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1 Introduction

Forecasting time series data often assumes stationarity, and therefore the constancy

of model parameters over time, such as mean, variance, frequency, trend, or combined. In

practice, these parameters may change over time. For example, the US industrial production

experienced slowdown during the financial crisis between 2007 and 2008, as well as the Covid-

19 pandemic between 2020 and 2023, while it experienced expansion in other time periods.

Therefore, investigating structural instability has been a long-standing issue in time series.

These two different regimes are regarded as a consequence of either parameter shifts or

parameters varying smoothly over time. For the latter case, the reader is referred to the

papers by Cai (2007), Sun, Hong, Lee, Wang, and Zhang (2021), and references therein.

The point at which the regime change occurs is called a change point or structural break

in the statistics and econometrics literature, whereas the associated models are called to be

models with structural break. In practice, breaks in the parameters of a forecasting model are

caused by events, economic policies, or treatments that are essentially unknowable ex-ante

and may be triggered by various factors, such as institutional, political, social, financial, legal,

or technological changes, which may precipitate these breaks. Such breaks are understood

better retrospectively rather than at the time of their occurrence. Typically, it is assumed

that the modeler does not have knowledge of the process determining the break as addressed

in Clements and Hendry (2011).

Structural breaks pose statistical challenges for forecasting exercise. In a time series

model with a structural break in the conditional mean and/or conditional variance, a conven-

tional OLS estimator based on full-sample observations might be inconsistent. A consistent

estimator can be computed using post-break observations only if the post-break sample is

sufficiently large. However, such forecasts may not be optimal or efficient in terms of the

mean squared forecast error (MSFE), as the relatively small post-break sample size may

induce large estimation uncertainty, especially, for linear models, as addressed by Pesaran

and Pick (2011), Pesaran, Pick, and Pranovich (2013), Rossi (2013), Boot and Pick (2020),

Lee, Parsaeian, and Ullah (2022a,b), Parsaeian (2023), and references therein. Especially,

Boot and Pick (2020) provided a test to determine whether modeling a structural break im-

proves forecast accuracy. Therefore, pre-break observations may still be useful for forecast

improvement depending on the magnitude of the break size. If there is no break, the usual

full-sample estimator is optimal. If the break is strong, the post-break estimator may be
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optimal (efficient). If the break is weak or moderate, a combined estimator of the full-sample

estimator or the pre-break estimator and the post-break estimator would be optimal, where

a combination weight between 0 and 1 is chosen in a way that optimizes the trade-off be-

tween the bias and variance efficiency of the full-sample estimator. Obviously, the break

might cause the distributions of dependent variable and predictors to be different before and

after break. Unfortunately, in the aforementioned literature for linear models, it is implicitly

assumed that the distribution of predictors is the same before and after break.

The idea of combining information in producing the forecast could be considered as fre-

quentist model averaging, since we average the pre-break and post break estimators as in

Hjort and Claeskens (2003), Hansen (2007), Hansen (2008), Hansen and Racine (2012), Sun

et al. (2021), Lee et al. (2022a,b), Sun, Hong, and Cai (2023), and references therein. In

this spirit, there is a vast account of literature on different forecast combination methods,

particularly, in the parametric literature, see, to name just a few, Clements and Hendry

(2006), Clements and Hendry (2011), Pesaran and Timmermann (2005), Pesaran and Tim-

mermann (2007), Timmermann (2006), Pesaran et al. (2013), Boot and Pick (2020), Lee

et al. (2022a,b), and references therein. However, to the best of our knowledge, the litera-

ture on nonparametric forecast combination methods capable of handling structural changes,

especially structural breaks, remains relatively limited; see, for example, Sun et al. (2021)

and Sun et al. (2023).

This paper contributes to the nonparametric forecasting with structural breaks litera-

ture by proposing a combined nonparametric method to exploit information contained in

the dataset before break occurs. Our proposed estimator, inspired by the model averaging

method, assigns a weight to observations before and after break. This weight is additional

to the usual nonparametric weights that are given to observations based on how far they

are located relative to the predictor covariates. Hence, it is termed as a weighted local lin-

ear estimator. Also, the asymptotic properties, including the asymptotic bias and variance,

of the proposed estimator are investigated and some discussions are provided to show that

the asymptotic variance indeed can be smaller than that for the nonparametric estimator

using only the post-break observations. Furthermore, we propose a novel multifold forward-

validation model averaging (MFVMA) approach for selecting data-driven weights in time

series forecasting, and the break date estimation employs the latest nonparametric method

from Mohr and Selk (2020). This approach is related to cross-validation as discussed in the
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model averaging and nonparametric literature such as Cai, Fan, and Yao (2000), Zhang and

Liu (2023), Gao, Zhang, Wang, and Zou (2016), Liao, Zong, Zhang, and Zou (2019), Cheng

and Hansen (2015), Lee et al. (2022a), and references therin. Unlike the standard cross-

validation used in model averaging, our multifold forward-validation captures the temporal

ordering of time series forecasting and utilizes only the data available up to the forecast

time point. The idea behind multifold forward-validation is to divide the dataset into mul-

tiple groups, treating each group as a validation set for evaluating the model. Crucially,

the validation set always precedes the training set temporally. The implementation of mul-

tifold forward-validation is straightforward and flexible, seldom relying on model structure

assumptions, unlike criteria such as Mallows-type or other information criteria which require

the derivation of related penalty terms as in Zhu, Wan, Zhang, and Zou (2019), Liu and Okui

(2013), Li, Li, Racine, and Zhang (2018), and references therein. Finally, we demonstrate

that the selected weight is asymptotically optimal in the sense of minimizing the out-of-

sample prediction risk, thereby complementing existing methods that primarily concentrate

on minimizing the in-sample squared error loss under structural break scenarios. To establish

the asymptotic optimality from the predictive perspective, we propose a novel strategy to

bound the discrepancy between the nonparametric-based multifold forward-validation and

the out-of-sample prediction risk function, instead of Whittle’s inequality as in Li (1987) and

Hansen and Racine (2012).

The remainder of the paper is organized as follows. In addition to the model setup, the

weighted nonparametric regression predictor is proposed and its asymptotic properties are

studied in Section 2, together some practical issues such as the break date estimator, how to

choose the tuning parameters, and a straightforward generalization of the proposed method

to the multiple breaks case. More importantly, we show that the weight estimated by the

multifold forward-validation is asymptotically optimal. Section 3 presents a Monte Carlo

simulation study and reports its results. Section 4 illustrates an empirical application, while

the detailed theoretical justifications are relegated to Section 5. Finally, Section 6 concludes

the paper.
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2 Forecasting Procedures

2.1 Model Setup

Let {(Yt,Xt) : t ∈ N} be a weakly dependent stochastic process in R× Rd. We consider

following the forecasting model

Yt+τ = mt(Xt) + ut+τ , 1 ≤ t ≤ T, (1)

where τ ≥ 0 is the given (known) forecasting horizon (τ -step ahead forecast), and the

idiosyncratic error ut+τ satisfies E[ut+τ |Ft] = 0 almost surely for the σ-field Ft = σ(uj−1,Xj :

j ≤ t). It is assumed that there exists a change point at time T1 with 1 ≤ T1 ≤ T , in the

prediction function such that

mt(x) = m(1)(x) (t ≤ T1) +m(2)(x) (t > T1) = m(1)(x)− λ(x)dt, (2)

where m(1)(x) ∕≡ m(2)(x) and λ(x) = m(1)(x) −m(2)(x), the break size function, the break

point T1 might be unknown, dt = (t > T1), and both functions m(1)(x) and m(2)(x) are

assumed to be continuous and satisfy some regularity conditions to ensure that {(Yt,Xt) : t ∈
N} is a (or piece wise) stationary α-mixing time series. Here, Xt is allowed to include some

lags of Yt.
1 If so, the distributions of Xt might be different before and after break. Without

loss of generality, it is assumed that Xt for 1 ≤ t ≤ T1 (before break) is stationary with

its density fb(·) and Xt for T1 + 1 ≤ t ≤ T (after break) is also stationary with its density

fa(·). But, fb(·) and fa(·) might not be exactly same. Define δ(x) = fa(x)/fb(x), which is

called the covariate shift2 function in the machine learning literature for causal inferences,

to capture different features Xt before and after break since fb(·) and fa(·) are allowed to

be different. Throughout the paper, it is assumed that T1 = ⌊Ts0⌋ with 0 ≤ s0 ≤ 1, the

portion of the pre-break observations, so that T2 = T − T1 = T − ⌊Ts0⌋, the portion of the

post-break observations. Clearly, for two extreme cases, s0 = 0 means that there is no break

and s0 = 1 implies that there is no observation in the post break period. Therefore, without

loss of generality, it is assumed throughout the paper that 0 < s0 < 1. Finally, note that the

expression in the right hand side of (2) would be regarded as a special case of a functional

coefficient time series model proposed in Cai et al. (2000) if dt would be known.

