(f,lf’_%) + E(ﬁ_%fl—ﬁ» (A7)
because

/ _ T 5 / _ / T 5 / _ /
E(C1¢Ly) =B (61~ SPa)ey | = B(6a,) ~ SPaBE ) =E(Eag,), (A.8)

where the last equality holds by (B.24), and E({_1&’ ) is given in (B.28). Also, we have
2

E(T-2) = E(C_%Cl_ﬁ) + E(C_gCI_%) +E(¢-1¢)

2

72
= B(6 3¢ ) +BE 1) +E(E18l)) + S5 Pad ui[@dﬁfﬂ%@f}

_ % [PQE + QP +E(P_sa€ ) +E(P_sat ) ] = [Paa P'WpPQY (A.9)
2 2
+ XQP'WpPad' P 4+ Pao' PWpE(P_ 1ag’ 1) E(P_1a€ 1) WpPao P’}
2 2

+
2
+ é {Paa’P'E (WDPaﬁl_%) + E <§ éa'P’VNVD>Pao/P' ,

where
/ / T I B/ T Bl T2 I B/
BC-1¢1) = B(€1¢') — S B 10'P) - JE(Pagy) + gPaa P
(A.10)
S E(€1€Ly) — [ B(e )’ P + PaB(ELy)] + T Paa'P,

¢ )
E({-1) = O, by (B.25), and E(§_1£" ;) is given in (B.29). Also,

B(C3¢Ly) =E(€3€Ly) = SPEE €L ,) = JE(P jogl)) + 5 B(D Pagl )
= E(6_3¢ ) - %{PQE—FE(P_% ag’ %)} +i Paa'P'Wp |PQE +E(P_ ¢ ) (A.11)

+ - Pao'P'E (W~DP704§' 1),
@2 -3
where E(¢_3¢&" 1) is given in (B.30), and the last equality above holds by using
2773

') =2Pad’ PWpE [(Pffl +P a) 1} + Pad'P'E (VVDPale)
2 2 2

(A.12)
= 2Pac/ PWpPQY + 2Pac’ PWpE(P_1af’

2

)+ Pad'P'E (prafll)
2

1
2
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and using equation (B.27). Moreover, we find that
2
af ) =E { (]5 — I)Q(A + B)Q ' Pa |:V/(O, It)Z + Z I/Hl-ue/l’i} Q}
i=1
2 2
— ( P I)Q{ > € iPaZ' LiCQUZQ + Y e1,0/ P'Z'LiCOZQ (A.13)
i=1 1=1
2 2
+ 2 Z Z O'j2<€17i6/17jQ tr(GQ,,G'LiCLj)e’MPa} =V,
i=1 j=1

and

2 2
(WDPOzf [Z (Zl/Lleell,l + 61711//G/L121> + Z (U/G,LZGV — tr(G/LlGQl,)>€17l€/1,l:| Pa
= =1

—

2
{u’(o, I7)'Z + Z v’Hive'l,J Q

i=1

[ ¢} Pa)Z' LiCQWZQ + e1 0/ P Z' LiCAY, ZQ]

NMM

2 2
+2) ) (el Pajer el ;Q tr(C'LiGQ,G'LiY,) = ®
i=1 =1
(A.14)

By employing the results of equations (A.6),(A.7) and (A.9), in equation (A.5), we obtain the
MSE of the Stein-like shrinkage estimator up to order O(T~2), as

MSE (&) = MSE (&) + — p ™ PoaP - %[PQEJFEQPHL@a’P’+Pa@’+\p+xp’]
27 _ T _ - _
n d)% [Pao/P’WD [PQZ n \11} n [EQP’ n \Iﬂ} WDPozo/P’] (A.15)
T | Pac/ P'® + ' Paa’ P’
+ o [ aq + aq .
Further, the risk of the Stein-like shrinkage estimator up to order O(T~1!), can be written as
Risk (&) = E [(d —a)W(&— a)] = tr [WE [(d —a)(&— a)'H = tr [W MSE (d)}
T 2 _ _
= Risk (a) + %O/P’WP() - ET [tr(WPQE) +a/PWO + tr(W\Il)} (A.16)

e _ . 1 or
T gb% [o/P’WDPQEWPa n a’P’WD\IrWPa] EO/P’@WPa
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This completes the proof of Theorem 1. |

Proof of Corollary 1.1:

We note that from Theorem 1, we have
1
Risk (&) = Risk (@) + (LVQV <7’2 — QTi(u - n)) < Risk (@),
¢ dw ¢

where the last inequality holds, since p > %77, and 0 <7< ;—‘75 (,u — %77)
w

In addition, since the shrinkage parameter 7 in the risk of the Stein-like shrinkage estimator

appears as a quadratic expression, there is a unique choice that minimizes the risk which is equal

to Topt = %(M - %77)

Proof of Corollary 1.2:

From Lemma B.2 in the Supplementary Online Appendix and the proof of Theorem 1, we have the

followings

b=¢+ 1+ Op(1), where gZ;% =20/P' \WpPa + o/ PWpPa +2¢ , PWpPa,
2 2

1
2

CBW = ¢y + ¢§W1 + OP(1)>Where QASWI = QO/PI_lWPO‘ + 2£l_lplwpa‘
1 1 2 2

Therefore, we have

¢
1 n Wi
’f'opt:? ¢+¢%_ ¢ 2 +Op(1) ﬂ—

%+OP(T_1) il . (A.17)

Using the proof of Lemma B.2 and Lemma B.3 in the Supplementary Online Appendix, it can
be easily verified that E(¢1) = E((]BWI) = 0. To complete the proof, we need to show that (i)

1
2

2
f=p+fi_1+Op(T™') where E(i_1) =0 and (i) h =n+7_1 + Op(T~1) where E(f_1) = 0.
2 2 2 2
Let iy = tr(WP(Z'Z)~'%) be the first term of /i. Then, we have
i1 = tr(WPQX) + tr(WﬁféQZ +WPQX_1 + WPQ_3X) + O,(T™Y),
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where Qf% = —-Q(A+ B), and 27% — 3 — %. It can be casily verified that the expected value of
i1 up to order T~ 1 is E(fi) = tr(WPQX) + O(T™1).
Let fiy = &’ P'WO be the second term of fi. Using Theorem 3.1 in Kiviet and Phillips (2003),

we have
fio = a'P'WO + o PiWO + o/P/W@% +&  PWO +0,(T™),
2 2

where @_% = O — O. It can be easily verified that E(ji2) = o/ PWO + O(T ).

Let i3 = tr(W\i/) be the third term of fi. Using the results in Appendix D of Kiviet and Phillips

(2003), it readily follows that E(j3) = tr(WW¥)+O(T~!). This completes the proof of (7). Similarly,

using the results in Appendix D of Kiviet and Phillips (2003), (i7) can be easily verified.

Proof of Theorem 2:

Note that z,, ,S = (O,yT,:UéFH) = zr4+1, and zp41 = Zr41 + Zr41, and similar to the arguments
in section 2, we write zZr41 = E(zp41) = (0,9-1,7,27), y-1,17 = (fT,cT)gj*_LT, where fr = )\F{I)\?,
er = (AL L MAZ AR AT M), 0 = (0, T B T Bl 1 By 2B
and Zpi = gl/e’l’Q, with g = (dfr,cr). Let Wy = Tzp 2011 = Wy + Wf, where Wy =
TE(Zpyy2141) = T2 Zri1 + TE(Z  Zria) = Op(T), and Wy = Tz, gvel 5+ Teov/'g'Zr1 +

T(Vg'gv — tr(g'gQ))e12¢1 o = Op(T). The one-step ahead MSFE of the Stein-like shrinkage
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estimator up to order O(T1) is

MSFE(d) = E [(d — ) WG — a)} — tr [Wf MSE (a)} +tr [E(F_lwf) +E(T_sTy) + E(F_QWf)]
72 2T

¢? ¢
AT 5= 5 T B ! BINT ¥ 5 2T 5w 5
— | D o+ o D ol + o o

+ 52 PWpPQYEWiPa+ o PWpYW;Pa| + P PoWyP

— MSFE(ds) + o/ P'V; Pa — hmwmm+dPW@+MWmﬂ

2 T ! DI 2 T ! DI 2 D / T
- itr [E(Wff_%)a P] - itr [E(ng,l)a P} - %tr [PIE(&_%g_%Wf)}
2 S 9 o
- ?T r [E(Pféagiéwf)} + ¢—Ztr [E(D%Pozfiéwf)]
2
:MWH®H;WT%ﬂh—?PW@HEH&WW@+MWN4

S T I R
+ o [a’P’WDPQEWfPa + O/P'WD‘IIWfPa} + (b—za’P’@WfPa

$2
— i;—tr [Tla’]y} — i;—tr [Tgalp’} — 2;‘51“ |:PT2:| — 2(;— tr [(]5 — IQ(kH))QTzl}

9 L o L
n gg tr [Pao/P’T4 + 2Pad/ P'WpPYs + 2Paa’ P'Wp(P — 12(k+1))QT4] :
(A.18)

Now, we give the expressions for the expectations of the above equation in the rest of the proof.

E(Wp¢_1) =TE [Z’T+19V€’1,2 +e12V'g' Zri + <V’g’gv - tr(g’gﬁu))eme’l,z]

2
Q |:Z/(0, [T)I/ + Z V/HZ‘I/617Z':|

i=1

=T ZéurlCTQuZQel,g +e12 tr(QZ’Quc’TZTH) + 2(6’1,2Q6172)6172 tr(c’TgQ,,G’LQQU)
= Tl.

(A.19)

2 2
E(g_%g/_%wf) =TE |Q [Z’(o, Imyy+ Y u’Hiuel,i] [V’(o, InyzZ+Y I/'Hiye’lﬂ} Q
i=1 i=1

[Z/THQV@/LQ + 61,2V/9/ZT+1 + (VIQIQV - tY(QIQQu)>€1,26/1,2}
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2
=T |2QZ'QuchreruZQer g€l o + > QZ'[0C'Lihuch + 0 LiGQg'| Zr11Qerich 5
=1
+ (6/1’2626172)@2/[QUC/LQQUCIT + QuLQGng/]ZT_H
2
+3 Qevieh [m«(ZQZ% A ING L) + tr(ZQ 2 er QU LiC,)
=1

2
+ 3 Qeri€h Q7' [C Liucy + QLG | Zrn

=1
2
+2 Z(e’erl,g)Qel,ie’l,Q [tr(gQVG'LQQuC’LZ-Quc'T) + tr(erQy LoGQ, G L, r)
=1
(g0 G L O LoQudy) + tr(g’gQ,,G’LiQuLgGQl,)] =T, (A.20)

B(Ws€-1) = T | | Zhagvet s+ ey Zra + (Volav = n(dg0) Jerach

2
Q(A+ B) [Z’(o, IT)v + Z I//Hil/617i:|
=1
2
= T | 3 (€).,Qer) Zipys [ng,G’LiQuC’ + er QLG G | LiZQey 2
i=1

2 — — — —

+ (€ Qerens| (211 Q7' LiGRUG Lifudy) + tr(Zr 1 Q2 LiCQULiGRg)
=1

2

+ (€ 2Qe12) Zpn [90G L C! + erQuLiGRE | L Z Qe

=1

2 2
+3°5 6106t Q75 [gQ,,G’LjQuC’ + cTQuLjGQVG’} LiZQey
i=1 j=1

2
+ 2 Z 61726’1,QQZ’LiGQVg’cTQuZQeu + 2(6’1’2626172)6172 tr(c’TgQVG’LQZQZ'Qu)
i=1

2
+2(e] 5Qe1,2) Zr 4 190G LaCQ Z Qe o + 2 Z e12€1,QZ'0C'LiG g Zr11Qer
i—1

+ 4(6/1726261’2)26172 tr(cpg, G LaGQ, G LoQ),) + tr(g 90, G' LaCQ LoGQL) | | = Ys.

