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Abstract

Two stein-like shrinkage estimators are introduced to modify the 2SLS and the

LIML estimators for coefficients of a single equation in a simultaneous system

of equations. The proposed estimators are weighted averages of the 2SLS/LIML

estimators and the OLS estimator. The shrinkage weight depends on the Wu-Hausman

misspecification test statistic which evaluates the null of exogeneity against the

alternative hypothesis of endogeneity. The approximate finite sample bias, mean

squared errors, and density functions of the Stein-like shrinkage estimators are obtained

using small-disturbance approximations. The dominance conditions of the Stein-like

shrinkage estimators over the 2SLS/LIML estimator under the mean squared error and

the concentration probability are obtained. The proposed method is further illustrated

by simulation studies which demonstrate the good finite sample performance of the

method, and is also applied to an empirical application of returns to education.
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1 Introduction

Simultaneous equations models which arise from economic theory in terms of operations of

markets and the simultaneous determination of economic variables through an equilibrium

model, are one of the many developments in econometrics. The study of estimating

coefficients of a single equation in a complete system of simultaneous structural equations

has provided many estimation methods, including ordinary least squares (OLS), two-stage

least squares (2SLS) and limited information maximum likelihood (LIML) which are the

most commonly used ones. Because of the presence of endogeneity in the model, the OLS

estimator is biased and inconsistent, however, the 2SLS and the LIML estimators under

appropriate general conditions are consistent (see e.g., Anderson and Rubin (1949)). Since

these estimators are available, numerous articles have focused on the finite-sample properties

of these estimators and their modifications.

One direction of modifying these estimators, in the hope that the modified estimation

method may improve the existing estimators, has been made by linearly combining these

estimators. Sawa (1973a) and Sawa (1973b) propose a combined estimator, to eliminate the

bias of the 2SLS estimator. The combined estimator is a simple linear combination of the

OLS and the 2SLS estimators. The coefficients of this combined estimator depends on the

sample size and the number of included and excluded variables from the relevant equation.

Besides, the estimator is unbiased to a certain order. Similarly, Morimune (1978) proposes

a set of combined estimators which are convex linear combinations of the LIML estimator

and the fixed k−class estimators of Theil (1961). The aim of this method is to eliminate the

small-disturbance asymptotic bias of the LIML estimator to construct improved estimators

that are unbiased up to a certain order. Morimune shows the inadmissibility of the LIML

estimator in terms of asymptotic mean squared errors (see also, Morimune and Kunitomo

(1980) for the same method in the problem of functional relationships). A comparison of the

above modified estimators is given by Anderson et al. (1986).

Another direction of the modification considers a nonlinear function of the existing

estimators. Stein (1956) is the pioneer of this method. Stein (1956) shows that the maximum

likelihood estimator (MLE) for the mean of a multivariate normal distribution does not have
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the smallest risk, i.e., MLE is inadmissible. Later on this issue, James and Stein (1961)

suggested a biased estimator which dominates the MLE estimator in the sense that its risk is

smaller than that of the former, provided that at least three parameters are to be estimated.

In the context of a single equation estimation in a linear simultaneous equations system,

Zellner and Vandaele (1975) consider Stein-type estimators under a general quadratic loss

function and obtain a minimum risk estimator by applying 2SLS method. However, the

resulting estimator is unavailable in applications as it involves certain unknown parameters.

On this regard, Ullah and Srivastava (1988) present a Stein-type estimator and analyze its

properties and conditions under which the resulting estimator dominates the 2SLS estimator.

In reduced form estimation, Maasoumi (1978) constructs a Stein-like estimator which is

the weighted average of the Least Squares (LS) estimator and the Three-Stage-Least-Squares

(3SLS) estimator of the reduced form coefficients in a linear simultaneous equations system,

where the weight depends on the inverse of an over-identification test statistic. Maasoumi

shows that this estimator has a few advantages over the LS and 3SLS estimators as it has

finite moments, thinner tails, and has the edge on the LS estimator as it is asymptotically

equivalent to the 3SLS estimator. Following Maasoumi (1978), in the context of single

equation instrumental variable models, Hansen (2017) constructs a Stein-like estimator which

is a weighted average of the OLS estimator and the 2SLS estimator for estimating the

structural coefficients of the model. The weight is defined similar to Maasoumi (1978),

while the Wu-Hausman (1978) specification test statistic is used. Using the local asymptotic

theory, Hansen (2017) shows that the asymptotic risk of the Stein-like estimator is strictly

less than that of the 2SLS estimator when the number of included endogenous variables are

more than two. See also Mehrabani and Ullah (2020) for a Stein-like shrinkage estimator in

seemingly unrelated regression models.

There are several approaches to compare the estimators and their associated modified

estimators in the literature. One approach is to derive the exact distributions of the

estimators (see e.g., Anderson and Sawa (1979) and Phillips (1984)). However, the analytical

expressions of the distributions are usually too complicated to permit meaningful general

conclusions. An alternative approach is to approximate each distribution by one or more
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terms in an asymptotic expansion of the distribution. One term, most of the time, is not

enough as it is the common term between several estimators, but three terms serve to

distinguish between the estimators (see for example Rothenberg (1984)). In addition, the

approximate distribution terms can be used to approximate the moments of an estimator,

when these exist, or to produce pseudo-moments (of an approximate distribution) when they

do not, see Phillips (1983) for more discussion.

The asymptotic expansions have been derived on the basis of limits as an index tends

towards a value. In the large-sample approximation, the number of observations increase

without bound. In this context, Nagar (1959) shows that k−class estimators in simultaneous

equations models can be expanded in formal series where the successive terms are increasing

powers of T 1/2, where T is the number of observation for each dependent variable. Nagar

(1959) obtains the moments of the truncated series by keeping the first few terms in the

expansion. These moments can be interpreted as the moments of a statistic which serves

to approximate the estimator, while Sargan (1974) shows that under some conditions, these

moments can be interpreted as approximations to the actual moments of the estimator. In

the small-disturbance approximation, initiated by Kadane (1971), it is suggested that it

might be more natural to consider a sequence indexed by the error variance. In this analysis,

the reduced-form error-covariance matrix is written as σΩ, and while the sample size and

the matrix Ω are held fixed, σ approaches zero. The large-sample and small-disturbance

approximations can be related by the effect of them on the non-centrality parameter, which

goes to infinity in both cases while in the small-disturbance approximation the sample

size stays constant. However, in the large-sample approximation the sample size and the

non-centrality parameter both tend to infinity at the same speed (Anderson (1977)).

In this paper, we propose two Stein-like shrinkage estimators for coefficients of a single

equation in a complete system of simultaneous equations. The estimators are weighted

averages of the OLS and the 2SLS (or the LIML) estimators where the weights are inspired

by the weight in Hansen (2017). We obtain the analytical expression of the bias and mean

squared errors (MSE) of the estimators using small-disturbance approximation and give the

conditions under which the Stein-like shrinkage estimators dominate the 2SLS estimator or
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the LIML estimator.

There are two related papers in the literature that similar to this paper consider

combining the 2SLS estimator and the OLS estimator. The first one is Sawa (1973a) that

by giving fixed weights to the OLS and the 2SLS estimators creates an unbiased estimator.

The weights are wS,OLS = −(K−N−1)/(T −K) and wS,2SLS = (T −N−1)/(T −K) where

N and K are the number of equations and the number of excluded regressor, respectively.

Sawa (1973a) shows that the combined estimator is dominated by the 2SLS estimator in

terms of having smaller MSE when the condition (T − K − 2)(K − N − 7) ≤ 12 holds.