1If Xt contains some lags of Yt, there is an issue regarding to the stationarity of Yt. For this aspect, the
reader is referred to the paper by Cai and Masry (2000) for details on the conditions on mt(Xt) and the
theoretical justifications.

2The reader is referred to the paper by Bickel, Brückner, and Scheffer (2009) and the book by Sugiyama,
Suzuki, and Kanamori (2012) for details on this topic.
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Remark 1. In the literature for linear models, see, for example, Pesaran and Pick (2011),

Pesaran et al. (2013), Rossi (2013), and Lee et al. (2022a,b), it is implicitly assumed that

both density functions fb(x) and fa(x) are same, which is different from our setting here.

A structural change can be regarded as an event study and may be caused by an economic

policy change, or an intervention (such as COVID-19), or a treatment (some programs), so

that fb(x) and fa(x) are commonly assumed to be different in the causal inference literature

to capture different features Xt. For more details on this aspect, the reader is referred to the

paper by Cai, Fang, Lin, and Wu (2023) and references therein, although the main focus in

the causal inference is somewhat different from the setting here.

It is clear that when mt(x) = β⊤
t x in (1) with βt changing smoothly over time, the model

in (1) becomes the models studied by Cai (2007) for estimation and forecasting and Sun

et al. (2021) for a model averaging. Furthermore, when βt has structural change, the model

in (2) was investigated by Pesaran et al. (2013) and Lee et al. (2022a,b) for the weighted

generalized least squares (WGLS) estimators for a conventional structural change linear

model to combine the information from both pre-break and post-break. As argued in Pesaran

et al. (2013) and Lee et al. (2022a,b), the WGLS estimators proposed in Pesaran et al. (2013)

and Lee et al. (2022a,b) have an ability to reduce MSFE under the structural breaks by using

the full-sample observations instead of using only the post-break observations, by deriving

the optimal weight for the pre-break proportion of the full-sample. Note that for simplicity,

our focus is on (2) with only one break, and it is easy to generalize the model in (2) to the

multiple breaks case, briefly discussed in Section 2.5.2.

2.2 Weighted Local Linear Estimation

In this subsection, we propose an estimator for nonparametric model with structural

break, where break may occur in the mean function and error variance. In particular, we are

interested in estimating the mean function after break by partly using information contained

in the pre-break observations. Our starting point is the following nonparametric local linear

regression problem. For Xt in a neighborhood of x, a given grid point from the data domain,

we can approximate locally the mean function bym(Xt) ≈ β0(x)+β1(x)
⊤(Xt−x) by ignoring

the higher order term, where β0(x) = m(x) and β1(x) = m′(x), the first order derivative of

m(x). Then, for the given data {(Yt,Xt)}Tt=1, the locally weighted least squares is given by
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min
β0,β1

T−τ󰁛

t=1

wt(γ,x)
󰀃
Yt+τ − β0 − β⊤

1 (Xt − x)
󰀄2

, (3)

where

wt(γ,x) = γ (t ≤ T1)Kh1(x−Xt) + (t > T1)Kh2(x−Xt) (4)

for some 0 ≤ γ ≤ 1, and Kh(u) = K(u/h)/hd with K(·) being a kernel function. To capture

different features of fb(·) and fa(·), two bandwidths h1 and h2 are used: h1 is for m(1)(·) and
h2 is for m(2)(·). If both m(1)(·) and m(2)(·) have the same degree of smoothness, then, h1 and

h2 should be the same, denoted by h, so that wt(γ,x) = [γ (t ≤ T1)+ (t > T1)]Kh(x−Xt).

As mentioned in Cai et al. (2000), the estimation procedure and its asymptotic theory for

the d-dimensional case are the same for the case that Xt is the univariate case. Therefore,

for ease notation, in what follows, the presentation is only for one-dimensional case; that is

d = 1, so that Xt and x become to be Xt and x, respectively.

Equation (4) takes care of both break and smoothnesses of m(1)(·) and m(2)(·) so that the

weighting scheme wt(γ, x) assigns a weight to the observations before break, and assigns a

weight on each observation based on how close Xt is to the grid point x. Based on (4), post-

break observations receive a weight of 1, while a weight of γ ∈ [0, 1] is assigned to pre-break

observations. If γ = 0, the estimator is based on only the post-break observations, whereas γ

is close to zero, then, the estimator is heavily weighted on the post-break observations with

a small part of information before break. If γ = 1, then, a structural break is ignored and

a full-sample is used to produce a full sample estimator. In other cases where γ ∈ (0, 1), a

combination of pre- and post-break observations for the estimator is obtained.

The minimizer of (3) is denoted by 󰁥β(x) = (󰁥β0(x), 󰁥β1(x))
⊤, which gives 󰁥m(x) = 󰁥β0(x),

the estimator of m(x), and 󰁥m′(x) = 󰁥β1(x), the estimator of m′(x), respectively. To express

the estimator in matrix form, we introduce the following notations. Let Y ⊤ = (Y ⊤
(1), Y

⊤
(2))

be a (T − τ)× 1 vector of the dependent variable with Y(1) = (Y1+τ , . . . , yT1+τ )
⊤ and Y(2) =

(yT1+τ+1, . . . , yT )
⊤, and X⊤ = (X⊤

(1),X
⊤
(2)) be a (T − τ)× 2 matrix

X⊤
(1) =

󰀕
1 · · · 1

(X1 − x) · · · (XT1 − x)

󰀖
and X⊤

(2) =

󰀕
1 · · · 1

(XT1+1 − x) · · · (XT−τ − x)

󰀖
.

Now, define W(γ) as follows: W(γ) = WγWk, where Wγ = diag{γIT1 , IT−T1−τ} and

Wk = diag{W(1),W(2)} with W(1) = diag(Kh1(x − X1), . . . , Kh1(x − XT1)) and W(2) =
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diag(Kh2(x − XT1+1), . . . , Kh2(x − XT−τ )) as well as Iℓ denoting an ℓ × ℓ identity matrix.

Thus, the minimizer of (3) is given by

󰁥β(x) = (󰁥β0(x), 󰁥β1(x))
⊤ = (X⊤W(γ)X)−1X⊤W(γ)Y. (5)

In particular, the weighted local linear (WLL) estimator for the mean function is given by

󰁥mwll(x) = 󰁥β0(x) = e⊤󰁥β(x), (6)

where e⊤ = (1, 0), and it reduces to the local linear estimator of m(2)(x) based on the

observations after break if γ = 0. Further, equation (5) can be rewritten as

󰁥β(x) =
󰀅
X⊤W(γ)X

󰀆−1 󰀃
γX⊤

(1)W(1)Y(1) +X⊤
(2)W(2)Y(2)

󰀄

= Γ󰁥β(1)(x) + (I2 − Γ)󰁥β(2)(x) = Θ󰁥βfull(x) + (I2 −Θ)󰁥β(2)(x), (7)

where Γ = Γ(x, γ) = γ
󰀅
X⊤W(γ)X

󰀆−1
󰀓
X⊤

(1)W(1)X(1)

󰀔
, 󰁥β(1)(x) is the local linear estimator

using the observations before break, and 󰁥β(2)(x) is the estimator using the observations

after break.3 Further, 󰁥βfull(x) is the local linear estimator using the full sample4 and Θ =

θ(x, γ) = γ
󰀅
X⊤W(γ)X

󰀆−1 󰀃
X⊤W(1)X

󰀄
. Therefore, equation (7) can be viewed as the

combined estimator of the pre-break and the post-break estimators, i.e., a combination of

󰁥β(1)(x) and 󰁥β(2)(x) with the weight Γ. Alternatively, it can be regarded as the combined

estimator from the full sample estimator and the post-break estimator, i.e., a combination

of 󰁥βfull(x) and 󰁥β(2)(x) with the weight Θ. Clearly, 󰁥β(x) in (7) involves two bandwidths h1

and h2 and weight γ.

2.3 Asymptotic Properties

Before embarking on deriving the asymptotic results, we now give some regularity con-

ditions that are sufficient for the consistency and asymptotic normality of the proposed

estimators, although they might not be the weakest ones possible. As pointed out by Cai

et al. (2000), the conditions list below are standard and they are satisfied for many appli-

cations; see, for instance, the paper by Cai et al. (2000) for details. Then, we present the

sketch proofs of the asymptotic properties in Section 5.

3󰁥β(1)(x) =
󰁫
X⊤

(1)W(1)X(1)

󰁬−1 󰀓
X⊤

(1)W(1)Y(1)

󰀔
and 󰁥β(2)(x) =

󰁫
X⊤

(2)W(2)X(2)

󰁬−1 󰀓
X⊤

(2)W(2)Y(2)

󰀔
.

4󰁥βfull(x) = (X⊤WkX)−1X⊤WkY =
󰁫
X⊤

(1)W(1)X(1) +X⊤
(2)W(2)X(2)

󰁬−1 󰀓
X⊤

(1)W(1)Y(1) +X⊤
(2)W(2)Y(2)

󰀔
.
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2.3.1 Conditions

Condition A:

A1. The second order derivatives of both mean functions m(1)(x) and m(2)(x) are continu-

ously differentiable.