(A.21)
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2
E((A + B)Q_lpaﬁl_%Wf> —TE |(A+ B)Q 'Pa {1/(0, In)Z+> V/Hiyell,i:| Q
=1

[Zﬁmgve’l,z +eoV' Zria + <V’g’gv — tr(g’gﬂu))elze’m}

2 2
=T|2 Z(e’l,ipa)Z’LiGQVg/cTQuZQeLQe/LQ + 2 Z eLialp'Z/LiGQl,g'cTQuZQeljge/LQ
=1 =1
2 2
+3°5 (¢ Pa)Z'Li [GQVG’LjQuc’T + CQuLjGQVg/} Zr1Qer €l
i=1 j=1
2 2
+ 35 (el Pa)(eh ;Qern) Z' Ly [GQ,,G’LJ»QUC’T + CQuLjGQVg’} Zrir
i=1 j=1
2 2 ~ L
+3° enieh s (e’lijZ{p » [gQ,,G’LjQuC’ n cTQuLjGQyG/} LiZPa>
i=1 j=1
2
+3 (e12Qer)eri P'Z'L; [GQVG'LQQUC’T + CQULQGng’} Zri
=1
2 2
+2 Z(e’l’iPa)eue'LZ tr(G'LiCUWZQZ, 190) + 2 Z(e'lﬂ-Pa)617,~e/172QZ’QuC/LZ~GQVg'ZT+1
=1 =1

2
+4 Z(ell,ipa)(6/1726261,2)61,1‘6/172 [tr(c’TgQ,,G’LiGQVG’LQQu) + tr(g’gQVG’LiCQuLgGQV)} =7y

i=1
(A.22)

This completes the proof of Theorem 2. |
Proof of Corollary 2.1:
The proof follows readily from the proof of Corollary 1.1, so it is omitted. |
Proof of Theorem 4:
From the proof of Lemma C.2 in the Supplementary Online Appendix, we have
d—a=(Z'2) 2u="E_1+E14+E 5 +0,(T72), (A.23)

2 2
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where 5'7 1 5_1, and 57% are defined below, and the suffixes show the order of magnitude in

probability,
€1 =QZ(0,In)y = 0,(T"2),

2 -
5_1 = Q Z l//Hl'VNeLi — QAZ,(O,IT)V = Op(T_l),
=1

2 — —
3 =—QAY VHyNey; — QBZ(0,Ir)v + QA Z'(0, Ir)v = O,(T"2),
i=1
where H = G’Li(O,IT). Also, let Wp = 2'Z = ﬁ/D+ﬁ/D+é’é, where ﬁ/D = E(Z)’E(Z) — 77 =
0,(T), VTVD — 27477 = AQ~! = Op(T%), and 2'Z = 0,(1), with A defined in Lemma C.1 in

the Supplementary Online Appendix.

Using equation (A.23) in equation (3.6), we have

-1 -1
L {@ )W — a>] _ [a 2V pa}
D(a, )
1 1’7 2./T/T <. 2',7/7 s . _92
=1 *.gbl**.aPWDPéil**.aPWDPila +OP(T )
¢ ¢ 2 9 29 2
= 2 _1lp jo,0), (A.24)
¢ ¢ 2
~~ SN——
I 0,13

where D1 = é1 + 2|6/ PWpPE_1 + & P'WpP_1d| = 0,(T%), ¢ = &P'WpPa = O(T),

- 2 _2 2 2

¢1 = &/ PPWpPa = O(Tl/ 2), and the last equality above holds by using the standard geometric
2

expansion. The terms with order O, (T ~2) and smaller are dropped, because they will not enter

in the calculation of the bias and MSE of the Stein-like shrinkage estimator up to the orders of

interest.

Employing equations (A.23)—(A.24) in equation (4.16), we obtain

b—d=@-a) -7~ D1+ 0, )| [B+ Py + 0 (r7]a
s & : (A.25)

iy i+ 0,1,

1
2

where C'_ 1 é_l and C_% are defined below

é_ :é— :OP(T7%>7

NI
NI
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The bias of the Stein-like shrinkage estimator using the approximations in equation (A.25) up

to order O(T~1) is

o . . T = . T =

E(d —d) =E(C_1 +(-1) = E(€_1) + E(€-1) — gP‘j‘ —0- gP‘j" (A.26)
where the last equality holds because of (C.8) and (C.9) in Lemma C.2 of the Supplementary Online

Appendix.

The MSE of the Stein-like shrinkage estimator up to order O(T~2) is
E [(& —a)(d—a)| =B +T 5 +1 ), (A.27)

where I'Ll, I' 5 and f,g are

_3
2

I.‘71 = C‘_lé/_l7
2 2
F_é = é_;éll + é—lé/_la
2 2 2

I o=¢ 1 s+¢ 3¢+,
2 2 2 2
and we derive their expectations in the rest of the proof using Lemma B.1 and Lemma D.2.

E(Ffl) = E(é,%él_%) = E(i%él_l) = QE, (A-28)

M

where the last equality holds because of (D.12) in Lemma D.2.

E( 3) = B(C 3¢ + Bl ) =BG ) +EE 4€), (A.29)
because
B¢l ) =B[ (- Pa) ] =B ) - SPABE ) =B ), (A.30)

where the last equality holds by (D.8), and E(_1£" ;) is given in (D.12). Also, we have
2

E(I_) = E(C_%éla) + E(é_gél%) +E(¢C-1¢ )

V]
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2 _ _ _ _
=E(§ 58 ) +E(E_ 1€ 5) +E(E8" >+;2paafpf_ ;[ea'pf+paef}

. ; [15@2 + QP +E(P_ 1€ ) +E(P_yaé! ) ] + ;[ﬁaa’ﬁ’ﬁ@ﬁ@z

1
2

+YOP'WpPad' P + Pad P'Wp E(P_%aéié) + E(ﬁ_%aéQ%)’WDﬁaa’ﬁ'}
+ ;2 [ﬁaa’ﬁ'E (WDPag %) (g_%a'ﬁ’ﬁ@)f?aa'ﬁ'},
where
B(C-1y) =Bl y) - SEEa'P) - SB(Padl ) + Z Pad'P
=E(1€) - ; E(é_1)/P' + PaE(E )| + ;QPaa’P’,

E(£_1) = O, by (D.9), and E(£_1£’ ;) is given in (D.13). Also,

BCg¢ly) =BE4€y) - SPEE &) - TB(Pjaél )+ SE(DyPag )
=E(¢_3¢,)- 3 [15@2 + E(P_%ag"_%)} + Zﬁaa’ﬁ’vf@ POY + E(P_%aé’_%)
n q;f?ao'/f?’E (WDﬁaé’_%),

where E(éfgé’_%) is given in (D.14), and the last equality above holds by using

E(D) P! ;) = 2Pad/ PWp E (Péy+ Py a)é |+ Pad' PR (WpPag %)

1
2

= 2P6d! P'WpPQS + 2Pad! PWp B(P_16€' ) + Pac/ P'E (ﬁvpf?a& ;),
2

1
2

and using equation (D.11). Moreover, we find that

B(P_,6é ;) —E { (P - 1)QAG™ Pan/(0, zTyz'Q}

~ (- I)Q{ S NPAZ OO+ Y Nel,iafp'z"LicQuz'Q} _
=1

i=1

and

E(WDﬁag’ E {

[(e’uN P&)Z2'LiCQ2ZQ + N el,la’ﬁ’é’LlCQuéQ] = ¢
1

=1 =1

I
[M]

l
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[Z (Z{LlGue’uN n Nel,lz/G'LlZl)} Pé [z/(o, mZ+y I//Hiljellﬂ-N} O

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)




(A.36)

By employing the results of equations (A.28),(A.29) and (A.31), in equation (A.27), we obtain
the MSE of the Stein-like shrinkage estimator up to order O(T~2), as

~

2 o ~ T . « o . . o . . .
MSE (&) = MSE (&) + ;Zpaa’P’ - ; [PQE +XQP + 64/ P + Pad + ¥ + \II’]
+ j; [Paa’P’WD [15@2 + \IJ} n [2@13’ n \iﬂ} WDPaa’P'] (A.37)

+ ;2 [ﬁaa’ﬁ’é i é’ﬁaa’f)’} .

Further, the risk of the Stein-like shrinkage estimator up to order O(T~!), can be written as
Risk (&) = E [(& — &)W (G - a)] = tr [WIE [(& —&)(d - a)'H = tr [W MSE (&)}
~ 2 - - 2 T . - . .
= Risk (&) + ;Q(j/P’WPo} — (;- [tr(WPQZ) +d&' PP'We + tr(W\I/)} (A.38)
4T Y T . o oy . o 27’_,7,. o
+ ? &' PWpPQEW P& + & PWpUWPa| + Ea P'®W Pa.

This completes the proof of Theorem 4. |

Proof of Theorem 5:

Let Zp41 = zry1 N, similar to the arguments in the proof of Lemma D.1, we write 2p41 =
Zra1+ §T+1 where Zry1 = E(é741) = E(2r41)N, and §T+1 = (2741 — ZTTH) = gye’mN, with
g defined as g after replacing Ay = 1 and Ay = 1. Let Wf = Tz, L1271 = ﬁ/f + I;Vf, where
ﬁ/f =TE(Zri1) E(Zr41) = TZT’THZTTH = 0,(T), and I/%/f = TzT’THgVe’LQN + TNeyoV§'2rp1 +
T(V'§ gv — tr(§'§%)) Ne1gel ,N = Op(T/2) + Op(1).

The one-step ahead MSFE of the Stein-like shrinkage estimator up to order O(71) is

MSFE(&s) = E [(& — &) W& - a)] = tr [ﬁ/f MSE (&)} Ftr [E(f_lﬁ/f) + E(f_%w?f) LR _W )]
— MSFE(d2) + ;a’P’WfPa - ?)T [tr(WfPQZ) + &/ PO + tr(Wf\i;)]

4 3 3 . . 3 3 o . o & 2 3 . 3 o
+ & P WpPOQSW, Pa + & PWpUW,Pa| + “L&/ P'&W,; Pa
7 f f o 1
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27‘ iy . .y T/
- Etr [E(Wff_%)a P]
2 T2 . o - o . 2’7— - . . o K . - .
= MSFE(a2) + ?O/P/Wfpa — E [tr(WfPQE) + & P'W;0 + tr(Wf\I/)]

4 o - . - o o - . - - 2 o . o 2 . o
+ q; [d’P’WDPQEWde + o'/P’WD\I/Wde} + d.;d'P’@WfPo'z - (; tr [Ta' P

(A.39)
where
T= E(V{/ff'f%) =TE [Z/T+19V€,1,2N + N€1,2V/§,ZT+1] QZ'(0,Ir)v| + 0p(1)
(A.40)
=T ZT%_HC‘TQUZTQNQLQ 4+ Nel’g tI‘(QZT/QuC',TZTT_;,_l) + Op(l).
This completes the proof of Theorem 5. |
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Table 2: Simulation results with k =5

by : 0.2 0.4 0.6 0.8
Exp. 1) RMSFE(d2) RMSFE(a2) RMSFE(d2) RMSFE(a2) RMSFE(&2) RMSFE(a2) RMSFE(d&2) RMSFE(az2)
0.000 0.794 0.439 0.796 0.445 0.797 0.447 0.788 0.443
0.250 0.816 0.529 0.841 0.647 0.828 0.650 0.839 0.665
41 0.500 0.887 1.045 0.902 1.776 0.876 1.818 0.855 1.222
0.750 0.966 2.225 0.966 4.248 0.943 4.704 0.907 2.814
1.000 0.988 3.602 0.984 7.454 0.971 8.720 0.948 5.231
0.000 0.802 0.460 0.799 0.435 0.790 0.392 0.788 0.357
0.250 0.824 0.577 0.836 0.675 0.818 0.651 0.827 0.609
149 0.500 0.890 1.125 0.907 1.921 0.879 1.938 0.865 1.278
0.750 0.964 2.310 0.967 4.401 0.945 4.803 0.916 2.900
1.000 0.989 3.744 0.984 7.615 0.972 8.864 0.951 5.356
0.000 0.819 0.505 0.814 0.499 0.786 0.438 0.765 0.396
0.250 0.847 0.628 0.851 0.753 0.827 0.740 0.817 0.663
43 0.500 0.904 1.172 0.924 2.140 0.892 2.237 0.856 1.440
0.750 0.970 2.337 0.971 4.600 0.952 5.350 0.914 3.268
1.000 0.988 3.707 0.985 7.906 0.975 9.589 0.952 5.932
0.000 0.862 0.644 0.858 0.646 0.837 0.549 0.824 0.472
0.250 0.879 0.802 0.878 0.974 0.852 0.893 0.837 0.684
24 0.500 0.931 1.424 0.938 2.390 0.911 2.543 0.882 1.637
0.750 0.975 2.531 0.971 4.818 0.954 5.596 0.928 3.556
1.000 0.989 3.948 0.984 8.214 0.974 10.038 0.955 6.404
0.000 0.858 0.682 0.853 0.746 0.811 0.629 0.779 0.520
0.250 0.887 0.904 0.889 1.264 0.854 1.241 0.818 0.903
5 0.500 0.943 1.633 0.949 2.966 0.923 3.344 0.880 2.164
0.750 0.979 2.783 0.977 5.679 0.962 6.835 0.932 4.493
1.000 0.989 4.237 0.987 9.376 0.978 11.665 0.960 7.700
0.000 0.944 1.114 0.959 1.313 0.955 1.194 0.933 0.753
0.250 0.953 1.326 0.959 1.689 0.956 1.617 0.941 1.002
#6  0.500 0.973 1.952 0.969 3.038 0.963 3.251 0.953 1.991

0.750 0.986 2.944 0.979 9.365 0.972 6.172 0.964 3.776
1.000 0.992 4.312 0.986 8.670 0.980 10.370 0.972 6.342

Note: This table reports the results of the RMSFE where the benchmark model is the unrestricted
estimator. The first column shows the experiment numbers which represent the break specifications
based on Table 1, and the second column is the break size in the slope coefficients. In the heading
of the table, RMSFE(a2) = MSFE(a2)/MSFE(&2) shows the RMSFE of the shrinkage estimator, and
RMSFE(as) = MSFE(a2)/MSFE(dz2) is the RMSFE of the restricted estimator.
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Table 2: Simulation results with k¥ = 5 (Cont.)