Under the local endogeneity assumption considered in this paper, it is easy to show that

Sawa’s combined estimator is always dominated by the 2SLS estimator (for more details, see

Remark 1 in Appendix B). Hence, the MSE of the combined estimator proposed by Sawa

(1973a) is strictly greater than that of the Stein-like shrinkage estimator in this paper. The

other related paper in the literature is Hansen (2017) which considers a Stein-like estimator

in instrumental variable regression models. Hansen (2017) derives the dominance conditions

of the Stein-like estimator over the 2SLS estimator by minimizing the truncated asymptotic

weighted risk of the estimator using asymptotic distributions of the estimators. There are

several advantages to our approach compared to Hansen (2017). First, the method considered

here derives the approximate moments, and distributions, however the analysis in Hansen

(2017) is dealing with asymptotically minimizing a truncated risk. Second, Hansen (2017)

minimizes a weighted risk where the weight matrix is set equal to the inverse of the difference

of the asymptotic variances of the 2SLS and the OLS estimators which might not be practical

in most of the empirical applications. However, we derive the MSE matrix which allows for

deriving a weighted risk with any positive definite weight matrix. Third, Hansen (2017) only

considers shrinking the 2SLS estimator toward the OLS estimator, while, we consider two

estimators where one shrinks the 2SLS estimator and the other shrinks the LIML estimator.

This is important as under weak instruments scenario the 2SLS estimator is biased in the

direction of the OLS estimator, while the LIML estimator needs weaker conditions for the

consistency (see for example Chao and Swanson (2005)).

Morimune (1978) considers combining the LIML with the OLS estimator. Morimune
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(1978) uses fixed weights with the purpose of removing the higher order bias of the LIML

estimator and shows that while Sawa (1973a)’s combined estimator is dominated by the

2SLS estimator, combining the LIML estimator with the OLS estimator dominates the LIML

estimator when K − N > 0 and T > K + 2. Although, the main goal of Morimune (1978)

is different from this paper, by comparing the MSEs of the combined estimator with our

proposed estimator, under the local endogeneity assumption, it can be easily verified that the

Stein-like shrinkage estimator significantly performs better than Morimune (1978)’s estimator

when the sample size is large enough, e.g., when T > 2(K+1) (for more details, see Remark

2 in Appendix B).

The rest of the paper is organized as follows. Sections 2 and 3 describe the model and

introduce the estimators. The approximate distributions, bias, and mean squared errors of

the Stein-like shrinkage estimators are given in section 4. Monte-Carlo simulations and the

application results are provided in sections 5 and 6. Conclusions are given in section 7.

Proofs and detailed calculations are listed in Appendices A – C.

2 The Model

Consider the following complete simultaneous equations model

YT×(N+1)B(N+1)×(N+1) +XT×KΓK×(N+1) = σUT×(N+1), (2.1)

where in the system above, there are N + 1 equations and N + 1 endogenous variables,

denoted by Y = (y1, y2, . . . , y(N+1)), there are K exogenous variables, X = (x1, x2, . . . , xK),

and U = (u1, u2, . . . , u(N+1)) are the structural disturbances. Each yi, xi, and ui is a vector

of T × 1, where for example yi = (yi1, yi2, . . . , yiT )
′ and T is the number of observations in

each equation. B is a nonsingular matrix of parameters with first column (−1, β′)′, where β

is a N × 1 vector of unknown coefficients of interest in the first equation, and σ is a positive

number.

The first equation of the above system, by assuming for simplicity that it includes no
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exogenous variables, may be written as

y1 = Y2β + σu1, (2.2)

where y1 is the first column of Y , and Y2 = (y2, . . . , y(N+1)) is T ×N , that contains the rest

of the columns of Y and is the included endogenous variables. The model in (2.2) can be

generalized to include exogenous variables in the first equation, but the results of the paper

remain the same. Hence, for the sake of simplicity, we assume that the first equation of the

system does not include exogenous variables.

We make the following assumptions about the distribution of the disturbances:

Assumption 1 The rows of U are independently normally distributed with mean zero and

variance-covariance matrix Σ. That is for all t and t′ in {1, . . . , T} and i and j ∈ {1, . . . , N},

E(uit) = 0,

Cov(uit, ujt′) =

σij if t = t′

0 otherwise,

and σ11 = 1. In matrix notation

E(U) = 0
T×(N+1)

,

1

T
E(U ′U) = Σ

(N+1)×(N+1)
=


1 σ12 . . . σ1(N+1)

σ21 σ22 . . . σ2(N+1)

...

σ(N+1)1 σ(N+1)2 . . . σ(N+1)(N+1)

 ≡
[
σ1 σ2 . . . σN+1

]
.

The reduced form of the structural equation (2.1) may be written as

Y = −XΓB−1 + σUB−1 ≡ XΠ+ σV, (2.3)

where Π = −ΓB−1, V = UB−1, ΠK×(N+1) =

[
π1
K×1

Π2
K×N

]
, and VT×(N+1) =

[
v1
T×1

V2
T×N

]
.
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Further, if we partition B−1 as

B−1 =
[
β̇(N+1)×1 Ḃ(N+1)×N

]
,

the reduced form system of equations can be written in partition as

y1 = −XΓβ̇ + σUβ̇ = Xπ1 + σv1, (2.4)

and

Y2 = −XΓḂ + σUḂ = XΠ2 + σV2 ≡ W + σV2, (2.5)

where we define W = XΠ2.

Assumption 2 Identification: Rank(Π2) = N ≤ K.

Assumption 2 is the rank condition which ensures the identification of the system. Note

also that for the case where K − N > 2, the first two moments of the 2SLS estimator

exist, while it is well-known that the LIML estimator has no positive integer moments (see

e.g., Mariano and Sawa (1972), Mariano and McDonald (1979), Phillips (1984), and Phillips

(1985)). In this paper, we use small-disturbance expansions to approximate the distributions

of the estimators of the parameters of the model, which then can be used to approximate

the moments of these estimators where these exist, or to produce pseudo-moments of these

estimators where they do not exist. For a discussion about the validity of the Nagar-type

expansion of the k-class estimators see Sargan (1974).

Under Assumption 1, the reduced form error is also normally distributed with

E(V ) = 0,

1

T
E(V ′V ) =

1

T
E(B′−1U ′UB−1) = B

′−1ΣB−1 = Ω
(N+1)×(N+1)

≡

ϖ11
1×1

ϖ12
1×N

ϖ21
N×1

Ω22
N×N

 .
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Following Nagar (1959), we define Ψ′
N×T

= V ′
2 − qu′

1, where the normally distributed

matrix Ψ consists of residuals from the population regression of V2 on u1. Hence Ψ and u1

are uncorrelated by construction. In addition, let

q
N×1

=
Cov(V2, u1)

V ar(u1)
=

E(V ′
2u1)

T
= Ḃ′σ1, (2.6)

and define

C1
N×N

= qq′, and C2
N×N

=
E(Ψ′Ψ)

T
= Ḃ′ΣḂ − qq′, where it can be shown that Ω22 = C1 + C2.

(2.7)

We assume the following local endogeneity assumption.

Assumption 3 Local Endogeneity: q = Cov(V2, u1)/T = σδ, where δN×1 ∈ RN .

We note that the local endogeneity assumption here is similar to the local asymptotic

considered in Hansen (2017), where σ is replaced by 1/
√
T . The local endogeneity assumption

in Hansen (2017) is needed so that the estimator has asymptotically a non-degenerate

asymptotic distribution. However, we need this assumption to simplify the derivations,

see the discussion in Appendix A for more details.