A2. Both functions fb(x) and fa(x) are continuous and positive within the support.

A3. The condition density of Yt+τ given Xt is bounded and satisfies the Lipschitz condition.

A4. The kernel function K(·) is symmetric and has a compact support, say [−1, 1].

A5. The time series {(Yt, Xt) : t ∈ N} is α-mixing with the coefficient α(k) satisfying
󰁓∞

k=1 k
c0α1−2/δ0(k) for some δ0 > 2 and c0 > 1− 2/δ0.

A6. Assume that h1 → 0, h2 → 0, T1h1 → ∞, and T2 h2 → ∞. Also, limT→∞ h2/h1 = hc

for some 0 < hc < ∞.

Condition B:

B1. Assume that

E
󰀅
Y 2
t+τ + Y 2

t+s+τ |Xt = x1, Xt+s = x2

󰀆
≤ M < ∞

for any t, s ≥ 1, x1 and x2.

B2. Assume that there exists a sequence of positive integers {sT} such that sT → ∞,

sT = o((Th)1/2) and (T/sT )
1/2α(sT ) → 0, as T → ∞.

B3. There exists δ∗ > δ0, where δ0 is given in Assumption A(5) such that α(k) = O(k−θ),

where θ > δ0δ
∗/[2(δ∗ − δ0)].

B4. Both h1 and h2 satisfy T
1/2−δ0/4
j h

δ0/δ∗−1/2−δ0/4
j = O(1) for j = 1 and 2.

2.3.2 Asymptotic Theory

Now, we investigate the asymptotic properties of 󰁥mwll(x). First, we evaluate Γ. To do

so, consider X⊤
(1)W(1)X(1). For j ≥ 0, let Sj(x) =

1
T1

󰁓T1

t=1 Kh1(Xt − x) ((Xt − x)/h1)
j. It is

easy to see that

X⊤
(1)W(1)X(1) = T1H1

󰀕
S0(x) S1(x)
S1(x) S2(x)

󰀖
H1,
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where H1 = diag{1, h1}. Under Assumptions A1 - A5, it follows from (17) in Section 5 that

as T → ∞, Sj(x)
p−→ µj fb(x), where µj =

󰁕
K(u)ujdu for j ≥ 0. Therefore, X⊤

(1)W(1)X(1) =

fb(x)T1H1 µH1(1+op(1)), where µ = diag{1, µ2}. Similarly,X⊤
(2)W(2)X(2) = fa(x)T2H2 µH2(1+

op(1)), whereH2 = diag{1, h2}. Hence,X⊤W(γ)X = [γfb(x)T1H1µH1+fa(x)T2H2 µH2](1+

op(1)), which implies that Γ = diag{sb, sa}(1 + op(1)), where sb = sb(γ, s0, x) = γs0 [γ s0 +

(1 − s0)δ(x)]
−1 with δ(x) being the covariate shift function, and sa = sa(γ, s0, x, hc) =

γs0 [γ s0 + (1− s0)δ(x)h
2
c ]

−1 with hc = limT→∞(h2/h1).
5 Clearly, sb depends on both γ and

s0 as well as the covariate shift function δ(x). Note that if δ(x) = 1, both sb and sa do not

depend on x. Finally, it is easy to see that 0 ≤ sb ≤ 1.

Next, we evaluate the asymptotic bias for 󰁥mwll(x). For this purpose, (7) is re-expressed as

󰁥β(x) = 󰁥β(2)(x) + Γ
󰁫
󰁥β(1)(x)− 󰁥β(2)(x)

󰁬
, so that 󰁥mwll(x) ≈ 󰁥β0,(2)(x) + sb

󰁫
󰁥β0,(1)(x)− 󰁥β0,(2)(x)

󰁬
,

where 󰁥β0,(1)(x) and 󰁥β0,(2)(x) are the first component of 󰁥β(1)(x) and 󰁥β(2)(x), respectively.

Indeed, 󰁥β0,(1)(x) is the local linear estimator form(1)(x) using only the pre-break observations

and 󰁥β0,(2)(x) is the local linear estimator for m(2)(x) using only the post-break observations,

denoted by 󰁥m(2)(x). Also, we show in Section 5 that the asymptotic biases for 󰁥β0,(1)(x) and

󰁥β0,(2)(x) are B1(x) = h2
1m

′′
(1)(x)µ2/2 and B2(x) = h2

2m
′′
(2)(x)µ2/2, respectively. Therefore, the

asymptotic bias for 󰁥mwll(x) is

Bwll(x) = sbλ(x) + sbB1(x) + (1− sb)B2(x), (8)

where λ(x) is defined in (2). Clearly, the first term in the right hand side of Bwll(x) is

extra by comparing with that for 󰁥β0,(2)(x) due to the weighted estimation procedure and it is

negative if λ(x) < 0 by ignoring the higher order term. Finally, one can see that for a linear

model (mt(Xt) = β⊤
t Xt), Bwll(x) reduces to sbλ(x), which is similar to those in Pesaran

et al. (2013) and Lee et al. (2022a), so that the results in Pesaran et al. (2013) and Lee et al.

(2022a) can be regarded as a special case of (8).

Finally, in addition to the asymptotic bias given in (8), we consider the asymptotic

variance of 󰁥mwll(x). To this end, we express

X⊤W(γ)U = γ

T1󰁛

t=1

Kh1(Xt−x)

󰀕
1

Xt − x

󰀖
ut+τ+

T−τ󰁛

t=T1+1

Kh2(Xt−x)

󰀕
1

Xt − x

󰀖
ut+τ =

󰀕
A1

A2

󰀖
,

5According to the asymptotic theory for the kernel estimation for nonparametric regression models, see,
for example, Fan and Gijbels (1996) and Fan and Yao (2003), the optimal bandwidth for h1 is h1,opt =

Op(T
−1/(4+d)
1 ) and the one for h2 is h2,opt = Op(T

−1/(4+d)
2 ). Therefore, hc exists and 0 < hc < ∞.

10



where U is defined in the same way as Y , which is the main term that contributes to the

asymptotic variance of 󰁥mwll(x), and A1 and A2 are defined in a clear manner. Clearly,

C0(γ) =

󰁵
h2

T
A1 =

󰁵
h2

T

󰀥
γ

T1󰁛

t=1

Kh1(Xt − x)ut+τ +
T−τ󰁛

t=T1+1

Kh2(Xt − x)ut+τ

󰀦

≈ γ
󰁳

hc s0 C1 +
√
1− s0 C2,

where

C1 =

󰁵
h1

T1

T1󰁛

t=1

Kh1(Xt − x)ut+τ and C2 =

󰁵
h2

T2

T−τ󰁛

t=T1+1

Kh2(Xt − x)ut+τ

One can show in Section 5 that under Assumptions B1 - B4,

C1
d→ N

󰀃
0, σ2

m,1(x)
󰀄

and C2
d→ N

󰀃
0, σ2

m,2(x)
󰀄
,

where
d→ denotes the convergence in distribution, σ2

m,1(x) = ν0σ
2
1(x)fb(x) and σ2

m,2(x) =

ν0σ
2
2(x)fa(x) with νj =

󰁕
u2jK2(u)du (j ≥ 0), σ2

1(x) = E
󰀃
u2
t+τ |Xt = x

󰀄
for t ≤ T1 and

σ2
2(x) = E

󰀃
u2
t+τ |Xt = x

󰀄
for t ≥ T1, if the conditional variance of ut+τ given Xt = x has the

same break date as the mean function. Also, it is not difficult to show that Cov(C1, C2) → 0

as T → ∞. Therefore, it follows from the Cramér-Wold device that

󰀕
C1

C2

󰀖
d−→ N (0,Σc(x)) (9)

with Σc(x) = diag{σ2
m,1(x), σ

2
m,2(x)}, which implies that C0(γ)

d−→ N
󰀃
0, σ2

m,0(x)
󰀄
, where

σ2
m,0(x) = ν0 [s0γ

2h2
cσ

2
1(x)fb(x) + (1− s0)σ

2
2(x)fa(x)]. Hence, we have the following the

asymptotic normality for 󰁥mwll(x) with its detailed discussions given in Section 5.

Theorem 1. Suppose that Conditions A - B hold. Then, as T → ∞,

󰁳
Th2

󰀅
󰁥mwll(x)−m(2)(x)− Bwll(x) + op(h

2
1 + h2

2)
󰀆 d−→ N

󰀃
0, σ2

wll(x)
󰀄
, (10)

where σ2
wll(x) = σ2

m,0(x)[γ s0fb(x) + (1 − s0)fa(x)]
−2, which is regarded as the asymptotic

variance of 󰁥mwll(x).