by : 0.2 0.4 0.6 0.8
Exp d  RMSFE(d2) RMSFE(G2) RMSFE(¢2) RMSFE(ds) RMSFE(dz) RMSFE(d2) RMSFE(42) RMSFE(as)
0.000 0.964 2.279 0.964 3.096 0.928 2.529 0.849 1.267
0.250 0.981 2.670 0.980 4.032 0.956 3.738 0.898 2.042
a7 0.500 0.989 3.412 0.989 5.946 0.976 6.274 0.939 3.688
0.750 0.994 4.541 0.993 8.895 0.986 10.178 0.963 6.238
1.000 0.996 6.074 0.996 12.909 0.992 15.417 0.977 9.744
0.000 0.749 0.339 0.745 0.287 0.732 0.220 0.717 0.197
0.250 0.783 0.404 0.802 0.436 0.809 0.460 0.820 0.534
ug 0.500 0.877 0.888 0.913 1.626 0.898 1.758 0.870 1.232
0.750 0.973 2.108 0.978 4.110 0.960 4.601 0.925 2.933
1.000 0.992 3.476 0.990 7.304 0.980 8.664 0.958 5.396
0.000 0.931 0.865 0.963 0.959 0.952 0.914 0.905 0.761
0.250 0.965 1.250 0.969 1.560 0.954 1.446 0.933 1.021
9 0.500 0.995 3.354 0.997 6.920 0.988 7.162 0.954 2.892
0.750 1.000 7.611 1.000 16.127 0.997 18.475 0.986 8.864
1.000 1.001 12.939 1.001 28.858 0.998 34.304 0.993 17.941
0.000 0.875 0.577 0.873 0.569 0.879 0.578 0.874 0.574
0.250 0.886 0.664 0.885 0.754 0.882 0.802 0.907 0.833
#10 0.500 0.922 1.249 0.933 2.277 0.918 2.529 0.912 1.689
0.750 0.974 2.660 0.982 5.966 0.970 6.706 0.960 4.385
1.000 0.991 4.375 0.995 9.757 0.987 12.200 0.988 8.386
0.000 0.857 0.495 0.853 0.404 0.830 0.324 0.820 0.304
0.250 0.859 0.520 0.861 0.556 0.868 0.624 0.890 0.726
411 0.500 0.918 1.136 0.943 2.232 0.929 2.587 0.915 1.792
0.750 0.984 2.571 0.985 5.441 0.974 6.666 0.954 4.653
1.000 0.995 4.262 0.993 9.659 0.987 12.150 0.976 8.595
0.000 0.991 0.908 0.997 0.976 0.993 0.950 0.986 0.837
0.250 0.995 1.287 0.999 1.702 0.998 1.669 0.992 1.168
#12 0.500 1.000 3.850 1.001 8.888 1.003 10.062 1.000 4.404
0.750 1.000 9.250 1.000 21.014 1.002 25.997 1.003 14.672
1.000 1.000 15.912 1.000 37.792 1.000 47.839 1.002 29.821

Note: See the notes to Table 2.
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This supplement contains three parts. Appendix B provides the Lemmas used in the
proof of Theorem 1, and the detailed derivations of the bias and MSE of the unrestricted
estimator up to order 7! and T2, respectively. Appendix C provides the Lemmas
used in the proof of Theorem 4, and the detailed derivations of the bias and MSE of
the unrestricted estimator up to order 7! and T2, respectively, when the coefficient
of the lagged dependent variable is unity. Appendix D reports the extra simulation
results of the paper for £k = 3 and k& = 8 in Tables D1-D2. Also, the simulation results
when the error term is generated from a normalized chi-squared distribution with two

degrees of freedom are reported in Tables D3-D5.
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B Appendix B

Lemma B.1 Let Ay, Ay, A3, and Ay be symmetric T x T matrices and By, By, and B3
be arbitrary T x T matrices. If the random vector u be such that u ~ N(0,€), where € is

T x T, then the following results hold:

2

E | [ Biu) = tr(B19) tr(B,9Q) + tr(BiQ2B,) + tr(B1Q2BjY); (B.1)
=1

E [u’Alu - tr(AlQ)] (W Byu) = 2 tr( A, QB Q); (B.2)

E(uv' Byuu') = tr(B1Q)Q + QB + QBQ; (B.3)

E (' Biu) = tr(Bi9) tr(Ba) tr(Bs) + tr(B,2) [ t1( BoQUBy Q) + tr(BQQBgQ)]

i=1

2
E[uwAu— tr(AlQ)] (/' Biu) = 2 tr(B12) tr(A1QBoS) + 2 tr(BoS) tr( A1 QB1 Q)
i=1

B.5



2
E H(u’Bz-u)uu’ = Qtr(B1Q) tr(BaQ) + Q tr(B1QBQY) + Q tr(B1Q2B5Q)

=1

+ tr(ByQ)Q[B, + BLQ + tr(BoQ)Q[B; + B]Q + QB QB0 (B.6)

+ QBQBIQ + QBB

E [U'Alu - tr(Al(Z)] (wtd Brun) = 2 tr(A,QB1Q)Q + 2 11 B1Q)QAQ + 204,08, Q)

(B.7)
2
E]] [u’Aiu - tr(AiQ)] (' Brw) = 2 tr(B19) tr(A1QA4:9) + 4 tr( A1 QA0 B,Q)
=1
2
E]] [U'Aiu - tr(AiQ)] wt = 20 (A QAQ) + 404,Q4,Q + 404,04,0; (B.9)

=1

2 2
E [ A (' Bou) = T tr(A:iQ) tr(BiQ) + 2 (A, ) [ (A BIQBoQY) + tr{ A BIQBLQY)

=1 i=1

+ t(AQBQB Q) + t(AQBIOBIY) | +2r(4:,0) [ tr{ 41 QB QB)

+ tr( A, QBIQBYQ) + tr(A; QBB Q) + tr(AlﬂBQQBlﬂ)}

+41r(B,9Q) [ tr( A1 QA0 BoQ) + tr(AlQAQQBQQ)}

+ 4 t1(Bo) [ (A QA0BIQ) + tr(AlszﬁB;Q)}

42 4r(A,QA4,Q) [ tr(B1QB,9Q) + tr(BlszB;Q)} A tr(AQBQ) tr{ A0 Bo)

+ 4 (A, QBoQ) tr(A0B1Q) + tr(A,Q) tr(AsQ) [tr(BlﬁBZQ) + tr(BlgB;Q)]



+ 2 tr(A1Q) tr(B1Q2) tr(AsQBoQY) + 2 tr( A1 Q) tr( By) tr( A B §2)

+ 2 tr(A2Q) tr(B1Q2) tr(A1QB82) + 2 tr(AxQ) tr(B2Q) tr(A1QBQ)

+ 2 tr(B1Q) tr(Bo2) tr(A1QAQ) + 4 tr( A1 QA QB QB

+ 4 tr(A1QA0B1OQBYY) + 4 tr( A1QB5QB1QAQ) + 4 tr( A1 QB2 B1QAQ)
+ 4 tr(A1QA QBB Q) + 4 tr( A QANB,QBLQ) + 4 tr( A QB QB QA,Q)
+ 4 tr(A1QB1QByQAQ) + 4 tr( A1 QB QAN B Q) + 4 tr( A, QB QA,QBLQ)

2

=1

+ 4 tr(B,9) [ (A1 QAN BIQ) + tr(AlQAQQBiQ)}

+ 2 (A, 94,9) [ tr(B1QBo ) + tr(BlQBgQ)}

+ 4t AL QB1Q) tr{ AQByQ) + 4 tr( A1 QB Q) tr(A,QB, Q)
421 B1Q) tr(BoQ) tr(A1QA,Q) + 4 tr( A, QA0 B, QB Q)
+ 4 tr( A QAQBIQBLYQ) + 4 tr( A QBB QAQ)

4 4 tr(A QBB QAQ) + 4 (A QAQB QB Q)

4 4 tr( A QAQBQBIQ) + 4 (A QB QB2 AQ)

+ At AL QBIQBQAQ) + 4 tr( A QB QA0 B Q)

+ 4 tr(A QB QAQBLQY) + 4 tr( A QB QAQB, Q)



3
E]] [U'Aiu . tr(AZ-Q)] (0 Byu) = 8 tr(B19) tr(A; QA AQ) + 4 tr( A QAQ) tr(A;QB;)

i=1
+4 tT(AIQAgg) tT’(AQQBl) +4 tT(AlgBlg) tT(AzQAgQ)
+ 8 tT(AlgAQQAgQBlﬂ) +8 tT’(AlQAQQAgﬂBiQ)
+8 tT(AlgAQQBlgAgﬂ) +8 tT(AlgAgQBlQAQQ)
(B.12)
3
i=1
4
E]] [u’Aiu - tr(AiQ)] — 4 4r(A1Q49) 1(A5QA,0Q) + 4 tr( A1 QAQ) 11 AQA,0Q)
i=1
(B.14)

+ 4 tT(A19A4Q) tT’(AQQAg,Q) + 16 tT(AlgAQQA3QA4Q)

+ 16 t?”(AlQAQQA4QA39) + 16 tT(AlﬂA3QA29A4Q)7

Proof: The proof of (B.1), (B.4), and (B.10) for symmetric matrices are proved in
Magnus (1978) and Ullah (2004)." Our results for arbitrary matrices By, By, and Bs follow
by noting that for ezample w'Byu = iu'(By + Bj)u = u'Byu, where By = (B, + BY}) is
symmetric. Hence, the results of (B.1), (B.4), and (B.10) can be easily verified. (B.2)
follows from (B.1) and using E(u' Byu) = tr(B:2).

For (B.3), consider its (i, )™ element which is E(u;u’ Byuu;). Let e; be the i™" column of

1Some terms for the moment of fourth order products of quadratic forms were missing in Ullah (2004)
which are corrected in Bao and Ullah (2010) erratum.



Ir. Then, u; = €, and

E(uwu' Biuu;) = E(u'ejeun’ Byu) = €;Qe; tr(B1Q) + e;0B1Qe; + ;2B Qe;,

where the last equality above holds by (B.1). Now, (B.3) can be easily verified. In a similar
way, (B.6) can be verified from (B.4).

(B.5) follows directly from (B.1) and (B.4). (B.7) follows from (B.6) and (B.3). (B.8)
can be easily verified from (B.1), (B.4), and using E(u'Byu) = tr(B1R2). (B.9) follows directly
from (B.6), (B.3), and noting that E(uu') = Q. (B.11) and (B.12) are derived from (B.1),
(B.4), and (B.10). (B.13) is derived from (B.9), and (B.11). Lastly, (B.14) is derived from
(B.12) and (B.13).

|
Lemma B.2 Under the model defined in Section 2 of the paper, it can be verified that
2
E(Z'Z)=Z'Z+ ) tr(G'LiGY)enel,, (B.15)
i=1

2

Z'w = Z'(Opsr, Ir)v + Y v/ Hyver; = Op(T?), (B.16)
i=1

(Z22)"' =Q - QA— QB+ Q(A+ B)?*+0,(T"?), (B.17)

P=P+P.1+0,(T™), (B.18)

where Q = [E(Z'Z)]"' = O(TY), P = QR'(RQR)"'R, P = (Z'Z)'R/(R(Z'Z)"*R))"'R,
Hi=G'Li(0,Ir), A= (Z’Z+2'2)Q = [Zf 2 LiGue, + 32, el,i;/G'LiZ] Q=0,(T %),
B= (ZZ - E(Z/’Z“))Q -y [V’G’LiGy - tr(G’LiGQV)] e160,Q = Op(T %), and P_, =
[P — L )]Q(A + B)R'(RQR') 'R = O,(T2). Further, we note that (0, I1),G" = Q,C",
tr(H;Q,) = tr(Q,C'L;) = 0, tr(H;QH;Q,) = tr(2,C'LiQ,C'L;) = 0, because the diagonal

elements of C' are zeros, and tr(H;Q), H}S2,) = o2 tr(GIGiQ,) if it = j, and is equal to 0, if



i

Proof: It can be easily verified, and we omit it. [

Lemma B.3 Under Assumption 1, the bias of the unrestricted estimator up to order T1

18

2
BZ(IS(E)&\) = ]E(Z)? — a) = —Q Z [ZILiCQuZQeLi + €1, t?”(QZ/LZCQuZ) ( )
i=1 B.19

+ 20’2‘261,726,1,1‘6261,1‘ tT(LZGQVG/LZC)] = @,

where P = QR'(RQR)'R=0(1),Q = [E(Z'Z)]"' = O(T™1), C = (C},C%), and the MSE

of the unrestricted estimator up to order T—2 is

MSE (@) = Q¥ (B.20)