3 Estimators

We consider three members of the k−class estimator of β̇. The estimators are the OLS, the

2SLS, and the LIML estimators, which respectively correspond to k = 0, k = 1, and k = λ

where λ = β̃′Y ′Y β̃/β̃′Y ′MXY β̃ , MX = IT −PX is the projection onto the space orthogonal

to the columns of X, with PX = X(X ′X)−1X ′, and IT is the identity matrix. Moreover, we

introduce two types of Stein-like shrinkage estimators which are, a weighted average of the

2SLS and the OLS estimators, and a weighted average of the LIML estimator and the OLS

estimator.
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3.1 k−Class Estimators

The k−class estimator is defined as

β̂(k) = (Y ′
2HkY2)

−1Y ′
2Hky1 = β + σ(Y ′

2HkY2)
−1Y ′

2Hku1, (3.1)

where Hk = IT − kMX .

3.2 Stein-Like Shrinkage Estimators

We define the Stein-like shrinkage estimators as the weighted averages of a first-order

consistent k−class estimator (we consider the 2SLS estimator (k = 1), and the LIML (k = λ))

with the OLS estimator (k = 0), where the weights are inversely related to the Wu-Hausman

(1978) misspecification test statistic. Hence, the Stein-like shrinkage estimators are defined

as

β̂c,k = ωkβ̂(0) + (1− ωk)β̂(k), for k = 1, λ (3.2)

where ωk = τ/Fk,WH, and τ is a positive characterizing scalar which will be determined later.

Fk,WH is the Wu-Hausman statistic test, defined as

Fk,WH =
(
β̂(k)− β̂(0)

)′
Rk

(
β̂(k)− β̂(0)

)
, (3.3)

and Rk is defined as

Rk = σ̂−1
11,k

(
(Y ′

2HY2)
−1 − (Y ′

2Y2)
−1
)−1

, (3.4)

where σ̂11,k = û1(k)
′û1(k)/(T −N), in which û1(k) = y1 − Y2β̂(k).
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4 The Approximate Distributions and MSE

Since the Stein-like shrinkage estimators are non-linear functions of the OLS and the

2SLS/LIML estimators, and consequently non-linear functions of the error terms, we first

derive the approximate distributions of the Stein-like shrinkage estimators by following

Kadane (1971) small-disturbance method. Then, we obtain the bias and mean squared

error (MSE) matrices of the estimators up to orders σ2 and σ4, respectively.

The approximate density functions of the Stein-like shrinkage estimators are derived for

the statistics

êc,k =
1

σ
(β̂c,k − β̇), for k = 1, λ, (4.1)

as σ goes to zero.

Theorem 1 Under assumptions 1–3, the asymptotic expansions of the density functions of

êc,k for k = 1, λ, as σ goes to zero are

fc,1(ξ) = f1(ξ) + ϕQ(ξ)σ
2 τ

T −N

α1δ
′ξ +

1

2

[
ξ′C2ξ − tr(C2Q)

](
τα2 − 2α1

)+O(σ3),

(4.2)

fc,λ(ξ) = fλ(ξ) + ϕQ(ξ)σ
2 τ

T −N

α1δ
′ξ +

1

2

[
ξ′C2ξ − tr(C2Q)

](
τα3 − 2α1

)+O(σ3),

(4.3)

where ξ is an N × 1 vector, and f1(·) and fλ(·) are the asymptotic expansions of the density

functions of the 2SLS estimator and the LIML estimator, respectively. Also,

α1 =
(T −K)(T −N)

N
, α2 =

(T −K)(T −N − 2)

N(N − 2)
, α3 = α2 + c, and c ≤ 0.

Proof: Appendix B, (see page 37).

The expressions for f1(·) and fλ(·) are given in Lemma B7 in Appendix B. In the next

theorem, the first and the second moments of the Stein-like shrinkage estimators based on
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the approximate expansions of their distributions are given.

Theorem 2 Under assumptions 1–3, the asymptotic bias of the Stein-like shrinkage

estimator β̂c,k for k = 1, λ, as σ goes to zero is

ABias(β̂c,k) = E
( 1
σ
(β̂c,k − β̇)

)
= 0 +O(σ2), (4.4)

and the asymptotic MSE matrices of the Stein-like shrinkage estimators are

AMSE(β̂c,1) = E
( 1

σ2
(β̂c,1 − β̇)(β̂c,1 − β̇)′

)
= AMSE(β̂(1)) +

τ

T −N
σ2
[
τα2 − 2α1

]
QC2Q+O(σ3),

(4.5)

AMSE(β̂c,λ) = E
( 1

σ2
(β̂c,λ − β̇)(β̂c,λ − β̇)′

)
≤ AMSE(β̂(λ)) +

τ

T −N
σ2
[
τα2 − 2α1

]
QC2Q+O(σ3),

(4.6)

where from Lemma B7 (equation (B.6)), we have

AMSE(β̂(1)) = Q+ σ2 tr(QC2)Q+ σ2QC2Q
(
2− L1

)
+O(σ3), (4.7)

AMSE(β̂(λ)) = Q+ σ2 tr(QC2)Q+ σ2QC2Q
(L1 + 2)(T −N − 2)

T −K − 2
+O(σ3). (4.8)

Proof: Appendix B, (see page 40).

Corollary 2.1 Under assumptions 1–3, we have

AMSE(β̂c,1)− AMSE(β̂(1)) =
τ

T −N
σ2QC2Q

[
τα2 − 2α1

]
+O(σ3), (4.9)

AMSE(β̂c,λ)− AMSE(β̂(λ)) ≤ τ

T −N
σ2QC2Q

[
τα2 − 2α1

]
+O(σ3), (4.10)

where the right-hand side of the above equations are negative when T −N > 2 and

0 < τ <
2(T −N)(N − 2)

T −N − 2
.

Therefore, The Stein-like shrinkage estimators dominate the 2SLS, and LIML estimators in

terms of their MSEs when the number of included endogenous variables is more than 2. The
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optimal value of the shrinkage parameter that minimizes the MSE of the Stein-like estimators

is

τopt =
(T −N)(N − 2)

T −N − 2
.

As a comparison of the probability of concentration around the true β̇, we compute

P (||Q−1/2êc,k|| < z)− P (||Q−1/2êk|| < z) =

∫
· · ·

∫
||Q−1/2ξ||<z

(fc,k(ξ)− fk(ξ)) dξ, (4.11)

where ||ξ|| = max{|ξ1|, . . . , |ξN |}. Using Lemma B7 and Theorem 1 the next theorem follows.

Theorem 3 Under assumptions 1–3,

P (||Q−1/2êc,1|| < z)− P (||Q−1/2ê1|| < z) = σ2[Φ(z)− Φ(−z)]Nzϕ̃(z) tr(QC2)d+O(σ3),

(4.12)

P (||Q−1/2êc,λ|| < z)− P (||Q−1/2êλ|| < z) ≥ σ2[Φ(z)− Φ(−z)]Nzϕ̃(z) tr(QC2)d+O(σ3),

(4.13)

where ϕ̃(z) = ϕ(z)/[Φ(z) − Φ(−z)], d = τ(2α1 − τα2)/(T − N), and Φ(·) and ϕ(·) are,

respectively, the standard normal distribution and density functions.

Proof: Appendix B, (see page 41).