If there is no break in the variance function; that is, σ2(x) = E
󰀃
u2
t+τ |Xt = x

󰀄
= σ2

1(x) =

σ2
2(x), then, it is reduced to σ2

wll(x) = ν0 swllσ
2(x)/fa(x), where swll = [γ2s0h

2
c/δ(x) + (1 −

s0)]/[γ s0/δ(x) + (1 − s0)]
2. By the same token, it is not difficult to derive the asymptotic

variance of 󰁥m(2)(x), which is σ2
(2)(x) = ν0s(2)σ

2(x)/fa(x), where s(2) = 1/[1− s0]. Evidently,
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swll < s(2) so that the asymptotic variance for 󰁥mwll(x) is smaller than that for 󰁥m(2)(x) in the

asymptotic sense. Note that when γ is consistently estimated, denoted by γ̂, we still have

C0(γ̂) = C0(γ) + (γ̂ − γ)
√
s0 C1 = C0(γ) + op(1)

d−→ N
󰀃
0, σ2

m,0(x)
󰀄

by Slutsky theorem and (9) and (10), where σ2
m,0(x) is defined in (9), which indicates that the

asymptotic normality for 󰁥mwll(x) is the same for both known γ and the consistent estimate

γ̂, as long as γ can be consistently estimated (see Section 2.4).

Finally, it is clear from (8) and (10) that the mean squared error (MSE) of 󰁥mwll(x) is

given by

MSE (󰁥mwll(x)) = B2
wll(x) + σ2

wll(x)/(Th2), (11)

where the asymptotic bias term Bwll(x) is given in (8) and the asymptotic variance term

σ2
wll(x) can be found in (10), which provides a criterion for choosing the optimal bandwidths

and γ simultaneously, described as follows. Therefore, (11) provides a formulation to balance

the bias-variance trade-off.

2.3.3 Bandwidth Selection

Various existing bandwidth selection techniques for nonparametric regression can be

adapted for the above estimation; see, e.g., Fan and Gijbels (1996) and Fan and Yao (2003).

But, as pointed out by Shao (1993) and Cai et al. (2000), the conventional leave-one-out

cross-validation method might fail for time series data, since adjacent points might be highly

dependent. Therefore, we adapt a simple and quick method proposed by Cai et al. (2000)

to select bandwidth h1 and h2, described below. It can be regarded as a modified multifold

forward-validation criterion that is attentive to the structure of stationary time series data.

To choose the optimal bandwidths {hi}i=1,2 from the data, we describe the procedure in

detail. For simplicity, our focus here is on choosing ĥ1 in a data-driven fashion. To this end,

let m and Q be two given positive integers such that T1 > mQ. The idea is first to use Q

sub-series of lengths T1 − qm (q = 1, . . . , Q) to estimate the unknown mean functions and

then compute the one-step forecasting errors of the next section of the time series of length

m based on the estimated models. More precisely, we choose the optimal bandwidth that

minimize the following AMS error

AMS(h1) =
1

Qm

Q󰁛

q=1

T1−τ−qm+m󰁛

t=T1−τ−qm+1

󰀅
Yt+τ − 󰁥m[−q](Xt)

󰀆2
, (12)
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where {󰁥m[−q](·)} is the local linear mean estimate from the sample {(Yt+τ , Xt), 1 ≤ t ≤
Ti − τ − qm} with i = 1 here. Ten candidate values for each bandwidth are chosen to be

equidistant within the range [10−2, 10] · h̃1 to find the optimal h1, denoted by ĥ1, where h̃1

represents an initial bandwidth for the first subsample under Gaussian kernel. Note that

the theoretically optimal bandwidth h1,opt ∝ T
−1/(4+d)
1 , where d represents the dimension of

covariates. By the same token, we can choose ĥ2 using a similar procedure.

2.4 Consistency of the Multifold Forward-Validation

Now, we choose the optimal weight γ for the pre-break data. Similar to (12), it is to

minimize the following empirical MSE based on (11) over the post-break period, for given ĥ1

and ĥ2 from the above. To choose the optimal γ in 󰁥mwll(Xt), we propose a novel multifold

forward-validation criterion as follows:

MFV(γ) =
1

Qm

Q󰁛

q=1

T−τ−qm+m󰁛

t=T−τ−qm+1

󰀅
Yt+τ − 󰁨m[−q](Xt)

󰀆2
=

1

Qm
||󰁨Y − 󰁨mwll(γ)||2, (13)

where 󰁨Y = (YT−Qm+1, · · · , YT )
⊤, 󰁨mwll(γ) =

󰀃
󰁨m[−Q] (XT−τ−Qm+1) , · · · , 󰁨m[−1](XT−τ )

󰀄⊤
, and

|| · || is the Euclidean norm. We use the multifold forward-validation criterion to select the

weight γ as follows:

󰁥γ = argmin
γ∈H

MFV(γ),

where H = [0, 1]. Then, the τ -step-ahead MFVMA prediction of YT+τ is

󰁥YT+τ (󰁥γ) ≡ 󰁥mwll(XT ) = e⊤󰁥Γ󰁥β(1)(XT ) + e⊤(I2 − 󰁥Γ)󰁥β(2)(XT ),

where 󰁥Γ = 󰁥γ
󰀅
X⊤W(󰁥γ)X

󰀆−1
󰀓
X⊤

(1)W(1)X(1)

󰀔
.

To evaluate the performance of the MFVMA method, we consider the following quadratic

prediction risk function

RT+τ (γ) = E
󰁱
YT+τ − 󰁥YT+τ (γ)

󰁲2

− σ2
T+τ ,

where σ2
t+τ=Var(ut+τ ) denotes the variance of ut+τ . Intuitively, one would aim to select the

model weight γ to minimize the out-of-sample prediction risk function RT+τ (γ) subject to

the constraint 0 ≤ γ ≤ 1. However, this is infeasible due to the expectation depending on

the unknown conditional probability density function. Instead of directly minimizing the

infeasible risk RT+τ (γ), we select data-driven weights by minimizing the multi-fold forward-
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validation criterion. We will demonstrate the asymptotic optimality in the sense that the

out-of-sample prediction achieves the lowest possible prediction risk as the sample size ap-

proaches infinity. For this purpose, define R∗
T+τ (γ) = E[YT+τ − Y ∗

T+τ (γ)]
2 − σ2

T+τ , and

ξ∗T+τ = infγ∈H R∗
T+τ (γ), where Y ∗

T+τ (γ) = m∗
wll(XT ), m

∗
wll(x) = sbβ

∗
0,(1)(x) + (1− sb)β

∗
0,(2)(x),

where β∗
0,(1)(x) and β∗

0,(2)(x) are well-defined limits of 󰁥β0,(1)(x) and 󰁥β0,(2)(x) for any given x.

We state the requisite conditions for asymptotic optimality, wherein all limiting behaviors

are considered as the sample size T tends to infinity.

Condition C:

C1. Assume that ξ∗−1
T+τ supγ∈H{[YT+τ − 󰁥YT+τ (γ)]

2 − [YT+τ − Y ∗
T+τ (γ)]

2}}2 is uniformly inte-

grable.

C2. For any given x, Qm = O(Th2), T−1/2h
−1/2
1 ξ∗−1

T+τ = o(1), T−1/2h
−1/2
2 ξ∗−1

T+τ = o(1),

h2
1ξ

∗−1
T+τ = o(1), and h2

2ξ
∗−1
T+τ = o(1).

C3. The fourth moment of Yt+τ exists and so, do Xt and ut+τ .

Condition C is a mild technical condition that is commonly employed in the model

averaging literature. Specifically, Condition C1 aligns with Condition 7 in Hu and Zhang

(2023). Condition C2 elucidates the relationships among ξ∗T+τ , h1, h2, and T . Analogous

conditions in the literature include Condition 7 of Ando and Li (2014), Condition C.6 of

Zhang, Yu, Zou, and Liang (2016), and Condition C.6 of Sun et al. (2023). Condition C3

represents the regularity conditions of the central limit theorem for dependent processes,

which is similar to Assumption 4 in Zhang and Liu (2023).

Theorem 2. Suppose that Conditions A - C hold. Then, as T → ∞,

RT+τ (󰁥γ)
infγ∈H RT+τ (γ)

−→ 1

in probability for any τ ≥ 0.

Theorem 2 demonstrates that the proposed model averaging prediction attains asymp-

totic optimality in the sense of realizing the minimum attainable out-of-sample prediction

risk. However, in contrast to most existing works that establish asymptotic optimality based

on an in-sample squared error loss function, such as Hansen (2007), Wan, Zhang, and Zou

(2010), Lee et al. (2022a), and Racine, Li, Yu, and Zheng (2023), the proposed procedure
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is constructed by utilizing multifold historical data sets, and the asymptotic optimality is

established based on the out-of-sample prediction risk function, rendering it more applicable

to model averaging for predictive purposes. It is noteworthy that our result of asymptotic

optimality holds irrespective of whether the correct models are included in the candidate

models with known break dates and bandwidths.