2 2

i=1 j=1

2 2
+ 30D Qeriel ,QZ [P LGRG L — S LCLICY, = 20,0 LLCQ, — 030, LC'L;| 2Q

i=1 j=1

2
+Y Q2" [U?LiGQ,,G’LZ- — 2L,CL,OQY, — a?QuC”LiC’Li] ZQ

=1

2 2
+3°% Qereh @ [af 1(QZ' LiGQG'L; Z) + t{(QZ' L0 2) tr(QZ’Lj(JQuZ)]

i=1 j=1

2 2
+3°) Qeriel,Q [ 1(QZ' LiCQWZQZ'L,C0Z) — 2 tr(QZ’LiCQuLjCQuZ)}

i=1 j=1

2
+ 3 €,Qe1,Q7 [LO0, + 0,0'L| 2Q Q7' 100, 2)

i=1

2
+3 6,02/ L0 2Qe1 Q2 [LiCQu n QUC’Li] 7Q

i=1

2 2
+ Z Z QZIL¢CQuZQ€1J€/1,iQZ/ [LJ'CQ“ - QuC/LJ} ZQ

i=1 j=1



2 2
+Y % [QZ’LiC’QuZQeLZ-e’LjQZ’QUC”LJZQ + QZ’QUC’LJ-ZQel,ie’LjQZ’QuC’LiZQ]

i=1 j=1

2 2
+) 0 €),QeQZ'LiCAZQZ' LiCAZQ + > ¢y ,Qe1,QZ'0C'LiZQZ'Q,C'LiZQ

=1 =1

2 2
+5°5 Qerie, Q7 [Quc’Lj + LZCQM] ZQ t(QZ' L0 Z)

i=1 j=1

2 2
+3 Y @z [LZCQU v Quc'Lj} ZQe: i€, ,Q t{QZ'L;C,2)

i=1 j=1

2 2
+3°3 Qerie, Q7 [LiC’Qu n QUC’LZ} 2Q7'L;C0ZQ
i=1 j=1
2 2
+3°% Qerey @ [Z’QUC’LiZQZ’QuC’LjZQ + Z'0,0'L;2QZ' LiC0WZQ
i=1 j=1

2 2
+ 33 Q2L + O L] ZQZ' ;00 ZQe 61 ,Q

i=1 j=1

2 2
+ 30D QZCLZQZ | LC, + QC'Li| ZQe ¢4 ,Q

i=1 j=1

2 2
+23°3 ¢lQen, [QZ’LjCQuZQeUe’MQ t(L:GQ, G LiCY)

i=1 j=1

+ QZ/LZCQUZthelle tT'(L]GQVGILZCQu) + QZ’LiC’QuZQeUe’UQ tT(LzGQVG/L]CQU)]

2
+6) ¢ ,Qe1,QZ'0C'LiZQe ;¢4 ,Q tr(LiGQ,G'LiCKY,)

=1

2 2
+23°3 ¢ Qe [Qeme’LjQZ'QUC”LjZQ (LG, G LiC)

i=1 j=1

+ Qer¢h ,QZ'0,C'LZQ tr(L,GQ, G LOY,) + Qe j¢,,Q2Z'0,C' LiZQ tr(L;GO, G LOR,)

2
+6) ¢ ,Qe1Qer e} ,QZ'LiCQAZQ tr(L,GQ, G LiCQ,)

=1

2
+23(¢,Qe1:)’QZ [QUC”Li + L0 ZQ tr(LiGQ, G LiCQ,)
i=1
2 2
+2.

i=1 j

|:26/172-QZ/L1‘OQUZQ€1J tT(LZGQVG/LJCQu) + 46,1’Z'QZ,LZ‘OQUZQ€LZ' tT’(LJGQVG,LZCQu)

1



2 2

(Qerieh ,Q + Qeryel Q) + 3% tr(QZ’LiCQuZ){ 261 ,Qer tr(L; GG L;C,)

i=1 j=1

+ 26/1,1‘6261,1' tT’(LJGQVG/LZCQu)] [Qelyie/uQ + Qel,jell’iQ} }

2 2
=233 Qe (G LGR,G L G,) | Qerich ,Q + Qe el Q)

i=1 j=1

2
+6) e ,Qer tr(G LiGQ G LiGQ, ) Qe i) ,Q

=1

2 2
233 0% Qery [Qel,ieng + Qel,je'MQ] [tr(GQl,G’LiCLiCLj) + (GG LiCL,CLy)

i=1 j=1

2 2
— 233 Pt Qen tr{GRUG LC LCL;) | Qeriel ,Q + Qe et Q)
i=1 j=1
2 2
+ Z Z {46/1726261,1'6/1&@617]' |: tT(LlGQVG/L]OQu) tT(LJGQVG,LZCQu) + tT(LlGQVG,LlCQu)

i=1 j=1

tT(LJGQyG/LJCQu)] Qel,iell,jQ -+ 8(6/1’1-6261’1')2 tT(LJGQVG/LlcQU) tT’(LzGQZ,G/LZCQu)

[Qelﬂ-e'l’jQ —|— Qeljje’l,iQ} }, (BZ]_)

where ¥ = diag(03 41,0511 1). |

Proof: Using the results of Lemma B.2 in equation (2.2) of the paper, we have

A—a=(Z2'2)"Z'u=E 1+ 60 +E 3 +0,(T77), (B.22)

where £_1, &_1, and £_s are defined below, and the suffizes show the order of magnitude in
2 2 2

probability,

2

£1=Q [Z’(o, I+ V/HZ-VGLZ} = 0,(T%),

=1

2
£,=-Q(A+ B) [Z'(O, Ir)v + Z V/HiVel,i] = 0,(T7Y),
i=1
2

€3 =Q(A+B) [Z’(o, Iw+y V'Hiuem} — 0,(T%).

i=1
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The bias of the unrestricted estimator using the approrimations in equation (B.22) up to

order T~ is

E@—a)=E(E¢ 1) +EE)=-Q) [Z’LiOQuZQeM + 1 t{QZ'LiC02)

=1 (B.23)
+ 202-26171'6/172626171' tT(LlGQ,/G/LZC) ,
where the last equality holds because
2 2
E(f—%) = Z Qel,i E(V/Hiy) = Z Qel,i tT’(LZCQu> = O, (B24)
i=1 i—1

as the diagonal elements of C' are zero, and by using (B.2) in Lemma B.1, E({_1) is

E(¢-1) = -QE {(A + B) [Z/(Ov Ir)v + 22: V/Hil/el,i] }

i=1

2
= —Q Z |:Z,LiCQuZQ€1,Z‘ + 6171‘ tT(QZ/LZCQuZ) + 20'1-26171‘6,1#626171‘ tT(LZGQ,,G/LZC) .

=1
(B.25)
The MSE up to order T=2 is
El@-a)(a—a)|= E(ﬁ_%ﬁl,% + 5_%§L1 + 5—15,,% + 5_%&% + f_gfl,% +&180).
(B.26)

We derive the expectations of the terms in (B.26) in the rest of the proof. Using (B.1) in

Lemma B.1, we obtain
2 2
E(fféfl_%) =E {Q [Z/(Q Ir)v + Z V/Hiyel,i:| [l/,(O, Ir)'Z + Z I/Hiyell,i:| Q}
i=1 i=1

2
= QZ'NZQ+ Q) eieh; tr(HiQH/Q,)Q

i=1
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2
=QZ'NZQ+ QY ol e, tr(GiGi,)Q
=1

= QY (B.27)

where the last equality holds because QZ'Q0W7Z =¥ — QY 7, olei€l; tr(GiGiQ,).

Using (B.1), (B.3), and (B.5) in Lemma B.1, we obtain

2 2
E(f_lglé) =—-QE {(A + B) [Z'(O, Ir)v+ Z V/HiV(BLZ'] [V'(O, Ir) 7 + Z V/Hil/ellyi] }Q

=1 =1

2 2
=-Q> ) o7 [LZ-GQVG’Lj + LiOLjCQu} ZQey €, ;,Q
i=1 j=1

2
~QY 0%,Qe1,Q7 [LiGQVG’Li + LZCLlCQu] A6

=1

2 2
—Q> ) ajenieh ;Q [ tr(QZ'LiGN,G'L;Z) + tr(QZ'LiCLjCQuZ)}
i=1 j=1
2

2
~ QYN o€l ,Q7 | LiGQUGL, + LiCLIC| 2Q

i=1 j=1

2 2 2
—2Q) e1€4,QZ'0C'LiCAZQ —2Q ) 0> 146 Qerieh ;Q [0?0]2. tr(GQ,G'L;,CL,CL;)
i=1 i=1 j=1

+ 0'220']2 tT(GQVG,chL]CLl) -+ 012 t?"(G/LiGQVG,L]’GQV) -+ 07;20'? tT(GQVG/LZO/LZCL]>] .
(B.28)

Using (B.1), (B.3), and (B.5)-(B.9) in Lemma B.1, we obtain

E(_1¢,)=QE {(A + B) [Z'(O, Ir)v+ i V’Hiyem] [V'(O, Ir) 7 + i V/Hil/ell’i] (A+ B)’}Q

i=1 i=1

2 2 2
= 071, Qe Q7' LiGU,G' LiZQ+ Y > QZ'LiCNZQe ¢, ,QZ'0C'L; ZQ
=1

i=1 j=1

2 2 2 2
+) Y QZ'LiCUZQe1 ¢, ,QZ'AUC'L;ZQ+ Y Y QZ'LiCQZQer 56} ,Q tr(QZ'L;CQ, 2)

=1 j=1 i=1 j=1
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2 2 2 2
+3 Y QZ'LiCNZQZ'LiICAZQer i€, ;Q + Y Y 0iQZ'LiGQ,G'L; ZQey i€ ;Q
=1 j=1 i=1 j=1
2

2 2
+) 0 Qerieh ,QZC'LZQINQZLiICZ) + Y > Qereh ;QZ'0,C'LiZQZ'0C'L ZQ

=1 j=1 i=1 j=1

2 2 2 2
+ Z Z U?Qel’iellijZ/LiGQyGleZQ -+ Z Z Qel,iell,jQ

i=1 j=1 i=1 j=1

[tr(QZ’LiCQuZ) 1(QZ'L;C0VWZ) + 02 t{(QZ' LG, G L, Z) + tr(QZ'LiCQuZQZ'LjCQuZ)}

2 2
+23° 3 ¢, Qery tr(L;G,G'L;CN,) [QZ’LiCQuZQeMe’LjQ + Qeue’uQZ’QuC’LiZQ}

i=1 j=1

2 2
+23°3 ¢Qen tMLGRLG'L,CR,) [QZ’LiOQuZQeLje’MQ + Qelyje’LjQZ'QuC”LiZQ}

i=1 j=1

2 2
+23° " el Qers Q2 LCUZ) (L GG L;CQ) | Qerie ,Q + Qe e Q|

i=1 j=1

2 2
+23° 3 6,2 L0 ZQey ; tr(LiGQ, G L;ON,) [Qel,ieg,jQ + Qel,jegyicg] (B.29)

i=1 j=1

2 2 2
+2) oleh QerQeiel ,Q (G LiGRGLGN,) + 4> Y € Qe el ;Qer Qe el ;,Q
i=1

i=1 j=1

[tT(LZGQyG/LJCQu> tT(L]GQVG/LZCQu) + tT‘(LlGQVG/LZCQu) tT(LJGQVG/L]CQu)] -+ 0(T72)
Also, Using (B.3), and (B.5)-(B.9) in Lemma B.1, we obtain

2 2
E(¢_3¢ ,) = QF {(A + BR|Z/0, Iy + > v Hwvey| [V(0, 1) Z + 3 v Hvel | }Q

=1 i=1

2 2 2 2
=33 Q7 LCZQe QL LiICAZQ+ D Y 0?QZ'LiGAG L ZQey ¢4 ,Q

=1 j=1 i=1 j=1

2 2 2
+3 ) QZ'LiCZQe ;¢4 ,QZ'LCUZQ+ Y €h,Qer Q7' LiCQUZQ tHQZ' LiCQ, Z)

=1 j=1 =1

2 2
+ Z UfellyiQeMQZ/LiGQ,,G/LiZQ + Z 6/1ﬂQel’zQZ/LZCQuZQZ/LZCQuZQ
i=1 i=1
2 2 2 2
+) 0 aiQeriel JQ (QZ'L,GUG' LiZ) + Y Y Qe ;QZ'0C'LiZQZ LCN,ZQ

=1 j=1 i=1 j=1
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2 2 2 2
+) 0D Qeriel ;QZ0C'L;ZQZ' LICAZQ+ Y Y Qeniel ;QZ'LiCY,ZQ t1(QZ'L;CQ,Z)

=1 j=1 i=1 j=1

2 2 2 2
+) 0 02Qerieh ,QZ'LGUG'L;ZQ+ Y Y Qeiey ;QZ'LiCZQZ'L;CN,ZQ

i=1 j=1 i=1 j=1

2
+2Y " otel Qe Qe el ,Q tr(G LG, G LG,

i=1

2 2
+83 ) (€ ,Qer)’Qen el ;Q tr(LiGQL G LiCR,) tr(L;GQ, G LiCN,,)

i=1 j=1

2 2
+2) 0> € ,QeQZ' LiCQ ZQey i€ ;Q tr(L; GO, G LiCR,)

i=1 j=1

2 2
+4) Y " Qerieh Q7' LiCQZQen i¢h ,Q tr(L;GQ,G'LiCKY,)

i=1 j=1

2
+2) (€),Qe1:)*QZ' LiCQ, ZQ tr(LiGQ,G'L,CA,,)

i=1

2
+6Y ehQeriQerieh ,QZ'LiCQUZQ tr(LiGQ, G LiCQ,) (B.30)

=1
2 2
+23 ) et Qe Qenieh ;Q {(QZ'LiCY, Z) tr(L;GRG'LiCY,) + o(T72).

i=1 j=1

By employing the results of equations (B.27)-(B.30) in equation (B.26), we obtain the

MSE of the estimator up to order T—2. This completes the proof of Lemma B.3.