Corollary 3.1 By Theorem 3, provided that 0 < τ < 2(T − N)(N − 2)/(T − N − 2), and

T −N > 2, we obtain

P (||Q−1/2êc,k|| < z) ≥ P (||Q−1/2êk|| < z) +O(σ3), k = 1, λ, (4.14)

and the optimal value of τ that maximizes the concentration probability of the Stein-like

shrinkage estimator is

τopt =
(T −N)(N − 2)

T −N − 2
.
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Table 1: Relative Median Squared Errors when (T,N) = (100, 1)

K = 6 K = 18

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.130 0.674 0.136 0.054 0.665 0.057 2.365 0.260 0.747 0.288 0.036 0.668 0.044 6.403

0.1 0.294 0.774 0.324 0.146 0.663 0.163 1.720 0.490 0.851 0.525 0.069 0.679 0.081 5.670

0.5 4.423 1.112 4.066 3.214 1.137 3.026 1.407 2.126 1.127 1.973 1.952 1.010 1.855 0.975

0.9 7.431 1.043 1.061 16.935 0.986 1.066 0.415 2.143 1.018 1.002 12.190 1.004 1.175 0.173

0.99 7.478 1.019 1.016 21.339 0.982 1.000 0.338 2.168 1.009 1.000 20.123 0.942 1.006 0.101

0.5

0.01 0.445 0.854 0.485 0.396 0.833 0.433 1.096 0.509 0.890 0.568 0.377 0.865 0.430 1.311

0.1 0.855 0.995 0.980 0.751 0.957 0.911 1.096 0.804 0.950 0.895 0.573 0.883 0.683 1.304

0.5 12.751 1.024 1.015 12.930 1.005 1.035 0.968 9.123 1.054 1.069 12.816 0.992 1.162 0.670

0.9 43.458 1.022 1.000 42.806 0.976 1.000 0.970 11.000 1.020 1.000 45.395 1.011 1.000 0.240

0.99 46.472 1.028 1.000 54.679 1.022 1.000 0.845 10.691 1.013 1.000 52.755 1.013 1.000 0.203

0.9

0.01 0.882 0.977 0.927 0.864 0.983 0.882 1.026 0.872 0.982 0.903 0.787 0.908 0.787 1.024

0.1 1.015 1.005 1.040 1.028 1.031 1.014 1.013 1.069 1.033 1.081 1.087 1.045 1.099 0.995

0.5 5.727 1.006 1.002 5.817 0.978 1.009 0.957 4.747 1.006 1.000 5.193 1.040 1.250 0.944

0.9 16.956 1.007 1.000 16.511 1.012 1.000 1.032 14.032 0.995 1.000 17.258 1.021 1.000 0.834

0.99 19.944 0.998 1.000 19.767 0.998 1.000 1.009 12.743 1.008 1.000 17.187 1.007 1.000 0.741

Note: This table reports the relative median squared errors of the OLS (β̂(0)), the 2SLS (β̂(1)), the LIML (β̂(λ)) estimators,
the Stein-like shrinkage estimator using the OLS and the 2SLS estimators (β̂c,1), the Stein-like shrinkage estimator using the

OLS and the LIML estimators (β̂c,λ), and two pre-test estimators (β̂pre), i.e.,
β̂(0)

β̂(1)
indicates the median squared errors of the OLS

estimator divided by the median squared errors of the 2SLS estimator. The pre-test estimators use the Wu-Hausman test static
under 5% critical value to choose between the OLS and the 2SLS/LIML estimators.
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Table 2: Relative Median Squared Errors when (T,N) = (100, 3)

K = 6 K = 18

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.058 0.164 0.058 0.015 0.034 0.015 0.780 0.186 0.435 0.188 0.008 0.052 0.008 2.862

0.1 0.075 0.169 0.075 0.016 0.031 0.016 0.832 0.253 0.494 0.254 0.012 0.056 0.012 2.401

0.5 0.562 0.570 0.562 0.156 0.165 0.156 1.048 0.994 0.954 0.994 0.107 0.134 0.107 1.306

0.9 1.685 1.078 1.680 0.540 0.478 0.540 1.384 1.258 1.067 1.251 0.375 0.355 0.374 1.117

0.99 2.198 1.124 2.189 0.874 0.678 0.873 1.518 1.330 1.038 1.160 0.475 0.454 0.475 1.225

0.5

0.01 0.262 0.501 0.267 0.207 0.457 0.211 1.155 0.314 0.588 0.327 0.119 0.481 0.124 2.146

0.1 0.320 0.540 0.323 0.257 0.498 0.260 1.147 0.441 0.672 0.463 0.177 0.467 0.187 1.733

0.5 2.155 0.939 1.896 1.779 0.880 1.641 1.135 2.124 1.085 1.849 1.182 0.800 1.149 1.324

0.9 7.078 1.001 1.000 6.017 0.915 1.000 1.075 4.064 1.100 1.000 4.302 0.894 1.001 0.768

0.99 8.320 1.001 1.000 6.960 0.909 1.000 1.086 4.384 1.077 1.000 5.282 0.901 1.000 0.694

0.9

0.01 0.801 0.890 0.815 0.788 0.880 0.804 1.005 0.805 0.909 0.848 0.714 0.836 0.723 1.036

0.1 0.796 0.898 0.830 0.779 0.878 0.808 0.998 0.889 0.913 0.894 0.781 0.832 0.784 1.038

0.5 2.391 0.976 1.024 2.349 0.981 1.041 1.023 2.566 1.032 1.053 2.352 0.974 1.212 1.029

0.9 6.307 0.981 1.000 6.271 1.002 1.000 1.028 6.104 1.020 1.000 6.721 0.975 1.000 0.868

0.99 8.689 0.996 1.000 8.456 0.973 1.000 1.004 6.981 1.035 1.000 7.388 0.963 1.000 0.880

See the note to Table 1
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Table 3: Relative Median Squared Errors when (T,N) = (100, 6)

K = 6 K = 18

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.007 0.007 0.007 0.007 0.007 0.007 1.000 0.138 0.168 0.138 0.006 0.007 0.006 0.882

0.1 0.007 0.007 0.007 0.007 0.007 0.007 1.000 0.175 0.203 0.175 0.007 0.008 0.007 0.926

0.5 0.039 0.039 0.039 0.039 0.039 0.039 1.000 0.535 0.539 0.535 0.037 0.037 0.037 0.997

0.9 0.183 0.183 0.183 0.183 0.183 0.183 1.000 1.036 1.016 1.035 0.200 0.199 0.200 1.017

0.99 0.271 0.270 0.271 0.271 0.270 0.271 1.000 1.126 1.068 1.126 0.263 0.263 0.263 1.053

0.5

0.01 0.089 0.101 0.089 0.089 0.101 0.089 1.000 0.229 0.283 0.229 0.040 0.050 0.040 1.002

0.1 0.104 0.112 0.104 0.104 0.112 0.104 1.000 0.260 0.320 0.261 0.042 0.052 0.042 1.004

0.5 0.446 0.387 0.445 0.446 0.387 0.445 1.000 0.931 0.811 0.933 0.177 0.168 0.177 1.089

0.9 1.293 0.689 1.278 1.293 0.689 1.278 1.000 2.073 1.232 1.843 0.536 0.450 0.534 1.414

0.99 1.534 0.689 1.513 1.534 0.689 1.513 1.000 2.341 1.204 1.077 0.678 0.531 0.676 1.524

0.9

0.01 0.583 0.647 0.592 0.583 0.647 0.592 1.000 0.672 0.713 0.683 0.546 0.586 0.549 1.010