2.5 Practical Implementations

2.5.1 Estimation of Break Date

When the break date T1 is unknown, it can be estimated using the method proposed

by Mohr and Selk (2020). The objective is to estimate the rescaled change point s0. The

estimator itself is based on a Kolmogorov-Smirnov functional of the marked empirical process

of residuals; that is

T̂T (s, z) =
1

T

⌊Ts⌋󰁛

t=1

(Yt+τ − m̂T (Xt))ωT (Xt) (Xt ≤ z)

for s ∈ [0, 1], where x ≤ y is short for xj ≤ yj for all j = 1, . . . , d, ωT (•) = {• ∈
[−(logT )

1
d+1 , (logT )

1
d+1 ]d} and for simplicity, m̂T (·) is the Nadaraya-Watson estimator6, namely

m̂T (x) =

󰁓T−τ
t=1 Kh(x−Xt)Yt󰁓T−τ
t=1 Kh(x−Xt)

.

The truncation of the domain of Xt to a compact set within R by the function ωT (•) is

motivated by the fact that kernel estimators only perform well in regions where there are

many observations and rather poorly on the edges and outside of the sample space. Therefore,

the nice asymptotic properties cannot be expected on the whole domain of Rd. Then, s0 is

estimated by

ŝT := min

󰀫
s : sup

z∈R
|T̂T (s, z)| = sup

s̄∈[0,1]
sup
z∈R

|T̂T (s̄, z)|
󰀬
. (14)

Note that ŝT = ⌊T ŝT ⌋/T . Under some regularity conditions; see, for instance, Assumptions I

- TX.2 in Mohr and Selk (2020), it follows from Mohr and Selk (2020) that ŝT is a consistent

estimate of s0 with the convergence rate T . The reader is referred to the paper by Mohr and

Selk (2020) for details. Therefore, ŝT in (14) is used in our simulation and empirical studies

conducted in Sections and 3 and 4, respectively.

6Of course, one can use the local linear fitting scheme.
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2.5.2 Extension to Multiple Breaks

The main focus in the previous subsections is on the case of having a single break.

However, in practice a time series model may be subject to multiple breaks. The case of

multiple breaks is a straightforward extension of the previous sections. The weighted local

linear estimator can be similarly defined as the combination of the full-sample estimator and

the estimator using observations after the most recent break point, described below. For

example, consider a nonparametric model in (1) with two breaks (three periods) so that (2)

can be generalized to the following

mt(x) = m(1)(x) (t ≤ S1) +m(2)(x) (S1 < t ≤ S2) +m(3)(x) (t > S2),

where two break points are at S1 and S2 with 1 < S1 < S2 < T . Similar to the estimation

procedure as in (7), for simplicity, by following the same idea in (7) (see the last equation

in (7)), we adopt the following combined local linear estimator

󰁥mwll,2(x) = θ2 󰁥mfull(x) + (1− θ2) 󰁥m(3)(x), (15)

where 0 ≤ θ2 ≤ 1 is the weight, similar to Θ in (7), 󰁥mfull(x) is the local linear estimator

based on the full sample, and 󰁥m(3)(x) is the local linear estimator based on the observations

from the last period (S2 < t ≤ T ). Similar to the asymptotic analyses presented in Section

2.3, it is not difficult to obtain the asymptotic properties for 󰁥mwll,2(x). By the same token,

one can get a consistent estimate of θ2 by following the similar procedure outlined in (13)

in Section 2.4. Finally, note that the theoretical derivations for 󰁥mwll,2(x) similar to those for

󰁥mwll(x) for single break case, so omitted and available upon request.

For a model with two breaks, other combined estimators are possible, for example, the

combination of the full-sample estimator and the two subsample estimators based on the sec-

ond and third periods. However, this subsample estimator is not consistent form(3)(x). Also,

because the full-sample estimator is the most efficient one, the efficiency of the combined

estimator cannot be enhanced by combining with this inconsistent subsample estimator us-

ing the second and third subsamples. Therefore, this combined estimator does not balance

the trade-off between the bias and variance efficiency. For more discussions, the reader is

referred to the paper by Lee et al. (2022b) for linear models. Following the same idea as in

(15), it is not difficult to extend to a nonparametric model with three or more than three

breaks.
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3 Monte Carlo Simulation Studies

In order to evaluate the finite sample performance of our proposed estimator, we consider

three data generating processes; that is

(IID) Yt+1 = mt(Xt) + σtεt, where εt ∼ N (0, 1) i.i.d.

(TS) Yt+1 = mt(Xt) + σtεt, where εt ∼ N (0, 1) i.i.d.

(AR) Yt+1 = mt(Yt) + σtεt, where εt ∼ N (0, 1) i.i.d.

In this study, we simulate distinct distributions for Xt before and after the structural break.

In the IID case, we generate samples Xt ∼ N (0,
√
0.1) for the pre-break period 1 ≤ t ≤ T1,

and Xt ∼ N (1,
√
0.5) for the post-break period T1+1 ≤ t ≤ T . In the TS case, we generate

samples from the following distributions for Xt: Xt = 0.4Xt−1 + υ1,t for 1 ≤ t ≤ T1 and

Xt = 0.5Xt−1 + υ2,t for T1 + 1 ≤ t ≤ T , where υ1,t ∼ N (0,
√
0.1) and υ2,t ∼ N (1,

√
0.5)

iid. Further, we introduce a break in variance and a shift in distribution of the error term

such that σtεt =
√
0.1ε1,t · (t ≤ T1) +

√
0.2ε2,t · (t > T1), where both ε1,t ∼ N (0,

√
0.1)

and ε2,t ∼ N (1,
√
0.5) are independently and identically distributed. The mean function is

modeled as follows

mt(x) = sin(x) (t ≤ T1) + (1− b) sin(x) (t > T1),

where b takes four values as 0.1, 0.3, 0.6, and 1, so that the break size function λ(x) = b sin(x)

is characterized by b. The pre-break sample size is defined as a proportion of the full-sample,

T1 = ⌊Ts0⌋ with s0 ∈ {0.2, 0.5, 0.8}, with sample sizes of T ∈ {500, 1000}. The simulation

is repeated M = 1000 times.

We shall evaluate whether the size of the break in both the mean and variance influences

the forecasting performance of our proposed estimator. We distinguish the cases when s0

is known, or unknown and estimated by ŝT using (14). We use the Gaussian kernel for

estimating the mean function 󰁥m(·), together with the bandwidth {hi}i=1,2 and the weight

γ determined by multifold forward-validation as described in Sections 2.3.3 and 2.4, respec-

tively. Note that for simplicity, we adoptm = [0.1Ti] and Q = 4 for {ĥi}i=1,2 as recommended

in Cai et al. (2000).

In order to evaluate forecasting performance, we employ the mean squared forecasting

error of one-step-ahead forecast by comparing our weighted local linear estimator (“wll”) to
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post-break estimator (“pb”) as well as full sample estimator (“fs”). One-step ahead forecast

for Yt computed at time T using method i is denoted as 󰁥Yi,T+1, and i = wll, pb, or fs. In

this simulation exercise, these forecasts are conditional on XT+1, or precisely

󰁥Ywll,T+1 = 󰁥mwll,c(XT ),

where 󰁥mwll,c(·) is computed using (9), while 󰁥Ypb,T+1 is based on local linear estimator using

post-break observations only, and 󰁥Yfs,T+1 uses the entire sample. In the case of a known s0, we

use the date T1 as the break date. In the case of an estimated s0, we use the estimated break

date T̂1 = ⌊T ŝT ⌋ to determine the post-break sample for both the post-break and weighted

local linear estimators. Further, We use a fixed estimation window from t = 1, . . . , T . The

MSFE for each method is calculated as

MSFEi =
1

1000

1000󰁛

m=1

󰀓
Y

(m)
i,T+1 − 󰁥Y (m)

i,T+1

󰀔2

,

where 󰁥Y (m)
i,T+1 is the forecasted value for YT+1 computed using method i for the m-th replica-

tion.

Tables 1, 2, and 3 display simulation results for MSFE1/MSFE2 and MSFE3/MSFE2 for

the IID, TS, and AR data generating process scenarios, respectively. Across all scenarios,

Table 1: MSFE for weighted local linear (WLL) and full-sample (FS) estimator relative to the post-break
estimator in the IID data generating process scenario. Sample size T = 500 (the left panel) and T = 1000
(the right panel) with M = 1000 Monte-Carlo replications.

s0 b
T = 500 T = 1000

s0 known s0 estimated s0 known s0 estimated
WLL FS WLL FS WLL FS WLL FS

0.2

0.1 0.953 1.762 0.967 3.724 0.969 1.121 0.957 7.939
0.3 0.956 1.418 0.949 1.476 0.958 1.465 0.946 2.290
0.6 0.957 1.217 0.952 1.974 0.949 1.100 0.927 11.590
1.0 0.951 1.399 0.919 1.559 0.956 1.345 0.942 1.252

0.5

0.1 0.950 1.383 0.950 2.517 0.966 1.201 0.948 2.632
0.3 0.961 1.377 0.959 3.086 0.961 1.851 0.956 1.923
0.6 0.959 3.163 0.958 1.576 0.946 10.302 0.947 4.896
1.0 0.957 2.386 0.947 71.359 0.949 1.34e4 0.941 7.229