C Appendix C

Lemma C.1 Under Assumption 1 (iii)—(vii), when the coefficients of the lagged dependent
variable in the model (2.1) is equal to unity (be integrated of order 1, I(1)) or be integrated

of higher order in both of the regimes, and the exogenous regressors contain non-stationary
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components, it can be verified that

(Z'2)' = Qs + A+ B ' =Q — QA — QB + QA + 0,(T7?), (C.1)
Z'u=Fu+ Zu=0,(T") +0,(1), (C.2)
P=P+ Py 4o, (T, (C.3)

~/ — !/

where Q = (ZT’Z)_1 = 0,(T™"), A = (Z’E +Z2)Q = O,(T~'?), and B = (2 E)Q =

O,(T™Y), with 7 = E(Z), and Z = S LiGue’lviN, and G is defined as G after setting
: L . -1 - .

M =1, and Ay = 1. Also, P = (Z2'2)"'R’ (R(Z’Z)”R’) R, where P = QR'(RQR')"'R,

and P_ = (.F_) — Ig(k+1))QAQ_1P

3
Proof: Similar to Section 2 of the paper, we decompose Z =17 + Z, where 7 = E(Z) =

E(Z)N = ZN, and Z = Z — 7= (Z—Z)N = ZN = S22 LiGue’LiN. Hence, we have

~/ _ ~

.. - T - 7 A T
' =7072+77+727+7ZZ,
- T - 7 ~/! < ~/~
where Z'7Z = O,(T), 2'Z + Z Z = O,(T*?), and Z Z = O,(1). Using this expansion, the

results of Lemma C.1 can be verified easily. [

Lemma C.2 Under Assumption 1 (iii)—(vii), when the coefficients of the lagged dependent
variable in the model (2.1) is equal to unity (be integrated of order 1, I(1)) or be integrated
of higher order in both of the regimes, and the exogenous regressors contain non-stationary

components, the bias of the rescaled unrestricted estimator up to order T~ is
2

Bias(a) =E(d —d) = -QY_ [ZT’LiCQuZTQNeM + New, t(QZ'LiCZ) | =6,  (CA)

=1

where C' is defined as C after replacing \i and Xy with one. The MSE of the rescaled
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unrestricted estimator up to order T2 is

2
MSE (&) = QY + > QNeye; ;NQo? tr(G,GiS,)
i=1
2 2 .« e . . . . . . . . . .
+Y > Q7 [JELZGQ,,G’LJ- — 0?L,CL;CQ, — 29,0'L,L;CQ, — QuO’LiQuC’Lj] ZQNey i ;NQ
i=1 j=1
2 2 . « o . . . . . . . . .
+3° " QNewel ,NOZ' [J?LiGQVG’Lj — 2L,CL,CQ, — 20,0 LiL,CRY, — anuC”LiO’Lj] Z0Q
i=1 j=1
2 . . o . . . . . . v .
+3 e NONe,QZ! [afLiGQyG’Li — 2LOL,CY, — anuC’LiC’Li} 70
i=1
2 2 . . « o . . -~ « . -~ « o . -~
+3°3 QNewey ;NGO [03 (02 LG G L, Z) + tr{(QZ' LiC0W2) tr(QZ’LjCQuZ)}
i=1 j=1
2 2 . . Iy . v . v . -~ Iy . . -~
+3°5 QNeyey ;NO [ t1(QZ' LiCWZQZ'L,C0Z) — 2 tr(QZ’LZ-CQuLjCQuZ)]
i=1 j=1
2 . « o . . . « o . s
+3 €l NQNe, Q2 [Li(mu + QU(J'L,} 20 tr(QZ'LiCQ7)
=1
2 Iy . v . . o . . v .
+3 ¢ NQZ'LCQ,ZONe, Q7 [LZCQU + QUC’LZ} 70
=1
2 2 .« . . .« e . . .
+3°3 Q7' 1.6 Z0ONey ¢, ,NOZ' [LjCQu + QUC’Lj] 70
i=1 j=1

2 2 o . . . o . . . o . . . o . .
+ Z Z [QZ’LZCQUZQNGLZ(%’LJNQZ’QuC”LJZQ + QZ/QuC/LJZQN€17Z€/1’]NQZ/QUC/LZZQ]

i=1 j=1

2 -~ . v . v . v . 2 . . o . R . v .
+ Z e\ ;NQNe1 ;QZ'L,CQ,ZQZ'LiCQ,ZQ + Z e\ ;NQNe ,QZ'0,C' L, ZQZ'Q,C'L; ZQ)
i=1 i=1

2 2 _ B B B
+5°5 " ONey ¢, ,NQZ [QuC'Lj + LiCQu} 20 t(Q7' L2

i=1 j=1

2 2 3 _ _ _
+3 Y oz [Lmu + QuC’LJ} ZQNe i€, ,NQtH(QZ'L;CQ,7)

i=1 j=1

2 2 _ _ —
+ 30D ONewiel ,NQZ' | LCQy + 00 L] 207 1,60, 2Q

i=1 j=1

2 2 -~ . v . v . v . -~ . v . v . v .
+3°3 QNewe, ,NQ [Z’QuC’LZ-ZQZ’QuC'LjZQ + Z’QUC’LjZQZ’LiCQuZQ]

i=1 j=1
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2 2
+3 O [LZCQU + QuC’LZ} 2Q7'L,CQZQNer ¢, ,NQ

i=1 j=1

2 2 _ _ _ -
+3° 307001207 [LjCQu v QuC’Lj] ZQNey;¢; ;NQ

i=1 j=1
. 2 « ™ . . 2 -~ ™ . .
— QY Newei ,NQZ'22Q - Q> Z'0ZQNey €| ,NQ, (C.5)
=1 =1
where ¥ = diag(02 41,0511 1). [

Proof: Using Lemma C.1, we have
G—a=(22)" 2u=E 1 +Ea+E s+ O,(T), (C.6)

where 57;, 57;, and 57; are defined below, and the suffizes show the order of magnitude in
2 2 2

probability,

§1=QZ(0,Ir)y = 0,(T3),

2 -~
5_1 = Q Z V'Hinelyi — QAZ’(O, Ir)v = Op(T_l),

=1

3
2

2 -~ . . -~
£3=-QA > VHwNey; — QBZ'(0, Ir)v + QA Z'(0, Ir)v = O,(T~?),

i=1
where H = G'L;(0, I7).

The bias of the unrestricted estimator using the approzimations in equation (C.6) up to

order T~ is

2 — — — —
E(d —a) = E(S_%) +E() =-Q Z [Z/LiCQuZQeLi + e Q2 LiCQ,Z) |, (C.7)

i=1

where the last equality holds because

E(¢_ 1) =0, (C.8)

1
2
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and by using Lemma B.1, E(§_) is

2 —
E() =Y ONe E(W/ Hy)— QE {AZ/(o, JT)V}
=1
2 2 B _
i=1 i=1

2 - . < . - . - .
= —Q Z |:Z/LlCQuZQN€1,l + Nel,’i tT(QZ/LlCQuZ)‘| = @,

i=1
where C' has zeroes on and above its main diagonal and components unity below. Since the
diagonal elements of C' are zero, tr(L;C,) = 0.

The MSE up to order T2 is

-~ ~

E|(a@—-a)(a—a)|= E(é_%f/_% + 5_5&1 + é—lél_% + f_%fl_% + é_gél_% + é—léﬁ)-
(C.10)

We derive the expectations of the terms in (C.10) in the rest of the proof using Lemma B.1.

We obtain
E( 1€ ) =E {Qz"(o, L)/ (0, IT)’ZQ} = QZ'0,20Q = O3, (C.11)

where the last equality holds because Qé’Qué = Qé’éZ =3

2 — —_
B¢ ) = E{ Q3 v e,/ (0. 1Y 2Q ) ~ QB { 420, 1w/ 0.1 2} @ .
=1
(C.12)

2 2
E(£_,& ) = QE { [Z V' HivNey; — AZT’(O, [T)I/] [e’ljiN Z V' Hyv — V(0 IT)’ZTA} }Q

i=1 i=1
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2
= Z QN@LZ»@'LZ-NQJ? tr(GGQY,)
i=1

2 2 B B
~ QY Y BZ LG L + LCLCR, | ZQNey i, ,NQ

i=1 j=1

2 2 -~ . . -~ Iy . . -~
—03" Y Ney el ,NQ [ 1(QZ'L,GOGL,Z) + tr(QZ’LiCLjCQuZ)]

i=1 j=1

2 2 _ - ’
_ (Q Z Z O'JQ.Z" [LzGQUG/LJ + LzCLJCQu} Z‘QN(ELIBILJ-NQ)

i=1 j=1

2 2 ry . . -~ « o . . -~ '
_ <Q D> ) oiNeye ;NQ [ tr(QZ'LiGQ,G'L; Z) + tr(QZ’LiCLjCQuZ)} )

i=1 j=1

2 - . . . 2 2 . . . . . .
+Y 0% ,NQNe,QZ' LiGQUG'LiZQ + > Y QZ'LiCQZQNey j¢) NQZ'Q0,C'L; ZQ
=1

i=1 j=1

2 2 -~ . o . Iy . o . 2 2 .« o . v . . Y . -~
+Y Y QZ'LiCQZQNe €y ;NQZ'QUC'LiZQ + > Y~ QZ'LiCQUZQNeyi¢h ;NQ tH{(QZ'L;C0, 2)

i=1 j=1 i=1 j=1

2 2 B B _ B 2 2 B _
+3 N QZLCNZQZL;CQZQNer €y ;NQ + D > 07QZ' LiGRG' L ZQNey i€ ;NQ

=1 j=1 i=1 j=1

2 2 -~ . . . o . -~
+3 ) QNeyel ;NQZ'QC'LiZQ tr(QZ'LiCQ, 2)

i=1 j=1

2 2 -~ . v . v . .
+) ) QNeyeh ,NQZ'Q,C'LiZQZ'0C'L ZQ

i=1 j=1
2 2 . . . . . . 2 2 . .

+3 ) 02QNeyeh ,NQZ'LiGUG'LZQ+ Y Y " QNeyzeh ;NQ (C.13)
i=1 j=1 =1 j=1

[tr(QZT’LZCQuZT) 1(QZ'L;C0VWZ) + o2 t(QZ' LG G L, Z) + t(QZ' LiCQ0WZQZ'L;C0Z)| .
Also, by Lemma B.1, we obtain

2 B B _
E( 4 ,) = OF { [ AV HNer, — BZO. I+ 2220, 1] v 0, IT)’Z'}Q

i=1

2 ry . . . . e
= QY o ,NQNe,QZ' [LZGQ,,G’LZ- + LCLCV| 20
=1
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2 2

— QY Y Ny NQZ LG,G L + LiCLC, | 2Q
i=1 j=1
. 2 . . . . . . 2 .« . .
—2Q ) Neyey NQZ'QC'LiCQZQ - QY Neyey ,NQZ'Q0ZQ
i=1 =1

2 2 B _ B B 2 2 _ B
+) Y e NQZ'LiCNZQNe ;QZ' LiCUZQ+ Y Y 0iQZ' LiGQG' L ZQNey i¢h ;NQ

=1 j=1 i=1 j=1

2 2 -~ . . « o . . 2 . « o . . « o . ~
+) Y QZ'LiCUZQNey ;¢4 ;NQZ'L;CQZQ + Y €4 ;NQNey,QZ'LiCQ, ZQ tr(QZ' LiCQ, Z)

i=1 j=1 i=1

2 -~ . . v . 2 . . o . v . v . v .
+Y ot NQNep,QZ'LiGQ,G'LiZQ + > €, ;NQNey ,QZ'LiCQZQZ'LiCZQ

=1 =1

2 2 . . . o . . -~ 2 2 . . o . T . .
+Y 0 aQNey el ,JNQINQZ'L;GUG LiZ) + Y Y QNeyieh ,NQZ'Q0WC'LiZQZ'LC0,ZQ

i=1 j=1 i=1 j=1

2 2

2 2 -~ . R . . . Iy . . .« o . -~
+Y ) QNewey ,NQZ'QC'LiZQZ LiCQUZQ + > Y QNeyeh ,NQZ'LiCQ,ZQ tH(QZ'L;CQ, 2)

i=1 j=1 =1 j=1

2 2 _ _ 2 2 _ _ _ _
+3 ) 0?QNeyieh ;NQZ'LiGUG L ZQ+ Y Y QNey ey ;NQZ'LiCQ,ZQZ'L;C0, ZQ.