0.1 0.594 0.660 0.624 0.594 0.660 0.624 1.000 0.711 0.757 0.731 0.580 0.632 0.591 1.022

0.5 1.575 0.887 1.085 1.575 0.887 1.085 1.000 1.766 1.014 1.211 1.420 0.830 1.227 1.019

0.9 3.680 0.907 1.000 3.680 0.907 1.000 1.000 3.815 1.060 1.000 3.313 0.902 1.000 0.980

0.99 4.326 0.910 1.000 4.326 0.910 1.000 1.000 4.473 1.037 1.000 3.911 0.897 1.000 0.989

See the note to Table 1.
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Table 4: Relative Median Squared Errors when (T,N) = (1000, 1)

K = 6 K = 30

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.109 0.640 0.120 0.099 0.635 0.109 1.094 0.144 0.589 0.157 0.092 0.637 0.106 1.699

0.1 2.029 1.098 2.211 1.880 1.076 2.075 1.058 2.340 1.185 2.340 1.412 1.040 1.625 1.454

0.5 45.105 1.050 1.000 42.405 0.962 1.000 0.974 19.801 1.040 1.000 36.550 1.036 1.000 0.539

0.9 134.530 1.001 1.000 156.554 0.996 1.000 0.855 19.361 1.009 1.000 166.104 0.998 1.000 0.115

0.99 164.282 1.006 1.000 181.845 0.997 1.000 0.896 19.545 1.008 1.000 167.930 0.998 1.000 0.115

0.5

0.01 0.573 0.905 0.623 0.570 0.908 0.620 1.008 0.606 0.993 0.672 0.568 0.951 0.637 1.021

0.1 4.887 1.037 1.949 4.832 1.004 1.921 0.980 6.630 1.071 2.356 6.428 1.036 2.414 0.998

0.5 150.224 1.014 1.000 148.486 0.994 1.000 0.992 112.791 1.002 1.000 129.661 0.995 1.000 0.863

0.9 457.784 1.002 1.000 437.146 1.012 1.000 1.058 254.561 1.008 1.000 432.566 1.006 1.000 0.587

0.99 573.884 1.000 1.000 611.730 0.998 1.000 0.937 264.749 1.005 1.000 589.502 1.000 1.000 0.447

0.9

0.01 0.959 0.975 0.953 0.962 0.978 0.944 1.000 0.814 0.976 0.851 0.817 0.984 0.833 1.003

0.1 2.181 0.982 1.078 2.170 0.986 1.067 1.009 2.544 0.991 1.102 2.478 0.994 1.146 1.029

0.5 56.156 0.997 1.000 57.149 1.005 1.000 0.991 52.774 1.008 1.000 50.630 0.997 1.000 1.031

0.9 145.938 1.003 1.000 151.439 1.004 1.000 0.965 148.529 1.000 1.000 151.989 1.000 1.000 0.977

0.99 199.297 1.001 1.000 201.305 1.004 1.000 0.993 176.518 1.000 1.000 203.479 1.003 1.000 0.870

See the note to Table 1.
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Table 5: Relative Median Squared Errors when (T,N) = (1000, 3)

K = 6 K = 30

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.010 0.037 0.325 0.037 0.030 0.356 0.031 1.319 0.061 0.341 0.063 0.018 0.516 0.019 5.236

0.100 0.168 0.397 0.173 0.136 0.399 0.140 1.243 0.303 0.491 0.305 0.087 0.526 0.093 3.727

0.500 3.817 1.015 2.032 3.219 0.931 2.035 1.087 3.109 1.175 2.632 1.871 0.890 1.629 1.259

0.900 12.871 0.995 1.000 11.252 0.979 1.000 1.126 4.401 1.061 1.000 7.177 0.935 1.000 0.540

0.990 15.196 1.000 1.000 12.799 0.930 1.000 1.104 4.575 1.037 1.000 8.282 0.947 1.000 0.505

0.5

0.010 0.263 0.570 0.270 0.260 0.565 0.267 1.002 0.265 0.524 0.275 0.223 0.508 0.234 1.150

0.100 1.033 0.863 1.145 1.017 0.855 1.128 1.006 1.049 0.877 1.143 0.890 0.818 1.016 1.100

0.500 20.138 0.983 1.000 19.731 0.984 1.000 1.021 18.582 1.052 1.000 18.887 0.970 1.000 0.907

0.900 61.323 0.985 1.000 61.401 1.000 1.000 1.014 45.435 1.030 1.000 61.375 0.990 1.000 0.712

0.990 74.706 0.999 1.000 72.588 0.979 1.000 1.009 52.269 1.035 1.000 73.052 0.993 1.000 0.686

0.9

0.01 0.767 0.898 0.799 0.764 0.895 0.790 1.001 0.732 0.846 0.760 0.721 0.836 0.734 1.004

0.1 1.423 0.966 1.122 1.417 0.963 1.120 1.002 1.428 0.953 1.156 1.428 0.967 1.216 1.015

0.5 19.660 1.011 1.000 19.791 1.006 1.000 0.989 19.662 1.002 1.000 19.361 1.000 1.000 1.013

0.9 66.489 0.999 1.000 66.406 0.995 1.000 0.997 62.998 1.008 1.000 64.453 0.997 1.000 0.967

0.99 79.751 1.002 1.000 77.864 0.989 1.000 1.010 74.223 1.006 1.000 81.686 1.010 1.000 0.912

See the note to Table 1.
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Table 6: Relative Median Squared Errors when (T,N) = (1000, 6)

K = 6 K = 30

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.013 0.019 0.013 0.013 0.019 0.013 1.000 0.038 0.079 0.039 0.004 0.012 0.004 1.495

0.1 0.037 0.043 0.037 0.037 0.043 0.037 1.000 0.109 0.159 0.110 0.010 0.020 0.010 1.351

0.5 0.620 0.503 0.620 0.620 0.503 0.620 1.000 1.264 1.079 1.263 0.185 0.180 0.186 1.139

0.9 2.220 0.733 2.163 2.220 0.733 2.163 1.000 2.287 1.174 1.005 0.700 0.482 0.693 1.341

0.99 2.595 0.725 1.440 2.595 0.725 1.440 1.000 2.434 1.111 1.000 0.771 0.478 0.768 1.358

0.5

0.01 0.133 0.223 0.136 0.133 0.223 0.136 1.000 0.156 0.247 0.159 0.118 0.237 0.121 1.270

0.1 0.356 0.422 0.375 0.356 0.422 0.375 1.000 0.391 0.453 0.420 0.291 0.386 0.324 1.143

0.5 5.596 0.917 1.000 5.596 0.917 1.000 1.000 5.980 1.089 1.000 4.859 0.905 1.000 1.023

0.9 18.385 0.954 1.000 18.385 0.954 1.000 1.000 16.255 1.104 1.000 16.442 0.964 1.000 0.863

0.99 21.966 0.964 1.000 21.966 0.964 1.000 1.000 18.463 1.095 1.000 18.681 0.960 1.000 0.866

0.9

0.01 0.600 0.666 0.626 0.600 0.666 0.626 1.000 0.606 0.682 0.631 0.586 0.659 0.608 0.999

0.1 1.071 0.869 1.066 1.071 0.869 1.066 1.000 0.981 0.840 1.023 0.948 0.820 1.012 1.010

0.5 11.229 0.987 1.000 11.229 0.987 1.000 1.000 11.511 0.987 1.000 11.159 0.983 1.000 1.027

0.9 36.470 1.001 1.000 36.470 1.001 1.000 1.000 34.401 1.009 1.000 34.509 0.995 1.000 0.983

0.99 44.113 0.986 1.000 44.113 0.986 1.000 1.000 44.824 1.016 1.000 45.184 0.990 1.000 0.967

See the note to Table 1.
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5 Monte-Carlo Simulation

Our simulation experiment uses a design similar to that used by Hansen (2017), Kuersteiner

and Okui (2010), Donald et al. (2009), and Donald and Newey (2001), where T ∈

{100, 1000}, N = {1, 3, 6}, and K = {6, 18, 30}. The observations are generated by the

process

y1 = Y2β + u1,

Y2 = XΠ2 + V2,

where u1 has a standard normal distribution, V2 and X have a multivariate normal

distribution with mean zero, and variance-covariance matrix IN and IK , respectively. We

set the correlation between u1 and the rows of V2 equal to ρ/
√
N, where ρ takes values

on {0.01, 0.1, 0.5, 0.9, 0.99}. We set β to 0.1ιN , where ιq is a q-dimensional vector of unity.