0.8

0.1 0.954 97.425 0.935 6.544 0.939 32.810 0.945 2.579
0.3 0.950 33.227 0.955 1.942 0.955 4.239 0.952 1.909
0.6 0.963 4.116 0.940 8.829 0.941 2.48e3 0.947 8.561
1.0 0.953 35.396 0.939 3.887 0.941 13.891 0.949 3.929

18



we observe that our proposed WLL estimator consistently outperforms the conventional

post-break estimator, as evidenced by relative MSFEs less than 1. This demonstrates that

Table 2: MSFE for weighted local linear (WLL) and full-sample (FS) estimator relative to the post-break
estimator in the TS data generating process scenario. Sample size T = 500 (the left panel) and T = 1000
(the right panel) with M = 1000 Monte-Carlo replications.

s0 b
T = 500 T = 1000

s0 known s0 estimated s0 known s0 estimated
WLL FS WLL FS WLL FS WLL FS

0.2

0.1 0.973 1.029 0.958 1.534 0.985 1.000 0.972 1.050
0.3 0.974 0.991 0.961 1.088 0.985 1.007 0.973 1.171
0.6 0.976 1.476 0.941 3.112 0.981 1.018 0.959 1.076
1.0 0.978 1.185 0.963 1.869 0.978 1.011 0.971 1.290

0.5

0.1 0.962 1.081 0.939 1.316 0.971 1.189 0.963 1.199
0.3 0.963 1.100 0.958 1.436 0.966 1.024 0.968 2.130
0.6 0.953 1.056 0.964 1.301 0.966 1.111 0.977 3.324
1.0 0.947 1.151 0.970 14.310 0.962 1.882 0.969 2.883

0.8

0.1 0.959 1.210 0.953 1.408 0.958 1.273 0.959 1.299
0.3 0.959 1.372 0.952 1.459 0.962 1.172 0.961 1.111
0.6 0.967 1.111 0.955 1.106 0.967 1.301 0.969 415.13
1.0 0.965 1.932 0.964 7.422 0.969 1.959 0.970 2.318

the WLL estimator successfully improves the forecast by taking into account the pre-break

observations using an optimal weight, rather than relying solely on post-break observations

for the forecast. On the other hand, we also observe that the FS estimator yields relative

MSFE that is far greater than 1, which means that ignoring structural breaks, using full

sample observations for forecast may be unstable and lead to severe bias.

4 An Empirical Example

Volatility forecasting has become a very prominent area of research during the last few

decades and several authors have come out with path breaking studies in this area which

have helped both the academicians and practitioners in the financial market. There is a vast

amount of literature on forecasting volatility with structural breaks; see, for example, the

paper by Karlsson (2016) for details. In this empirical example, by following the literature

on volatility forecasting with structural break, our goal is to forecast volatility using return
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Table 3: MSFE for weighted local linear (WLL) and full-sample (FS) estimator relative to the post-break
estimator in the AR data generating process scenario. Sample size T = 500 (the left panel) and T = 1000
(the right panel) with M = 1000 Monte-Carlo replications.

s0 b
T = 500 T = 1000

s0 known s0 estimated s0 known s0 estimated
WLL FS WLL FS WLL FS WLL FS

0.2

0.1 0.947 85.960 0.964 3.275 0.949 10.679 0.922 2.658
0.3 0.937 3.883 0.914 18.228 0.946 101.475 0.927 17.694
0.6 0.957 2.076 0.944 2.808 0.961 2.127 0.939 2.430
1.0 0.949 107.269 0.951 4.593 0.966 3.525 0.952 57.703

0.5

0.1 0.942 5.737 0.888 8.383 0.946 10.070 0.948 94.249
0.3 0.944 21.129 0.929 4.144 0.944 5.916 0.940 30.545
0.6 0.935 11.995 0.912 7.358 0.954 5.663 0.925 2.857
1.0 0.960 6.019 0.927 39.593 0.941 5.597 0.917 8.193

0.8

0.1 0.934 20.001 0.972 9.508 0.910 3.69e7 0.922 31.787
0.3 0.951 22.659 0.954 9.669 0.956 16.597 0.936 11.176
0.6 0.942 34.159 0.985 28.637 0.956 11.205 0.959 1.44e3
1.0 0.924 16.167 0.921 18.951 0.943 41.608 0.949 78.915

data. To this end, we consider the following forecasting model with structural break

VIXt+1 = m1(Rett) (t ≤ T1) +m2(Rett) (t > T1) + εt, (16)

where VIXt denotes the volatility index VIX, Rett represents the log daily return of the S&P

500 index, T1 is the break point, and εt is the idiosyncratic error term. The variable VIX

originates from the Chicago Board Options Exchange’s CBOE Volatility Index, sourced from

Yahoo Finance. Data on S&P 500 index were obtained from Federal Reserves Economic Data

(FRED). The sample period spans from January 1, 2020 to June 30, 2024, encompassing

a total of 1,129 daily data points after excluding non-trading days and calculating the log

returns. Figure 1 displays a scatterplot of VIXt against Rett. Visual inspection suggests a

nonlinear relationship, better captured by locally weighted scatterplot smoothing (LOESS,

shown as orange dots) than by ordinary least squares (OLS, represented by the yellow line).

To substantiate this observation, we conduct forecasting of VIXt using various methods from

the literature.

We iteratively calculate forecasts using the local linear postbreak estimator with multifold

forward-validation as a benchmark, along nine other alternative methods, which are depicted

20



Figure 1: Scatterplot of VIXt+1 against Rett
.

in Table 4. The dataset is split into two segments: the initial T observations constitute the in-

Table 4: Forecasting methods used in the empirical analysis

No. Method Description

1. WLL Bias-corrected weighted local linear estimator
2. PBLL Local linear postbreak estimator
3. FSLL Local linear full sample estimator
4. PBOLS OLS postbreak estimator
5. FSOLS OLS full sample estimator
6. PPP Linear regression using estimated optimal weights (Pesaran et al.,

2013)
7. optW (b = 0, b̄ = 1) Linear regression using robust optimal weights (Pesaran et al., 2013)
8. optWd Linear regression using optimal window (Pesaran and Timmermann,

2007)
9. aveW Forecast averaging across estimation windows (Pesaran and Pick,

2011)

sample estimation period, and the remaining observations serve as the pseudo out-of-sample

evaluation period. Forecasts are generated step by step during the out-of-sample period,

using only the information available at each forecast point. As we widen the estimation

window, we re-estimate all model parameters, such as the break points and the optimal

weight in the case of our WLL estimator. Subsequently, we evaluate the forecasts for horizons

τ = 1, 2, 3, 4, and 5 days using the Diebold-Mariano (DM) test proposed by Diebold and

Mariano (1995). The out-of-sample analysis covers the period between June 1, 2023 and
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June 30, 2024.

The DM test is considerably more versatile than any alternative test of equality of forecast

performance, and is likely to be widely used in empirical evaluation studies. However, the

test was found to be quite seriously over-sized for moderate numbers of sample observations.

In addition, the long-run variance can frequently be negative when computing standard DM

tests as argued by Harvey, Leybourne, and Newbold (1997) and Harvey, Leybourne, and

Whitehouse (2017). Therefore, we use a modified version of the DM test in the following.

Let ei,t = Yt − 󰁥Yi,t and ej,t = Yt − 󰁥Yj,t be the forecast errors for method i and j, respectively,

and choose the loss differential dt = e2i,t − e2j,t. Denote d̄ = T−1
󰁓T

t=1 dt as the the sample

mean of the loss differential, or simply MSFEi − MSFEj, and ω2 the long-run variance of

dt, i.e., ω
2 =

󰁓∞
j=−∞ Υj, with Υj = Cov (dt, dt−j). Then, the modified Diebold-Mariano

(MDM) test is defined as follows

MDM =

󰀻
󰀿

󰀽

󰁳
T + 1− 2h+ T−1h(h− 1)

󰀓
d̄
ω̂

󰀔
if ω̂ > 0

√
T
󰀓

d̄
ω̂Bart

󰀔
otherwise

,

where ω̂2 = γ̂0+2
󰁓τ−1

j=1 Υ̂j and Υ̂j = T−1
󰁓T

t=j+1

󰀃
dt − d̄

󰀄 󰀃
dt−j − d̄

󰀄
is the associated sample

autocovariance. The critical values are computed from Student’s distribution tT−1. The

formula for ω̂2 makes use of a long-run variance estimator, which is a weighted sum of τ − 1

lags of sample auto-covariances. This approach is motivated by the fact that optimal τ -

step-ahead forecast errors are at most (τ −1)-dependent. The magnitude, however, can take

a negative value. In such cases, we opt for a Bartlett long variance estimator, defined as

follows:

ω̂2
Bart = Υ̂0 + 2

τ−1󰁛

j=1

󰀕
1− j

τ

󰀖
Υ̂j.

To assess the statistical significance of the improved predictive performance achieved by

method j, we conduct a hypothesis test comparing it to method i, where method i serves

as the benchmark estimator. The null hypothesis (H0) asserts that there is no significant

difference in MSFE between the two methods, specifically H0 : MSFEi = MSFEj. In con-

trast, the alternative hypothesis (Ha) posits that method j outperforms method i, i.e.,

Ha : MSFEi > MSFEj.