=1 j=1 i=1 j=1

(C.14)

By employing the results of equations (C.11)-(C.14) in equation (C.10), we obtain the

MSE of the estimator up to order T—2. This completes the proof of Lemma C.2. [

Remark C.3 We note that the bias and MSE of the unrestricted estimator can be obtained

using the bias and MSE of the rescaled unrestricted estimator as follows:
Bias(@) = E(@ — a) = NBias(d),

MSE (&) = E [(a —a)(@-a)| = N MSE (&)N,

where the j element of bias is approzimated up to order T=179%  and the (j,1)'" element of

MSE is approzimated up to order T—279i=9,
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D Appendix D

This section contains further simulation results of the paper when k£ = 3, and £ = 8, and
the simulation results for k € {3,5,8} when ¢ R (x%(2) — 2)/2, where x?(2) denotes the

chi-squared distribution with two degrees of freedom.
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Table D1: Simulation results with £k = 3
by : 0.2 0.4 0.6 0.8

Exp. 0  RMSFE(d:) RMSFE(d2) RMSFE(d2) RMSFE(d2) RMSFE(é2) RMSFE () RMSFE(é2) RMSFE(a2)
0.000 0.806 0.391 0.810 0.392 0.813 0.406 0.808 0.410
0.250 0.826 0.454 0.854 0.558 0.862 0.611 0.877 0.670
4 0.500 0.864 0.742 0.897 1.265 0.884 1.330 0.892 1.049
0.750 0.932 1.614 0.957 3.380 0.937 3.664 0.918 2.283
1.000 0.969 2.875 0.983 6.264 0.970 7.220 0.952 4.554

0.000  0.805 0.397 0.814 0.393 0.819 0.376 0.814 0.375
0.250  0.832 0.482 0.842 0.544 0.851 0.584 0.867 0.598
49 0.500  0.875 0.796 0.894 1.354 0.883 1.412 0.897 1.074
0.750  0.930 1.650 0.955 3.486 0.937 3.745 0.925 2.371
1.000  0.968 2.956 0.982 6.410 0.970 7.322 0.955 4.678

0.000  0.860 0.516 0.852 0.495 0.829 0.448 0.830 0.458
0.250  0.882 0.599 0.884 0.694 0.868 0.697 0.878 0.710
43 0.500  0.915 0.956 0.920 1.630 0.900 1.743 0.899 1.273
0.750  0.956 1.868 0.968 3.870 0.949 4.455 0.928 2.892
1.000  0.985 3.158 0.988 6.908 0.977 8.359 0.962 5.654

0.000  0.900 0.645 0.903 0.671 0.904 0.652 0.914 0.649
0.250  0.902 0.716 0.905 0.868 0.894 0.850 0.905 0.753
4 0.500  0.926 1.134 0.938 1.999 0.923 2.156 0.920 1.520
0.750  0.962 2.050 0.971 4.188 0.956 4.881 0.944 3.406
1.000  0.985 3.332 0.985 7.201 0.974 8.813 0.966 6.361

0.000  0.896 0.686 0.890 0.778 0.871 0.735 0.871 0.706
0.250  0.910 0.845 0.911 1.208 0.889 1.243 0.892 1.046
45 0.500  0.943 1.442 0.950 2.769 0.930 3.183 0.916 2.189
0.750  0.973 2.504 0.979 5.410 0.965 6.722 0.951 4.672
1.000  0.991 3.940 0.990 8.983 0.981 11.423 0.975 8.453

0.000  0.947 1.011 0.972 1.338 0.974 1.351 0.963 1.006
0.250  0.954 1.161 0.969 1.583 0.970 1.607 0.965 1.184
46 0.500  0.970 1.649 0.974 2.696 0.972 2.932 0.970 2.072
0.750  0.983 2.483 0.982 4.677 0.977 5.404 0.976 3.740
1.000  0.990 3.635 0.988 7.558 0.982 9.028 0.980 6.207

Note: This table reports the results of the RMSFE where the benchmark model is the
unrestricted estimator. The first column shows the experiment numbers which represent the break
specifications based on Table 1, and the second column is the break size in the slope coefficients. In
the heading of the table, RMSFE(&y) = MSFE(as)/MSFE(az) shows the RMSFE of the shrinkage
estimator, and RMSFE(ay) = MSFE(a,)/MSFE(ay) is the RMSFE of the restricted estimator.
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by : 0.2 0.4 0.6 0.8
Exp §  RMSFE(é2) RMSFE(dy) RMSFE(ci2) RMSFE(di) RMSFE (ci5 ) RMSFE (ci ) RMSFE (¢t ) RMSFE (i, )
0.000 0.968 2.397 0.973 3.669 0.943 3.233 0.893 1.847
0.250  0.982 2.847 0.987 4.720 0.970 4.653 0.925 2.843
a7 0.500 0.993 3.649 0.994 6.696 0.986 7.365 0.957 4.826
0.750 0.997 4.760 0.998 9.636 0.994 11.331 0.978 7.819
1.000 0.998 6.216 0.999 13.518 0.997 16.605 0.989 11.894
0.000 0.789 0.318 0.789 0.263 0.779 0.214 0.766 0.208
0.250  0.807 0.349 0.827 0.365 0.846 0.422 0.868 0.560
48 0.500 0.862 0.613 0.901 1.140 0.893 1.234 0.901 1.032
0.750 0.939 1.527 0.970 3.256 0.952 3.551 0.931 2.409
1.000 0.984 2.836 0.989 6.120 0.980 7.151 0.960 4.790
0.000  0.942 0.844 0.967 0.932 0.958 0.899 0.891 0.655
0.250 0.967 1.094 0.975 1.315 0.961 1.256 0.945 0.959
9 0.500 0.980 2.317 0.994 4.960 0.983 5.008 0.961 2.234
0.750 0.999 5.859 1.001 13.601 1.003 15.277 0.993 7.279
1.000 1.002 10.845 1.001 24.7773 1.001 29.547 1.001 15.702
0.000  0.925 0.619 0.926 0.618 0.931 0.633 0.926 0.644
0.250 0.925 0.661 0.934 0.764 0.937 0.834 0.957 0.894
2410 0.500 0.943 1.055 0.950 1.853 0.947 2.067 0.959 1.511
0.750 0.968 2.244 0.987 5.305 0.987 6.425 0.987 3.972
1.000 0.994 4.184 0.999 9.796 1.005 12.346 1.020 8.866
0.000  0.917 0.528 0.908 0.434 0.904 0.382 0.905 0.429
0.250 0.920 0.534 0.921 0.573 0.929 0.663 0.954 0.828
411 0.500 0.936 0.955 0.952 1.927 0.948 2.205 0.959 1.567
0.750 0.978 2.295 0.987 5.290 0.979 6.464 0.977 4.386
1.000 0.996 4.116 0.996 9.655 0.992 12.410 0.995 9.597
0.000  0.995 0.921 0.999 0.971 0.997 0.937 0.994 0.822
0.250 0.997 1.156 1.000 1.471 0.999 1.461 0.997 1.150
P 0.500 1.000 2.764 1.000 7.087 1.004 8.126 1.000 3.599
0.750 1.000 7.918 1.000 20.866 1.001 25.534 1.008 13.715
1.000 1.000 15.183 1.000 37.949 1.000 48.573 1.012 32.209

Note: See the notes to Table D1.
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by : 0.2 0.4 0.6 0.8
Exp §  RMSFE(d2) RMSFE(d,) RMSFE (2 ) RMSFE (i) RMSFE (o) RMSFE (i ) RMSFE (¢ct2) RMSFE (s )
0.000 0.713 0.353 0.708 0.356 0.707 0.352 0.689 0.341
0.250  0.757 0.496 0.772 0.640 0.763 0.629 0.751 0.560
21 0.500 0.892 1.263 0.904 2.126 0.864 2.114 0.799 1.178
0.750 0.975 2.556 0.964 4.669 0.942 5.107 0.882 2.567
1.000 0.989 4.070 0.981 8.101 0.968 9.196 0.929 4.576
0.000 0.724 0.390 0.739 0.407 0.718 0.330 0.705 0.264
0.250  0.775 0.570 0.787 0.720 0.769 0.663 0.746 0.508
29 0.500 0.896 1.340 0.912 2.266 0.876 2.243 0.817 1.210
0.750 0.976 2.673 0.966 4.814 0.944 5.241 0.890 2.637
1.000 0.990 4.223 0.982 8.279 0.968 9.317 0.932 4.692
0.000 0.731 0.435 0.736 0.440 0.701 0.362 0.654 0.281
0.250 0.792 0.625 0.810 0.805 0.766 0.724 0.717 0.541
43 0.500 0.913 1.419 0.926 2.405 0.886 2.436 0.805 1.307
0.750 0.977 2.637 0.969 4.961 0.949 5.507 0.891 2.831
1.000 0.989 4.155 0.983 8.449 0.972 9.755 0.935 4.998
0.000  0.801 0.607 0.819 0.639 0.767 0.461 0.709 0.287
0.250 0.849 0.841 0.862 1.062 0.818 0.915 0.762 0.538
4 0.500 0.942 1.645 0.936 2.593 0.906 2.697 0.843 1.420
0.750 0.978 2.837 0.969 5.166 0.951 5.803 0.905 2.994
1.000 0.989 4.403 0.983 8.770 0.971 10.163 0.939 5.268
0.000  0.803 0.655 0.809 0.704 0.743 0.510 0.674 0.329
0.250 0.862 0.951 0.879 1.306 0.825 1.152 0.742 0.678
45 0.500 0.949 1.786 0.947 2.997 0.916 3.149 0.842 1.722
0.750 0.980 2.983 0.974 5.724 0.956 6.458 0.908 3.479
1.000 0.989 4.580 0.985 9.501 0.974 11.094 0.942 5.958
0.000  0.952 1.252 0.946 1.341 0.934 1.088 0.898 0.491
0.250 0.961 1.508 0.952 1.818 0.941 1.621 0.913 0.753
6 0.500 0.975 2.195 0.965 3.305 0.955 3.387 0.933 1.630
0.750 0.985 3.325 0.977 5.809 0.967 6.366 0.949 3.152
1.000 0.992 4.889 0.985 9.348 0.977 10.616 0.961 5.330

Note: See the notes to Table D1.
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by : 0.2 0.4 0.6 0.8
Exp §  RMSFE(é2) RMSFE(dy) RMSFE(ci2) RMSFE(di) RMSFE (ci5 ) RMSFE (ci ) RMSFE (¢t ) RMSFE (i, )
0.000 0.965 2.216 0.955 2.601 0.914 1.918 0.814 0.734
0.250  0.979 2.603 0.971 3.476 0.946 2.947 0.874 1.262
a7 0.500 0.988 3.398 0.982 5.399 0.968 5.265 0.921 2.490
0.750 0.992 4.620 0.988 8.367 0.980 8.920 0.949 4.431
1.000 0.995 6.286 0.992 12.392 0.987 13.866 0.966 7.097
0.000 0.675 0.278 0.636 0.200 0.626 0.143 0.609 0.104
0.250  0.712 0.348 0.720 0.402 0.730 0.418 0.721 0.406
48 0.500 0.886 1.060 0.927 1.975 0.896 1.988 0.832 1.145
0.750 0.980 2.430 0.978 4.526 0.960 5.003 0.912 2.610
1.000 0.992 3.958 0.989 7.977 0.979 9.100 0.948 4.665
0.000 0.917 0.891 0.942 0.951 0.931 0.896 0.872 0.740
0.250 0.961 1.495 0.962 1.853 0.940 1.640 0.908 1.005
9 0.500 1.000 4.263 0.995 7.937 0.982 8.093 0.933 2.997
0.750 1.002 8.762 0.998 17.688 0.991 19.787 0.967 8.114
1.000 1.003 14.774 0.999 31.318 0.995 35.920 0.982 15.730
0.000  0.769 0.454 0.773 0.451 0.772 0.441 0.783 0.470
0.250 0.811 0.611 0.830 0.744 0.812 0.732 0.809 0.703
2410 0.500 0.916 1.434 0.925 2.491 0.897 2.639 0.848 1.598
0.750 0.978 2.842 0.975 5.542 0.960 6.416 0.919 3.688
1.000 0.991 4.582 0.987 9.618 0.979 11.507 0.957 6.569
0.000  0.736 0.363 0.710 0.279 0.692 0.205 0.680 0.174
0.250 0.769 0.454 0.783 0.516 0.784 0.546 0.781 0.567
411 0.500 0.908 1.277 0.943 2.374 0.918 2.591 0.866 1.644
0.750 0.983 2.730 0.983 5.412 0.969 6.305 0.931 3.762
1.000 0.993 4.472 0.991 9.491 0.984 11.440 0.961 6.689
0.000  0.980 0.931 0.989 0.967 0.986 0.931 0.972 0.799
0.250 0.994 1.530 0.998 1.992 0.996 1.819 0.986 1.133
P 0.500 1.000 4.697 1.000 9.412 1.002 10.063 0.997 4.189
0.750 1.000 9.871 1.000 21.062 1.000 24.988 0.999 11.993
1.000 1.000 16.721 1.000 37.273 1.000 45.047 1.000 23.052