Π2 = c(IN ⊗ ιK/N), where ⊗ denotes the Kronecker product, and c =
√

R2/K(1−R2),

hence R2 is the reduced form population R2 for each endogenous variable. This is important

because R2 measures the strength of the instruments. We consider three cases for the reduced

form population R2, which are {0.1, 0.5, 0.9}. The number of monte carlo simulations for each

design is set to 1, 000. We set the value of τ = τopt when N = {3, 6} and set τ = 1/8 when

N = 1.

The simulation results are given in Table 1 – Table 6. We also consider the case where

the error terms are generated from normalized chi-squared distribution with two degrees

of freedom, and report the results in Table C.1– Table C.6 in Appendix C. Because of the

concerns about the existence of moments of the estimators, we report the relative MEdian

Squared Errors (MESE) of the OLS estimator, the 2SLS/LIML estimator, the Stein-like

shrinkage estimator associated with the first two estimators, and a pre-test estimator. The

pre-test estimator uses the Wu-Hausman test static under 5% critical value to choose between

the OLS estimator and the 2SLS/LIML estimator. The relative MESE is calculated by

dividing the MESE of an estimator by the MESE of the 2SLS/LIML estimator, hence the

relative MESE of the 2SLS/LIML estimator is equal to one. In each table, we report the

relative MESE of six estimators for different degrees of endogeneity (ρ), number of excluded

exogenous variables (K), and R2, where the first three columns report the relative MESE of
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the OLS estimator, the Stein-like shrinkage estimator using the OLS and the 2SLS estimators,

and the pre-test estimator. The second three columns report the relative MESE of the OLS

estimator, the Stein-like shrinkage estimator using the OLS and the LIML estimators, and

the pre-test estimator. The last column reports the relative MESE of the Stein-like shrinkage

estimator using the OLS and the LIML estimators to the Stein-like shrinkage estimator using

the OLS and the 2SLS estimators.

We note that when the sample size, T , is short and R2 is relatively small (weak

instruments) the OLS estimator performs better than the 2SLS/LIML estimator up to mild

degrees of endogeneity. This is because the 2SLS/LIML estimator has high dispersion,

whereas the OLS estimator has smaller MSE. In this case, the Stein-like shrinkage estimator

tends to gain from the efficiency of the OLS estimator by assigning a larger weight to this

estimator, and prevails. However, when R2 is relatively large, the 2SLS/LIML estimator

performs better that the OLS estimator except for very small sizes of endogeneity. In this

case, the Stein-like shrinkage estimator assigns a larger weight to the 2SLS/LIML estimator

and dominates the OLS estimator. Moreover, when the number of endogenous variables

increases, the OLS estimator gains from a higher efficiency and its MESE remains less

than that of the 2SLS/LIML estimator even when the degree of endogeneity is moderate.

Similarly, the Stein-like shrinkage estimator gains from the efficiency of the OLS estimator.

We also report the results of the pre-test estimator which tests the null of endogeneity and

assigns weight zero or one to the OLS or the 2SLS/LIML estimator based on the test results

under 5% critical value. The relative MESE of the pre-test estimator is small when the

degree of endogeneity is small, but is high for moderate degrees of endogeneity.

When the model is just-identified the 2SLS and the LIML estimators are identical. In

this case, the relative MESEs of the Stein-like shrinkage estimators are smaller than those of

the OLS estimators except for very small values of endogeneity and R2. Further, the relative

MESEs of the Stein-like shrinkage estimators for the whole parameter space are below that

of the 2SLS/LIML estimator. When K > N , the 2SLS estimator performs better than the

LIML estimator when R2 is small. But, the LIML estimator performs better than the 2SLS

estimator for moderate to large values of R2 and ρ. In addition, the Stein-like shrinkage
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estimator that uses the OLS and the LIML estimators dominates the LIML estimator for

all values of ρ and remains one of the best choices. The Stein-like shrinkage estimator that

uses the OLS and the 2SLS estimators performs better than the 2SLS estimator when ρ is

small to moderate.

In general, the monte carlo results support our theoretical findings of the previous

sections. We find that the Stein-like shrinkage estimators perform robustly well in models

with various degrees of endogeneity and instruments strength. When there is a strong degree

of endogeneity or the sample size is large, the Stein-like shrinkage estimators prevail. When

there is a relatively weak degree of endogeneity or weak instruments, the Stein-like shrinkage

estimators tend to gain more from the efficiency of the OLS estimator by assigning a larger

weight to this estimator, and thus still remain among the best choices.

6 Application To The Returns To Schooling

In this section, we present an empirical application that highlights the utility of the Stein-like

shrinkage estimation in estimating returns to education.

In a seminal paper, Angrist and Krueger (1991) use quarters of birth as instruments to

estimate the return to education, where they find that the 2SLS estimates of the return to

education is different but close to the OLS estimates, suggesting the evidence of small bias

in the OLS estimates of the return to education. The sample is drawn from the 1980 U.S.

Census that consists of 329,509 men born between 1930-1939. Angrist and Krueger (1991)

estimate an equation where the dependent variable is the log of the weekly wage, and the

explanatory variable of interest is the number of years of schooling. The particular version

of the model that we consider is the one with an intercept, 9 year-of-birth dummies, and 50

state-of-birth dummies included as explanatory variables. For this model, the OLS estimate

of the coefficient on schooling in Angrist and Krueger (1991) is 0.0674 with a standard error

of 0.0003, and the 2SLS estimate is 0.0928 with a standard error of 0.0093. As there is an

evident sign of trade-off between the bias and variance efficiency of the OLS and the 2SLS

estimators with a large number of instruments, we apply the Stein-like shrinkage estimation
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method which produces estimators with smaller MSE by gaining from the efficiency of the

OLS estimator and the consistency of the 2SLS/LIML estimator.

Similar to Angrist and Krueger (1991), we consider a set of 180 excluded instruments

which are: (i) 3 quarter-of-birth dummies; (ii) 27 dummy variables obtained by interacting

quarter-of-birth with the 9 year-of-birth dummies; (iii) 150 dummy variables obtained by

interacting the 3 quarter-of-birth with the 50 state-of-birth dummy variables. In addition,

we consider 60 included exogenous variables that include the 9 year-of-birth dummies, the 50

state-of-birth dummies, and an intercept. Hence, the complete set of instruments contains

240 variables. Donald and Newey (2001) consider the same application to find the best

subset of instruments for the 2SLS and the LIML estimators that can minimize the MSE of

these two estimators. They find that the best subset of instruments for the 2SLS estimator

includes only the 3 quarter-of-birth dummies, and for the LIML estimator includes the largest

set of instruments. Therefore, we consider both cases here.