Figures 2a and 2b show the estimated rescaled break date 󰁥s0 and the estimated weights

󰁥γ, respectively. Based on these figures, we conclude that the break date is estimated to

lie at the 40th percentile of the data around 70% of the time, while the rest is around
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the 10th percentile of the data. The estimated optimal weights for WLL estimator appear

to be bi-modally distributed, with around 47% of the time the estimated optimal weight

being zero. Around 25% of the time, we have 󰁥γ = 0.11, which means we put relatively low

weight on the prebreak sample to improve the forecast. Around 14% of the time, we have

󰁥γ = 1.0, which means we put full weight on the prebreak sample, thus run a full-sample

estimation. Table 5 displays the MSFE of different forecasting methods outlined in Table

(a) Estimated rescaled breakdate 󰁥s0 (b) Estimated weight 󰁥γ

Figure 2: Distribution of estimated WLL parameters of model (16).

4, calculated at forecast horizon τ = 1, 2, 3, 4, and 5 day. Compared to the benchmark,

Table 5: MSFE of estimators described in Table 4 at forecast horizon τ = 1, 2, 3, 4 and 5 day. ***,**,
and * indicate significance of DM test at 1%, 5%, and 10% level, respectively. Benchmark is local linear
postbreak estimator (PBLL) using multifold forward-validation for the tuning parameters.

τ WLL PBLL FSLL PBOLS FSOLS PPP optW optWd aveW

1 19.950*** 41.863 68.620 44.144 75.655 214.417 215.649 214.132 33.505***

2 19.846*** 41.945 68.393 44.354 76.065 214.240 215.330 213.893 33.845***

3 19.834*** 42.409 68.414 44.514 76.401 214.173 214.888 213.769 34.135***

4 19.573*** 42.748 68.988 44.600 76.686 213.791 214.606 213.442 34.441***

5 19.357*** 42.836 68.807 44.583 77.001 213.505 214.687 213.204 34.688**

the WLL, and aveW estimators yield significantly lower MSFEs across all forecast horizons.

Our WLL estimator yields the lowest MSFEs, followed by aveW. This indicates that our

proposed estimator produced more accurate forecasts compared to other methods. We also

observe that nonparametric local linear models (WLL, PBLL, FSLL) yield lower MSFEs
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compared to the linear models (PBOLS, FSOLS, PPP, optW, optWd). The aveW method,

although linear in nature, proves to yield more accurate forecasts than the benchmark model,

primarily due to averaging the produced forecasts across a number of estimation windows.

5 Theoretical Proofs

Proof of Theorem 1. The proof of Theorem 1 consists of two parts: the first part derives

the asymptotic bias given in (8), and the second part investigates the asymptotic normality

provided in (10).

Proof of (8): To establish (8), first, we need to show that under Condition A,

Sj(x)
p−→ µj fb(x). (17)

Indeed, it is easy to show that E[Sj(x)] → µj fb(x) and T1h1Var(Sj(x)) → fb(x)νj, by

following the same idea as in the proof of Theorem 1 in Cai et al. (2000). Next, it is easy to

see that in view of (17), the asymptotic bias term of β̂0,(1)(x) can be asymptotically expressed

as

B1(x) ≈
1

T1

T1󰁛

t=1

Kh1(Xt − x)
󰀋
m(1)(Xt)−m(1)(x)−m′

(1)(x)(Xt − x)
󰀌
/fb(x)

≈
m′′

(1)(x)

2

1

T1

T1󰁛

t=1

Kh1(Xt − x)(Xt − x)2/fb(x) ≈ m′′
(1)(x)µ2h

2
1/2

by Taylor expansion and following the same proof of (17). Similarly, B2(x), the asymptotic

bias for β̂0,(2)(x), can be obtained easily. Therefore, (8) is established.

Proof of (10): To establish (10), first, we show that C1
d→ N

󰀃
0, σ2

m,1(x)
󰀄
and C2

d→
N

󰀃
0, σ2

m,2(x)
󰀄
. To this end, let Zt = Kh1(Xt − x)ut+τ

󰁳
h1/T1. Then, C1 =

󰁓T1

t=1 Zt. By

following the same procedures as in the proof of Lemma A.1 in Cai et al. (2000), it is not

difficult to show that under Conditions A and B, Var(C1) → σ2
m,1(x) as T1 → ∞. To establish

the asymptotic normality of C1, we employ the small-block and large-block technique —

namely, C1 = Ql+Qs+Qr, to show that Ql, the sum of the large-blocks converges a normal

distribution in distribution, Qs, the sum of the small-blocks, can be ignored in probability,

Qr, the sum of the remainder terms, converges to zero in probability, and the large-blocks

are asymptotically independent. Also, we prove that for Ql, the Lindeberg’s condition is

satisfied. Then, by the Lindeberg’s central limit theorem, the asymptotic normal of C1 is
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established. By the same token, we can establish the asymptotic normality for C2. Finally,

by following the same steps as used in proving Lemma A.1 in Cai et al. (2000), it is easy to

show that Cov(C1, C2) → 0 as T → ∞. This completes the proof of (10).

Proof of Theorem 2. Note that

󰁨m[−q](x) = e⊤󰁨Γ[−q]󰁨β[−q]
(1) (x) + e⊤(I2 − 󰁨Γ[−q])󰁨β[−q]

(2) (x),

= sb󰁨β[−q]
0,(1)(x) + (1− sb)󰁨β[−q]

0,(2)(x) +Op(T
−1/2h

−1/2
1 + T−1/2h

−1/2
2 ),

where󰁨·[−q] represents the related estimators using the sample {(Yt+τ , Xt), 1 ≤ t ≤ T−τ−qm}.
Let MFV∗(γ) = MFV(γ)− σ2

T+τ , where σ
2
T+τ is a constant and unrelated to γ. The selected

weight

󰁥γ = argmin
γ∈H

MFV(γ) = argmin
γ∈H

MFV∗(γ).

From Lemma1 of Gao, Zhang, Wang, Chong, and Zou (2019), Theorem 2 is valid if

sup
γ∈H

󰀏󰀏󰀏󰀏
RT+τ (γ)

R∗
T+τ (γ)

− 1

󰀏󰀏󰀏󰀏 = o(1) and sup
γ∈H

󰀏󰀏󰀏󰀏
MFV∗(γ)−R∗

T+τ (γ)

R∗
T+τ (γ)

󰀏󰀏󰀏󰀏 = op(1).

Based on Conditions A - B, for any given x, it is observed that

max
1≤i≤2

||󰁥β0,(i)(x)− β∗
0,(i)(x)|| = Op(h

2
1 + h2

2 + T−1/2h
−1/2
1 + T−1/2h

−1/2
2 ).

Again, define L(γ) =
󰁫
YT+τ − 󰁥YT+τ (γ)

󰁬2
−σ2

T+τ and L∗(γ) =
󰀅
YT+τ − Y ∗

T+τ (γ)
󰀆2−σ2

T+τ . We

have

sup
γ∈H

|L(γ)− L∗(γ)|

= sup
γ∈H

󰁱
(Y ∗

T+τ (γ)− 󰁥YT+τ (γ))(2YT+τ − 󰁥YT+τ (γ)− Y ∗
T+τ (γ))

󰁲

= sup
γ∈H

󰁱
[m∗

wll(XT )− 󰁥mwll(XT )](2YT+τ − 󰁥YT+τ (γ)− Y ∗
T+τ (γ))

󰁲

= sup
γ∈H

󰁱
[m∗

wll(XT )− 󰁥mwll(XT )]
󰁫
2(YT+τ − Y ∗

T+τ (γ))− (󰁥YT+τ (γ)− Y ∗
T+τ (γ))

󰁬󰁲

= Op(h
2
1 + h2

2 + T−1/2h
−1/2
1 + T−1/2h

−1/2
2 ).
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Thus,

sup
γ∈H

󰀏󰀏RT+τ (γ)−R∗
T+τ (γ)

󰀏󰀏
R∗

T+τ (γ)
≤ ξ∗−1

T+τ sup
γ∈H

󰀏󰀏RT+τ (γ)−R∗
T+τ (γ)

󰀏󰀏

≤ E
󰀝
ξ∗−1
T+τ sup

γ∈H
|L(γ)− L∗(γ)|

󰀞
= O(ξ∗−1

T+τ (h
2
1 + h2

2 + T−1/2h
−1/2
1 + T−1/2h

−1/2
2 )),

where the second step follows from Condition C1 and the last step is due to Condition C2.