Note: See the notes to Table D1.
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by : 0.2 0.4 0.6 0.8
Exp. 8  RMSFE(dy) RMSFE(d,) RMSFE (G2 ) RMSFE(as) RMSFE(ds ) RMSFE (2 ) RMSFE (¢t2) RMSFE (s )
0.000 0.814 0.275 0.791 0.298 0.800 0.274 0.795 0.311
0.250  0.777 0.262 0.758 0.310 0.767 0.360 0.842 0.564
41 0.500 0.765 0.320 0.775 0.631 0.745 0.770 0.826 0.970
0.750 0.801 0.988 0.818 2.120 0.797 2.125 0.807 1.992
1.000 0.884 2.541 0.869 4.307 0.852 4.719 0.847 4.220
0.000 0.813 0.312 0.791 0.299 0.811 0.270 0.808 0.302
0.250  0.761 0.233 0.745 0.256 0.757 0.305 0.822 0.474
) 0.500 0.749 0.378 0.756 0.623 0.746 0.814 0.839 1.008
0.750 0.807 1.034 0.811 2.252 0.791 2.068 0.845 2.334
1.000 0.874 2.550 0.872 5.151 0.860 4.918 0.861 4.383
0.000 0.864 0.431 0.875 0.475 0.865 0.437 0.859 0.432
0.250  0.871 0.520 0.862 0.583 0.864 0.663 0.881 0.705
43 0.500 0.866 0.780 0.868 1.377 0.862 1.483 0.886 1.266
0.750 0.905 1.709 0.924 3.724 0.881 3.783 0.887 2.667
1.000 0.949 3.580 0.957 7.681 0.917 7.644 0.890 5.338
0.000 0.920 0.611 0.935 0.645 0.934 0.608 0.941 0.613
0.250 0.913 0.641 0.906 0.709 0.911 0.775 0.928 0.774
4y 0.500  0.918 0.986 0.929 1.883 0.916 2.060 0.928 1.631
0.750 0.958 2.071 0.963 4.529 0.937 5.191 0.940 3.895
1.000 0.976 3.665 0.973 8.141 0.955 9.407 0.944 6.856
0.000 0.936 0.688 0.924 0.689 0.909 0.673 0.908 0.655
0.250 0.938 0.797 0.930 0.999 0.918 1.030 0.919 0.923
a5 0.500  0.948 1.274 0.958 2.510 0.942 2.815 0.936 1.925
0.750 0.975 2.518 0.980 5.673 0.965 6.759 0.944 4.243
1.000 0.978 4.082 0.990 9.760 0.982 12.410 0.963 8.128
0.000 0.909 0.761 0.956 0.988 0.970 0.934 0.969 0.742
0.250 0.904 0.781 0.948 1.105 0.955 1.058 0.964 0.914
46 0.500  0.885 0.961 0.951 2.005 0.945 2.077 0.960 1.725
0.750 0.953 2.105 0.953 3.839 0.946 4.101 0.956 3.247
1.000 0.959 3.494 0.959 7.026 0.951 7.458 0.953 5.645

Note: See the notes to Table D1.
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by : 0.2 0.4 0.6 0.8
Exp §  RMSFE(é2) RMSFE(dy) RMSFE(ci2) RMSFE(di) RMSFE (ci5 ) RMSFE (ci ) RMSFE (¢t ) RMSFE (i, )
0.000 0.974 1.875 0.978 2.722 0.952 2.232 0.916 1.325
0.250  0.985 2.201 0.989 3.232 0.974 3.038 0.932 1.841
a7 0.500 0.993 3.073 0.996 5.251 0.990 5.436 0.957 3.444
0.750 0.997 4.426 0.999 8.639 0.996 9.653 0.970 6.251
1.000 0.999 6.283 1.000 13.130 0.999 15.840 0.985 10.456
0.000 0.815 0.274 0.778 0.201 0.799 0.184 0.784 0.171
0.250  0.780 0.206 0.769 0.221 0.794 0.279 0.861 0.537
48 0.500 0.784 0.308 0.768 0.569 0.776 0.703 0.872 1.107
0.750 0.802 0.672 0.837 1.879 0.832 2.101 0.874 2.561
1.000 0.924 2.454 0.931 4.833 0.907 5.015 0.895 4.843
0.000  0.934 0.748 0.930 0.769 0.899 0.680 0.849 0.435
0.250 0.896 0.815 0.889 1.027 0.894 1.124 0.870 0.774
9 0.500 0.949 2.433 0.922 4.408 0.887 3.947 0.870 1.893
0.750 0.959 6.434 0.937 11.681 0.916 11.900 0.887 5.509
1.000 0.964 13.573 0.957 23.173 0.944 22.821 0.917 12.623
0.000  0.881 0.395 0.795 0.312 0.777 0.363 0.824 0.266
0.250 0.855 0.341 0.864 0.367 0.889 0.366 0.824 0.325
2410 0.500 0.920 0.615 0.906 0.454 0.884 0.336 0.844 0.238
0.750 0.955 0.819 0.957 0.898 0.940 0.688 0.885 0.373
1.000 0.989 1.286 0.985 1.477 0.964 1.125 0.898 0.568
0.000  0.878 0.316 0.847 0.203 0.876 0.263 0.833 0.252
0.250 0.881 0.355 0.859 0.172 0.873 0.184 0.828 0.151
411 0.500 0.913 0.372 0.931 0.280 0.905 0.221 0.889 0.160
0.750 0.942 0.607 0.978 0.707 0.962 0.495 0.927 0.300
1.000 0.991 1.080 0.993 1.237 0.980 0.927 0.955 0.452
0.000  0.954 0.816 0.930 0.725 0.821 0.574 0.874 0.400
0.250 0.955 0.870 0.926 0.822 0.919 0.702 0.822 0.382
P 0.500 0.987 1.363 0.973 1.441 0.941 1.044 0.886 0.466
0.750 0.989 2.141 0.992 2.751 0.978 2.285 0.927 0.872
1.000 0.996 3.267 0.994 4.372 0.989 4.165 0.950 1.566

Note: See the notes to Table D1.
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by : 0.2 0.4 0.6 0.8
Exp. 8  RMSFE(dy) RMSFE(d,) RMSFE (G2 ) RMSFE(as) RMSFE(ds ) RMSFE (2 ) RMSFE (¢t2) RMSFE (s )
0.000 0.807 0.415 0.782 0.363 0.775 0.354 0.753 0.331
0.250  0.762 0.336 0.782 0.444 0.780 0.518 0.835 0.630
41 0.500 0.820 0.804 0.806 1.319 0.807 1.572 0.836 1.278
0.750 0.863 1.727 0.918 4.104 0.875 4.177 0.857 2.825
1.000 0.963 3.990 0.954 7.768 0.926 8.230 0.902 5.613
0.000 0.793 0.400 0.771 0.337 0.783 0.335 0.797 0.328
0.250  0.772 0.413 0.760 0.423 0.758 0.477 0.818 0.559
) 0.500 0.787 0.756 0.811 1.400 0.818 1.527 0.842 1.301
0.750 0.880 1.916 0.916 4.044 0.893 4.493 0.877 3.139
1.000 0.957 3.975 0.949 7.556 0.933 8.579 0.912 5.781
0.000 0.842 0.514 0.813 0.447 0.809 0.456 0.805 0.421
0.250  0.839 0.579 0.835 0.663 0.825 0.712 0.844 0.721
43 0.500 0.893 1.163 0.893 2.100 0.873 2.231 0.860 1.527
0.750 0.959 2.578 0.953 5.217 0.927 5.592 0.886 3.322
1.000 0.982 4.366 0.977 9.063 0.958 10.559 0.922 6.365
0.000 0.883 0.627 0.884 0.611 0.861 0.482 0.860 0.432
0.250 0.874 0.693 0.885 0.908 0.868 0.856 0.866 0.720
4y 0.500  0.922 1.339 0.930 2.353 0.915 2.699 0.899 1.829
0.750 0.976 2.680 0.970 5.319 0.953 6.198 0.932 4.092
1.000 0.983 4.222 0.980 9.053 0.969 11.061 0.946 7.313
0.000 0.884 0.653 0.864 0.634 0.840 0.556 0.817 0.477
0.250 0.895 0.819 0.894 1.048 0.865 1.025 0.848 0.827
a5 0.500  0.943 1.560 0.952 2.878 0.920 3.069 0.887 2.076
0.750 0.979 2.847 0.980 6.055 0.960 6.943 0.924 4.576
1.000 0.992 4.669 0.988 10.059 0.978 12.724 0.948 8.210
0.000 0.936 0.979 0.957 1.119 0.958 0.913 0.942 0.535
0.250 0.929 1.100 0.955 1.488 0.955 1.342 0.947 0.861
46 0.500  0.955 1.743 0.966 2.848 0.960 2.985 0.955 1.985
0.750 0.975 2.791 0.972 5.219 0.964 6.065 0.960 3.843
1.000 0.983 4.419 0.977 8.702 0.971 10.328 0.966 6.649

Note: See the notes to Table D1.



Table D4: Simulation results with & = 5 and non-normal errors (Cont.)
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by : 0.2 0.4 0.6 0.8
Exp §  RMSFE(é2) RMSFE(dy) RMSFE(ci2) RMSFE(di) RMSFE (ci5 ) RMSFE (ci ) RMSFE (¢t ) RMSFE (i, )
0.000 0.960 1.867 0.967 2.313 0.932 1.798 0.855 0.908
0.250  0.975 2.116 0.980 2.880 0.957 2.586 0.894 1.395
a7 0.500 0.980 2.949 0.990 4.883 0.976 4.989 0.929 2.971
0.750 0.995 4.276 0.995 8.032 0.987 9.064 0.956 5.518
1.000 0.997 6.101 0.997 12.376 0.993 14.812 0.972 9.074
0.000 0.781 0.309 0.756 0.223 0.757 0.202 0.768 0.202
0.250  0.764 0.328 0.746 0.274 0.788 0.393 0.847 0.566
48 0.500 0.785 0.591 0.822 1.217 0.828 1.361 0.864 1.297
0.750 0.921 1.938 0.955 4.175 0.932 4.383 0.904 3.179
1.000 0.982 3.916 0.969 7.587 0.961 8.574 0.934 5.840
0.000 0.918 0.774 0.944 0.873 0.931 0.830 0.843 0.567
0.250 0.907 1.089 0.939 1.504 0.921 1.438 0.886 0.923
9 0.500 0.972 3.413 0.966 6.614 0.954 7.180 0.901 2.740
0.750 0.984 8.235 0.975 17.015 0.963 18.387 0.934 8.454
1.000 0.987 15.435 0.983 30.283 0.976 34.073 0.953 17.278
0.000  0.772 0.323 0.782 0.352 0.842 0.349 0.831 0.413
0.250 0.811 0.351 0.819 0.414 0.806 0.317 0.815 0.320
2410 0.500 0.818 0.473 0.880 0.638 0.861 0.475 0.818 0.312
0.750 0.948 0.972 0.955 1.395 0.933 1.188 0.872 0.583
1.000 0.985 1.721 0.983 2.313 0.962 2.108 0.924 1.040
0.000  0.785 0.320 0.787 0.210 0.780 0.204 0.754 0.150
0.250 0.833 0.337 0.813 0.243 0.802 0.133 0.834 0.188
411 0.500 0.885 0.535 0.913 0.521 0.894 0.350 0.878 0.237
0.750 0.955 0.915 0.979 1.241 0.966 1.002 0.920 0.524
1.000 0.989 1.547 0.990 2.133 0.981 1.939 0.952 0.960
0.000  0.908 0.789 0.868 0.681 0.906 0.734 0.851 0.383
0.250 0.934 0.919 0.912 0.848 0.934 0.906 0.758 0.356
P 0.500 0.981 1.741 0.966 2.154 0.938 1.767 0.858 0.713
0.750 0.991 3.044 0.988 4.594 0.971 3.786 0.920 1.515
1.000 0.997 5.272 0.992 8.346 0.987 7.543 0.969 3.035

Note: See the notes to Table D1.



Table D5: Simulation results with £ = 8 and non-normal errors
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by : 0.2 0.4 0.6 0.8
Exp §  RMSFE(é2) RMSFE(dy) RMSFE(ci2) RMSFE(di) RMSFE (ci5 ) RMSFE (ci ) RMSFE (¢t ) RMSFE (i, )
0.000 0.745 0.374 0.700 0.328 0.721 0.342 0.715 0.317
0.250  0.743 0.426 0.751 0.528 0.758 0.573 0.768 0.585
21 0.500 0.812 0.986 0.867 2.003 0.842 2.124 0.812 1.297
0.750 0.957 2.645 0.951 4.946 0.917 5.134 0.873 2.851
1.000 0.982 4.490 0.971 8.614 0.952 9.759 0.919 5.182
0.000 0.734 0.387 0.718 0.327 0.725 0.302 0.722 0.262
0.250  0.725 0.443 0.766 0.615 0.759 0.582 0.770 0.523
29 0.500 0.854 1.160 0.879 2.100 0.841 2.044 0.834 1.322
0.750 0.941 2.609 0.954 5.055 0.927 5.372 0.885 2.935
1.000 0.977 4.550 0.970 8.831 0.955 9.675 0.921 5.277
0.000 0.754 0.457 0.731 0.374 0.734 0.393 0.706 0.313
0.250 0.794 0.600 0.797 0.737 0.776 0.723 0.762 0.620
43 0.500 0.876 1.315 0.915 2.527 0.876 2.554 0.821 1.469
0.750 0.964 2.835 0.967 5.561 0.938 6.051 0.881 3.225
1.000 0.987 4.676 0.981 9.561 0.965 10.757 0.924 5.645
0.000  0.808 0.568 0.796 0.516 0.788 0.406 0.739 0.271
0.250 0.832 0.736 0.856 0.993 0.831 0.912 0.796 0.585
4 0.500 0.905 1.506 0.940 2.751 0.901 2.798 0.860 1.603
0.750 0.957 2.829 0.971 5.645 0.953 6.319 0.916 3.562
1.000 0.990 4.721 0.983 9.552 0.971 11.067 0.937 5.997
0.000  0.800 0.576 0.799 0.572 0.762 0.439 0.704 0.301
0.250 0.844 0.827 0.866 1.117 0.826 1.015 0.766 0.637
45 0.500 0.935 1.694 0.948 3.016 0.917 3.157 0.843 1.726
0.750 0.968 2.998 0.967 5.819 0.954 6.742 0.905 3.754
1.000 0.990 4.785 0.985 10.028 0.973 11.887 0.938 6.457
0.000  0.937 1.163 0.952 1.263 0.939 0.897 0.904 0.377
0.250 0.942 1.404 0.956 1.774 0.945 1.509 0.921 0.709
6 0.500 0.969 2.143 0.967 3.322 0.958 3.366 0.941 1.722
0.750 0.983 3.371 0.978 5.999 0.967 6.725 0.953 3.452
1.000 0.989 5.052 0.981 9.685 0.975 11.118 0.962 6.078

Note: See the notes to Table D1.