Table 7 contains the estimates of the return to education for different number of

instruments for each of the 5 estimators: the OLS, the 2SLS, the LIML, and the two Stein-like

shrinkage estimators. As expected the estimated coefficient of Years of education for OLS is

smaller than the other estimates, the 2SLS estimates are smaller than the LIML estimates,

and the Stein-like shrinkage estimations are smaller than the 2SLS/LIML estimates. The

standard errors of the Stein-like shrinkage estimators are larger than the OLS estimator but

smaller than the 2SLS/LIML estimator. The standard errors of the Stein-like shrinkage

estimators are calculated using the bootstrap method. When the number of excluded

instruments is three, the standard error of the Stein-like shrinkage estimator using the OLS

estimator and the 2SLS estimator is around 14% smaller than the 2SLS estimator, and the

standard error of the Stein-like shrinkage estimator using the OLS estimator and the LIML

estimator is around 13% smaller than the LIML estimator. When the number of excluded

instruments is 180, the standard error of the Stein-like shrinkage estimator using the OLS

estimator and the 2SLS estimator is around 27% smaller, while the standard error of the

Stein-like shrinkage estimator using the OLS estimator and the LIML estimator is around

6% smaller.
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Table 7: Estimates of the returns to education for men born 1930-1939: 1980 Census

#IV Independent variable β̂(0) β̂(1) β̂(λ) β̂c,1 β̂c,λ

180

Years of eduction 0.0673 0.0928 0.1064 0.0920 0.1055

(0.0003) (0.0093) (0.0116) (0.0068) (0.0109)

9 Year-of-birth dummies Yes Yes Yes Yes Yes

50 State-of-birth dummies Yes Yes Yes Yes Yes

3

Years of eduction 0.0673 0.1077 0.1089 0.1053 0.1065

(0.0003) (0.0195) (0.0198) (0.0167) (0.0173)

9 Year-of-birth dummies Yes Yes Yes Yes Yes

50 State-of-birth dummies Yes Yes Yes Yes Yes

Note: This table reports the estimated coefficient on the education variable using OLS (β̂(0)), 2SLS
(β̂(1)), LIML (β̂(λ)), the Stein-like shrinkage estimation using the OLS and the 2SLS estimators (β̂c,1),

and the Stein-like shrinkage estimation using the OLS and the LIML estimators (β̂c,λ). In each model an
intercept, 9 dummy variables for the year of birth, and 50 dummy variables indicating the state of birth
are also included. The top panel is the results when the excluded instrumental variables (IV) are the
full 180 instruments. The bottom panel shows the results when the excluded instruments are only the 3
quarter-of-birth dummies. Standard errors are in parentheses below the corresponding point estimates.
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7 Conclusion

In this paper, we introduce two Stein-like shrinkage estimators for estimating the structural

parameters of a Simultaneous Equations Model. The estimators are weighed averages

of the 2SLS/LIML and the OLS estimators where the weights are inversely related to a

Wu-Hausman test statistic. The approximate distribution, bias, and MSE matrix of the

Stein-like shrinkage estimators using Small-Disturbance approximations of Kadane (1971) are

derived. The proposed method has several advantages relative to the existing methods. First,

it allows us to study the performance of the weighted averages of any k-class estimators with

the OLS estimator. This is important because under weak instruments the 2SLS estimator

is biased towards the OLS estimator, and an alternative consistent estimator is required

to allow balancing between the bias and variance efficiency of the OLS estimator. Second,

the dominance and optimality of the Stein-like shrinkage estimators proposed here are not

limited to a specific MSE and hold for any weighted quadratic loss function where the weight

is positive definite and symmetric. Lastly, the framework considered here allows for studying

the higher order terms, which is critical here because k-class estimators tend to have higher

order bias.
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A Appendix A

In this section, we analyze the proposed Stein-like shrinkage estimators without Assumption

3. We start by expanding β̂(k). Employing equation (2.5) in equation (3.1), we have

β̂(k)− β =
[(

W + σV2

)′
Hk

(
W + σV2

)]−1(
W + σV2

)′
Hkσu1

=
(
W ′HkW + σW ′HkV2 + σV ′

2HkW + σ2V ′
2HkV2

)−1(
σW ′Hku1 + σ2V ′

2Hku1

)
=

(
IN + σQW ′HkV2 + σQV ′

2HkW + σ2QV ′
2HkV2

)−1

Q
(
σW ′Hku1 + σ2V ′

2Hku1

)
=

(
IN + σQS + σ2QV ′

2HkV2

)−1

Q
(
σW ′u1 + σ2V ′

2Hku1

)
,

(A.1)

where QN×N = (W ′W )−1, S = V ′
2W +W ′V2, and the use has been made of W ′Hk = W ′.

Using the standard geometric expansion for the inverse of a matrix (i.e., (I + A)−1 =

I − A+ A2 − A3 + . . . ), the above equation can be written as

β̂(k)− β = σQW ′u1 + σ2Q
(
V ′
2Hku1 − SQW ′u1

)
+ σ3Q

(
SQSQW ′u1 − V ′

2HkV2QW ′u1 − SQV ′
2Hku1

)
+Op(σ

4).
(A.2)

Now, we expand Rk defined in equation (3.4). Using equation (A.2), we have

σ̂11,k = û1(k)
′û1(k)/(T −N)

=
(
y1 − Y2β̂(k)

)′(
y1 − Y2β̂(k)

)
/(T −N)

=
(
σu1 − Y2(β̂(k)− β)

)(
σu1 − Y2(β̂(k)− β)

)
/(T −N)

=
1

T −N

[
σMWu1 − σ2WQV ′

2Hku1 + σ2WQSQW ′u1 − σ2V2QW ′u1 +Op(σ
3)
]′

×
[
σMWu1 − σ2WQV ′

2Hku1 + σ2WQSQW ′u1 − σ2V2QW ′u1 +Op(σ
3)
]

=
1

T −N

[
σ2u′

1MWu1 − 2σ3u′
1MWV2QW ′u1 +Op(σ

4)
]
,

(A.3)
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where MW = IT −W (W ′W )−1W ′. Also, we have

(Y ′
2HkY2)

−1 =
(
IN − σQS − σ2QV ′

2HkV2 + σ2QSQS + σ3QSQV ′
2HkV2 + σ3QV ′

2HkV2QS
)
Q+Op(σ

4),

(Y ′
2Y2)

−1 =
(
IN − σQS − σ2QV ′

2V2 + σ2QSQS + σ3QSQV ′
2V2 + σ3QV ′

2V2QS
)
Q+Op(σ

4).

Hence the difference of the expressions above may be written as

(Y ′
2HkY2)

−1− (Y ′
2Y2)

−1 = σ2k
[
QV ′

2MXV2Q−σQSQV ′
2MXV2Q−σQV ′

2MXV2QSQ
]
+Op(σ

4).

(A.4)

Further, by using equation (A.4) in equation (3.4),

Rk = σ̂−1
11,k

(
(Y ′

2HY2)
−1 − (Y ′

2Y2)
−1
)−1

=
σ̂−1
11,k

kσ2
Q−1

[
IN − σ(V ′

2MXV2)
−1SQV ′

2MXV2 − σQS +Op(σ
2)
]−1

(V ′
2MXV2)

−1Q−1

=
σ̂−1
11,k

kσ2
Q−1

[
(V ′

2MXV2)
−1 + σ(V ′

2MXV2)
−1SQ+ σQS(V ′

2MXV2)
−1 +Op(σ

2)
]
Q−1.