Next, definem∗(γ) = (m∗
wll(XT−τ−Qm+1), · · · ,m∗

wll(XT−τ ))
′ andm(γ) = (m(XT−τ−Qm+1),

· · · ,m(XT−τ ))
′. Then, we observe that

sup
γ∈H

󰀏󰀏󰀏󰀏
MFV∗(γ)−R∗

T+τ (γ)

R∗
T+τ (γ)

󰀏󰀏󰀏󰀏

= ξ∗−1
T+τ sup

γ∈H

󰀏󰀏󰀏Q−1m−1(󰁨Y − 󰁨m(γ))′(󰁨Y − 󰁨m(γ))− σ2
T+τ − EL∗(γ)

󰀏󰀏󰀏

≤ ξ∗−1
T+τ sup

γ∈H
Q−1m−1

󰀏󰀏󰀏(󰁨Y − 󰁨m(γ))′(󰁨Y − 󰁨m(γ))− (󰁨Y −m∗(γ))′(󰁨Y −m∗(γ))
󰀏󰀏󰀏

+ξ∗−1
T+τ sup

γ∈H
Q−1m−1

󰀏󰀏󰀏(󰁨Y −m∗(γ))′(󰁨Y −m∗(γ))− E(󰁨Y −m∗(γ))′(󰁨Y −m∗(γ))
󰀏󰀏󰀏

+ξ∗−1
T+τ sup

γ∈H
Q−1m−1

󰀏󰀏󰀏E(󰁨Y −m∗(γ))′(󰁨Y −m∗(γ))−QmE{YT+τ − Y ∗
T+τ (γ)}2

󰀏󰀏󰀏

≡ ξ∗−1
T+τ sup

γ∈H
Γ1(γ) + ξ∗−1

T+τ sup
γ∈H

Γ2(γ) + ξ∗−1
T+τ sup

γ∈H
Γ3(γ).

Consequently, we need to prove the following equations

ξ∗−1
T+τ sup

γ∈H
Γ1(γ) = op(1), ξ∗−1

T+τ sup
γ∈H

Γ2(γ) = op(1), and ξ∗−1
T+τ sup

γ∈H
Γ3(γ) = op(1). (18)

To prove the first assert in (18), we have the decomposition

||󰁨Y − 󰁨m(γ)||2

= (󰁨Y −m∗(γ) +m∗(γ)− 󰁨m(γ))′(󰁨Y −m∗(γ) +m∗(γ)− 󰁨m(γ))

= (󰁨Y −m∗(γ))′(󰁨Y −m∗(γ)) + (m∗(γ)− 󰁨m(γ))′(m∗(γ)− 󰁨m(γ))

+2(󰁨Y −m∗(γ))′(m∗(γ)− 󰁨m(γ))

= (󰁨Y −m∗(γ))′(󰁨Y −m∗(γ)) + (m∗(γ)− 󰁨m(γ))′(m∗(γ)− 󰁨m(γ))

+2(󰁨Y −m(γ) +m(γ)−m∗(γ))′(m∗(γ)− 󰁨m(γ))

= (󰁨Y −m∗(γ))′(󰁨Y −m∗(γ)) + (m∗(γ)− 󰁨m(γ))′(m∗(γ)− 󰁨m(γ))

+2(󰁨Y −m(γ))′(m∗(γ)− 󰁨m(γ)) + 2(m(γ)−m∗(γ))(m∗(γ)− 󰁨m(γ)).

26



For any given x, we have

sup
γ∈H

[ 󰁨m(γ)−m∗(γ)]′ [ 󰁨m(γ)−m∗(γ)]

= Op(Qm||󰁨β0,(1)(x)− β∗
0,(1)(x)||2 +Qm||󰁨β0,(2)(x)− β∗

0,(2)(x)||2)

= Op(Qm(h4
1 + h4

2 + T−1h−1
1 + T−1h−1

2 )) = Op(1)

with Conditions A - B. Also, with Conditions A - B, it is shown that

sup
γ∈H

|(m∗(γ)−m(γ))′( 󰁨m(γ)−m∗(γ))| = Op(Q
1/2m1/2).

Then, we have

ξ∗−1
T+τ sup

γ∈H
Γ1(γ) = Op(ξ

∗−1
T+τ (Qm)−1 + ξ∗−1

T+τ (Qm)−1/2) = op(1),

where the last step is obtained from Condition C. Therefore, the first assert in (18) is

obtained. For simplicity, let w1 = sb and w2 = 1−sb. These two candidate models are Yt+τ =

m(1)(Xt) + u
(1)
t+τ and Yt+τ = m(2)(Xt) + u

(2)
t+τ for 1 ≤ t ≤ T . Define u

(1)∗
t+τ = Yt+τ − β∗

0,(1)(Xt)

and u
(2)∗
t+τ = Yt+τ −β∗

0,(2)(Xt). To verify the second assertion in (18), for any given x, we have

ξ∗−1
T+τ sup

γ∈H
Γ2(γ)

= ξ∗−1
T+τ

󰀥
(Qm)−1 sup

γ∈H
|

T−τ󰁛

t=T−τ−Qm+1

2󰁛

i=1

2󰁛

j=1

wiwj{u(i)∗
t u

(j)∗
t − Eu(i)∗

t u
(j)∗
t }|

+ Op(T
−1/2h

−1/2
1 + T−1/2h

−1/2
2 )

󰁬

≤ ξ∗−1
T+τ sup

γ∈H

2󰁛

i=1

2󰁛

j=1

wiwj|(Qm)−1

T−τ󰁛

t=T−τ−Qm+1

{u(i)∗
t u

(j)∗
t − Eu(i)∗

t u
(j)∗
t }|+ op(1)

≤ ξ∗−1
T+τ sup

γ∈H

2󰁛

i=1

2󰁛

j=1

|(Qm)−1

T−τ󰁛

t=T−τ−Qm+1

{u(i)∗
t u

(j)∗
t − Eu(i)∗

t u
(j)∗
t }|+ op(1)

=
1

ξ∗T+τ

√
Qm

2󰁛

i=1

2󰁛

j=1

ΨT (i, j) + op(1),

where ΨT (i, j) = | 1√
Qm

󰁓T−τ
t=T−τ−Qm+1{u

(i)∗
t u

(j)∗
t − Eu(i)∗

t u
(j)∗
t }|. By Theorem 3.49 and 5.20

in White (1984) and Conditions A-C, we obtain ΨT (i, j) = Op(1) for any i and j. Thus,
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󰁓2
i=1

󰁓2
j=1 ΨT (i, j) = Op(1). Therefore, we have

ξ∗−1
T+τ sup

γ∈H
Γ2(γ) = Op(ξ

∗−1
T+τ (Qm)−1/2) + op(1) = op(1),

where the last step is due to Condition C. Finally, we consider the last assert in (18). We

observe that

ξ∗−1
T+τ sup

γ∈H
Γ3(γ) ≤ ξ∗−1

T+τ

󰀥
sup
γ∈H

2󰁛

i=1

2󰁛

j=1

wiwj

󰀏󰀏󰀏󰀏󰀏Q
−1m−1

T−τ󰁛

t=T−τ−Qm+1

Eu(i)∗
t u

(j)∗
t − Eu(i)∗

T u
(j)∗
T

󰀏󰀏󰀏󰀏󰀏

+Op(T
−1/2h

−1/2
1 + T−1/2h

−1/2
2 )

󰁬

= O(ξ∗−1
T+τ (Qm)−1/2) + o(1) = o(1),

where the last step is due to Condition C and {Yt, Xt} is a (or piece wise) stationary α-mixing

time series in Condition A. Therefore, the proof of Theorem 2 is completed.

6 Conclusions

When forecasting time series data, structural breaks can present a significant challenge.

Existing literature has proposed several methods to handle structural breaks, but they tend

to be (semi-)parametric in nature. Typically, these methods incorporate information from

the pre-break period by assigning weights between 0 and 1 to the relevant observations.

Building on this idea, this paper proposes a similar nonparametric estimator which offers

the advantage of not requiring any specific functional form. Our proposed weighted local

linear estimator has been shown in previous studies to outperform the usual post-break

estimator in parametric cases.

However, our study only considers a single break and a low dimensional covariate, say

less than 5, due to the so-called curse of dimensionality. This could be problematic in more

complex situations, such as longer time series data with multiple breaks or with missing

relevant covariates or with large or ultra large d (either d → ∞ and d/n → 0 or d ≫ n).

To overcome these difficulties, one might use some dimension reduction approaches such as

functional coefficient model as in Cai et al. (2000), additive model as in Cai and Masry

(2000), and semiparametric model as in Fan, Yao, and Cai (2003) and Cai, Juhl, and Yang

(2015), and references therein. Of course, various machine learning methods can be used to

estimate these functionals. These extensions warrant further investigation as future research
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topics.

Finally, it is worth to point out that in real-world applications, where the break date is

unknown, an accurate estimation of break dates is essential. To address this issue, future

research could explore robust nonparametric methods for testing and estimating multiple

breaks in time series data. Such efforts would help to further improve the accuracy and

reliability of time series forecasting in the presence of structural breaks. In addition, future

research could focus on determining which covariates to include in the model, as well as

the optimal number of covariates, in order to create a more powerful forecasting model.

Therefore, developing model selection criteria is essential and deserves further investigation.

Furthermore, the present study does not cover how to construct prediction intervals of the

generated forecasts. In order to address objective, a potential avenue for future research

could involve a quantile regression approach that takes into account structural breaks.
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