Table D5: Simulation results with & = 8 and non-normal errors (Cont.)
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by : 0.2 0.4 0.6 0.8
Exp §  RMSFE(é2) RMSFE(dy) RMSFE(ci2) RMSFE(di) RMSFE (ci5 ) RMSFE (ci ) RMSFE (¢t ) RMSFE (i, )
0.000 0.961 1.965 0.954 2.030 0.909 1.401 0.811 0.514
0.250  0.982 2.330 0.973 2.774 0.944 2.170 0.864 0.929
a7 0.500 0.989 3.186 0.983 4.654 0.966 4.456 0.916 2.156
0.750 0.993 4.489 0.989 7.808 0.979 8.263 0.944 4.167
1.000 0.995 6.349 0.992 12.214 0.986 13.676 0.962 7.320
0.000 0.695 0.278 0.678 0.221 0.666 0.169 0.678 0.139
0.250  0.689 0.295 0.712 0.355 0.751 0.429 0.773 0.474
48 0.500 0.791 0.842 0.894 1.892 0.867 1.940 0.852 1.337
0.750 0.948 2.404 0.973 4.912 0.946 5.080 0.915 3.027
1.000 0.989 4.359 0.985 8.683 0.972 9.699 0.943 5.443
0.000  0.850 0.696 0.889 0.796 0.919 0.837 0.846 0.658
0.250 0.942 1.416 0.947 1.861 0.924 1.648 0.882 0.970
9 0.500 0.992 4.333 0.980 8.247 0.963 8.287 0.901 2.956
0.750 0.995 9.503 0.987 19.112 0.976 20.419 0.945 8.408
1.000 0.996 16.597 0.990 33.809 0.984 38.830 0.968 16.478
0.000  0.738 0.331 0.684 0.257 0.676 0.206 0.685 0.315
0.250 0.744 0.309 0.775 0.352 0.662 0.248 0.744 0.293
2410 0.500 0.857 0.769 0.879 0.932 0.858 0.766 0.763 0.375
0.750 0.957 1.588 0.959 2.191 0.930 1.848 0.874 0.848
1.000 0.989 2.675 0.981 3.952 0.965 3.597 0.909 1.502
0.000  0.630 0.178 0.664 0.157 0.679 0.120 0.681 0.109
0.250 0.628 0.139 0.721 0.224 0.722 0.155 0.738 0.138
411 0.500 0.819 0.585 0.902 0.721 0.870 0.536 0.839 0.322
0.750 0.968 1.470 0.979 1.896 0.957 1.529 0.915 0.742
1.000 0.993 2.548 0.990 3.678 0.979 3.456 0.949 1.493
0.000  0.894 0.820 0.838 0.732 0.920 0.835 0.847 0.654
0.250 0.936 1.161 0.916 1.139 0.873 0.932 0.793 0.519
P 0.500 0.978 2.505 0.961 3.311 0.938 2.803 0.873 1.088
0.750 0.998 5.009 0.987 7.631 0.971 6.677 0.934 2.424
1.000 1.002 8.752 0.994 13.868 0.984 13.495 0.942 4.594

Note: See the notes to Table D1.



Table D6: Percentage of 7 < 0 in Simulation results with £ = 3
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by: 02 04 06 08 | 02 04 06 08
Exp. ) %r<0 %T<0 %T<O0 %T<0‘Exp. %T<0 %T<0 %T<0 %T<O0
0.000 6200 3.160 4.000  8.340 42.000 26.980 6.780  0.340
0250 5880 2480 3.100  7.120 51.520 42.000 14.880 1.100
4 0500 5280 1700 2080 5400 | . 50400 58.880 26.880 2.900
0.750 4.840  1.360 1.260  3.920 64.740 70.360 41.700  6.660
1.000 4520 1.120 0.780  2.880 68.380 77.000 54.680 12.380
0.000 2140 2520  7.560 14.040 2580 1460 2.860  6.580
0250 1760 1.320 5.080 11.580 2520 1.100  1.960  5.200
4o 0500 1300 0540 2400 7660 | o 2320 0.680 L1140 3.880
0.750 1.200  0.160  0.800  5.000 2200 0.500 0.660  2.920
1.000  1.160  0.020  0.380  3.500 2.160  0.300 0.560  1.960
0.000 10.120 4.980  1.780  1.960 6.020 2260 2120 6.880
0.250 10.740 5500 2.080  1.680 5540 1780  1.320  4.380
yg 0900 1LI00 6020 2120 1240 | 00 5080 L1500  0.880  2.860
0.750 11.320 5.840 2340  1.160 4660 1.220 0.720  1.900
1.000 11.540 5440 2500  1.080 4420 0840 0.440  1.360
0.000 0.040 0.060 0.900  6.460 3.700  4.640  5.300  6.480
0.250 0.040  0.000  0.160  3.400 3220 4160 4820 5.940
44 0900 0040 0000 0060 1780 |, 0 3160 4120 4780 5800
0.750 0.040  0.000  0.020  1.080 3.300 4200 4.820  5.360
1.000  0.040  0.000  0.000  0.440 3.340  4.600 5420  5.540
0.000 5420 0.760  0.020  0.000 1.960 2280 3320  4.200
0250 6.880 1.160  0.040  0.000 1.600 2180  2.800  3.880
45 0900 8020 1560 0120 0000 |, 1520 L1960 2720 3.500
0.750 8.940  2.060  0.320  0.000 1.860  2.000 2.880  3.240
1000 9.980  2.680  0.600  0.020 2120 2280 3.200  3.240
0.000 0.340 8300 32.940 45.900 2.640  3.560 4160  5.340
0.250 0.040 2240 16.900 34.940 2180 2960 3.440  4.540
4g 0500 0.000 0380 5830 21880 ., 2260 2800 3320 3820
0.750 0.000 0.080  1.800 12.300 2.300  3.000 3.240  3.740
1.000  0.000  0.000 0.360  6.900 2.380 3.280 3.740  3.620

Note: See the notes to Table D1.



Table D7: Percentage of 7 < 0 in Simulation results with £ =5
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by 0.2 0.4 0.6 0.8 | 0.2 0.4 0.6 0.8
Exp. ) %T<0 %T<0 %T<O0 %7<0‘Exp. %T<0 %T<0 %T<0 %7T<0
0.000 3.320 0.800 1.260  5.260 12.060 3.880  0.420  0.040
0.250 3.260 0.560 0.700  3.860 15560 7.340  1.120  0.060
41 0.500 3.200 0.460 0.320  2.540 47 19.060 12.820 2.700  0.180
0.750 3.300  0.440  0.200  1.680 22.720 18.720 5.800  0.360
1.000 3.220 0.380 0.160  1.180 25.600 26.020 11.140  0.940
0.000 0.660 0.420 2.560  8.080 0.560  0.220  0.880  4.000
0.250 0.500 0.100 1.180  5.440 0.620  0.060  0.200  1.720
49 0.750  0.520  0.000  0.300  2.120 48 0.600  0.060  0.080  1.080
1.000 0.540  0.000 0.160  1.280 0.620  0.040  0.060  0.720
0.000 5260 1.760  0.420  1.000 3.240  0.660 0.320  2.400
0.250 5.380  1.800  0.420  0.700 3.340 0560 0.220  1.220
43 0.500 5.640  1.940  0.420  0.400 40 3.360  0.440  0.120  0.660
0.750 5.820 1.980  0.480  0.260 3.320  0.400  0.060  0.300
1.000 5.980 2.080 0.500  0.160 3.240  0.380  0.080  0.180
0.000  0.000 0.000 0.040  0.820 1.600  2.240 3.080  3.800
0.250  0.000  0.000 0.020  0.280 1.300  1.660 2.680  3.300
44 0.500  0.000  0.000 0.020  0.060 410 1.180  1.680 2.420  2.960
0.750  0.000  0.000  0.000  0.020 1.060 1.540 2.180  2.620
1.000  0.000  0.000  0.000  0.020 1.020  1.680 2.140  2.640
0.000 0.580  0.040  0.000  0.000 0.700  0.980 1.620  2.320
0.250  0.680  0.020  0.000  0.000 0.520 0.720  1.340  2.080
45 0.500 0.740  0.020  0.000  0.000 411 0.440  0.620  1.080  1.660
0.750  0.780  0.020  0.000  0.000 0.380  0.680  0.940  1.320
1.000 0.860  0.020  0.000  0.000 0.320  0.780  0.940  1.300
0.000 0.020 0540 5.340 16.120 0.980 1.220  1.940  2.700
0.250  0.000 0.120  1.600  9.080 0.880  0.840 1.580  2.140
46 0.500 0.000 0.000 0.480  4.820 419 0.760  0.880  1.220  1.700
0.750  0.000  0.000 0.120  2.220 0.720  1.020 1.260  1.740
1.000 0.000 0.000 0.040  1.140 0.780  1.060  1.300  1.520

Note: See the notes to Table D1.



Table D8: Percentage of 7 < 0 in Simulation results with £ =8
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by: 02 04 06 08 | 02 04 06 08
Exp. ) %r<0 %T<0 %T<O0 %T<0‘Exp. %T<0 %T<0 %T<0 %T<O0
0.000 2.140  0.340 0.340  4.260 4060 0320  0.000  0.000
0.250 2.100 0300 0.140  2.600 4580 0480  0.000  0.000
4 0500 2120 0260 0040 1820 |, 5180 0880  0.020  0.000
0.750 2160 0260 0.020  1.020 5520 1.320  0.080  0.000
1.000 2200 0.280  0.000  0.680 6.000  1.880 0.180  0.000
0.000 0520 0.100 0.740  5.660 0.160  0.020 0.260  3.160
0250 0520 0.020 0.320  3.680 0.180  0.020 0.080  1.880
4o 0500 0400 0020 0100 2000 | o 0180 0020 0020 1160
0.750 0.380  0.000  0.080  1.360 0.180  0.020 0.020 0.720
1.000  0.440  0.000  0.020  0.800 0.160  0.020  0.000  0.400
0.000 3200 0560  0.020  0.740 2120 0.360  0.040  1.040
0.250 3.400 0.640 0.040  0.360 2.100  0.280 0.020  0.560
4 0500 3460 0680 0040 0160 | o 2140 0280 0.000 0.240
0.750 3.600 0.660  0.040  0.080 2120 0.260  0.000  0.080
1.000 3.700  0.700  0.040  0.040 2.160  0.280  0.000  0.000
0.000  0.000  0.000  0.000  0.220 0.740  1.100  1.500  2.680
0.250  0.000  0.000  0.000  0.060 0.600 0.820 1.180  2.440
4y 0500 0.000 0000 0000 0020 | , . 0540 0640 0840 2.040
0.750  0.000  0.000  0.000  0.000 0.560  0.680 0.840  1.760
1.000  0.000  0.000  0.000  0.000 0.600  0.660 0.800  1.580
0.000 0.180  0.000  0.000  0.000 0.220 0280 0.540  1.680
0.250 0.180  0.000  0.000  0.000 0.120  0.180  0.260  1.200
45 0500 0180 0000 0000 0000 |, 0140 0240 0220 0860
0.750 0.180  0.000  0.000  0.000 0.160 0200 0.160  0.640
1.000  0.180  0.000  0.000  0.000 0.140  0.160 0.180  0.600
0.000  0.000  0.000 0.480  5.660 0420  0.540 0.780  1.780
0.250  0.000  0.000 0.140  2.840 0.420 0440 0460 1.320
yg 0500 0.000 0000 0040 1360 | ., 0440 0420 0360 0.880
0.750  0.000  0.000  0.000  0.700 0.500  0.440  0.400  0.700
1.000  0.000  0.000 0.000  0.280 0540  0.480 0.500  0.700

Note: See the notes to Table D1.
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