(A.5)

In addition from equation (A.2), we have

β̂(0)− β̂(k) = kσ2
[
QV ′

2MXu1 − σQV ′
2MXV2QW ′u1 − σQSQV ′

2MXu1

]
+Op(σ

4). (A.6)

Employing equations (A.5) and (A.6) in equation (3.3),

Fk,WH =
kσ2

σ̂11,k

[
u′
1MXV2(V

′
2MXV2)

−1V ′
2MXu1 − 2σu′

1MXV2QW ′u1 +Op(σ
2)
]
. (A.7)
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Therefore, we have the following expression

1

Fk,WH

=
σ̂11,k

kσ2u′
1MXV2(V ′

2MXV2)−1V ′
2MXu1

(
1 +

2σu′
1MXV2QW ′u1

u′
1MXV2(V ′

2MXV2)−1V ′
2MXu1

+Op(σ
2)
)

=
1

k(T −N)

1

u′
1MXV2(V ′

2MXV2)−1V ′
2MXu1

(
u′
1MWu1 − 2σu′

1MWV2QW ′u1

+
2σu′

1MWu1

u′
1MXV2(V ′

2MXV2)−1V ′
2MXu1

u′
1MXV2QW ′u1 +Op(σ

2)
)
.

(A.8)

Using equations (A.2), and (A.8) in equation (3.2), we can write the Stein-like shrinkage

estimators as

β̂c,k − β = (β̂(k)− β) +
τ

Fk,WH

(
(β̂(0)− β)− (β̂(k)− β)

)
= σQW ′u1 + σ2Q

(
V ′
2Hu1 − SQW ′u1

)
+ σ3Q

(
SQSQW ′u1 − V ′

2HV2QW ′u1 − SQV ′
2Hu1

)
+

τσ2

(T −N)

u′
1MWu1

u′
1MV2(V ′

2MXV2)−1V ′
2MXu1

[
QV ′

2MXu1 − σQV ′
2MXV2QW ′u1 − σQSQV ′

2MXu1

+
2σ

u′
1MXV2(V ′

2MXV2)−1V ′
2MXu1

u′
1MXV2QW ′u1QV ′

2MXu1

]
− 2τσ3

(T −N)

u′
1MWV2QW ′u1

u′
1MXV2(V ′

2MXV2)−1V ′
2MXu1

QV ′
2MXu1 +Op(σ

4), for k = 1, λ.

(A.9)

The above equation has the product of normally distributed and correlated terms in

the denominator, which make the moments calculations complicated. However, under the

local endogeneity assumption, Assumption 3, the random term in the denominator will be

simplified and makes the derivation of the bias and MSE possible.

Under Assumption 3, (A.8) is equal to the following expression

1

Fk,WH

=
1

k(T −N)

u′
1MWu1

u′
1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

[
1 + 2σu′

1MXΨ(Ψ′MXΨ)−1δ

+
2σ

u′
1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

(
u′
1MXΨQW ′u1 − u′

1MXΨ(Ψ′MXΨ)−1δu′
1MXu1

)]
− 2σ

k(T −N)

u′
1MWΨQW ′u1

u′
1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

+O(σ2). (A.10)
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Using equation (A.10) in the Stein-like shrinkage estimator expression (equation (3.2)), we

have

β̂c,k − β = (β̂(k)− β) +
τ

Fk,WH

(
(β̂(0)− β)− (β̂(k)− β)

)
(A.11)

= σQW ′u1 + σ2Q(V ′
2Hu1 − SQW ′u1) + σ3Q(SQSQW ′u1 − V ′

2HV2QW ′u1 − SQV ′
2Hu1)

+
τσ2

T −N

u′
1MWu1

u′
1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

(1 + 2σu′
1MXΨ(Ψ′MXΨ)−1δ

)
QV ′

2MXu1

− σQV ′
2MXV2QW ′u1 − σQSQV ′

2MXu1

+
2σ

u′
1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

(
u′
1MXΨQW ′u1 − u′

1MXΨ(Ψ′MXΨ)−1δu′
1MXu1

)
QV ′

2MXu1

− 2σ3τ

T −N

u′
1MWV2QW ′u1

u′
1MXΨ(Ψ′MXΨ)−1Ψ′MXu1

QV ′
2MXu1 +O(σ4). (A.12)

Since the random term in the denominator includes Ψ and u1 which are independent by

construction, we can derive the bias and MSE of the Stein-like shrinkage estimators.

B Appendix B

Lemma B1 Let A be a square constant matrix, and Ψ is T × N where its rows are

independently normally distributes as N(0, C2). Then,

(a) E(Ψ′AΨ) = tr(A)C2

(b) E(ΨAΨ′) = tr(C2B)IT

(c) E(ΨAΨ) = A′C2

Proof: See Kadane (1971), Lemmas B1-B3.

Lemma B2 Let A and B be T × T symmetric, constant matrices, and the T × 1 vector

u ∼ N(0, IT ). Then

E(uu′Auu′) = tr(A)IT + 2A,
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and

E(uu′Auu′Buu′) =
[
tr(A) tr(B) + 2 tr(AB)

]
IT + 2 tr(A)B + 2 tr(B)A+ 4AB + 4BA,

Proof: See Ullah (2004).

Lemma B3 Let χ2
λ denote a non-central chi-square random variable with noncentrally

parameter λ and α degree of freedom. Also let α denote a positive integer such that α > 2p.

Then

E[(χ2
α(λ))

−p] = 2−pe−λΓ(
α
2
− p)

Γ(α
2
)

1F1

(α
2
− p;

α

2
;λ

)
Proof: See Ullah (1974).

Lemma B4 Let the J×1 vector ν is distributed normally with mean vector θ and covariance

matrix IJ , and A is any J × J idempotent matrix. Also assume ϕ(·) is a Borel measurable

function. Then

E
[
ϕ(ν ′Aν)νν ′

]
= E

[
ϕ(χ2

r+2(θ
′Aθ/2))

]
A+ E

[
ϕ(χ2

r(θ
′Aθ/2))

](
IJ − A

)
+ E

[
ϕ(χ2

r+4(θ
′Aθ/2))

]
Aθθ′A+ E

[
ϕ(χ2

r(θ
′Aθ/2))

](
IJ − A

)
θθ′

(
IJ − A

)
+ E

[
ϕ(χ2

r+2(θ
′Aθ/2))

](
θθ′A+ Aθθ′ − 2Aθθ′A

)
,

where r = rank(A) = tr(A).

Proof: Let P be an orthogonal matrix such that

PAP ′ = D =


d1 0 . . . 0

0 d2
...

0 . . . 0 dJ

 =

Ir 0

0 0J−r

 ; di ∈ {0, 1}.
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Define the J×1 vector ω = (ω1, . . . , ωJ)
′ = Pν, which has aN(Pθ, IJ) distribution. Therefore

E
[
ϕ(ν ′Aν)νν ′

]
= E

[
ϕ(ω′Dω)P ′ωω′P

]
= P ′ E

[
ϕ(ω′Dω)ωω′

]
P.

We first determine the diagonal and off-diagonal elements of E[ϕ(ω′Dω)ωω′]. The diagonal

elements are of the form

E
[
ϕ
( J∑

j=1

djω
2
j

)
ω2
i

]
= E

E
[
ϕ
(
diω

2
i +

∑
j ̸=i

ω2
j

)
ω2
i |ω2

j , j ̸= i

]
= E

E
[
ϕ
(
diχ

2
3((P

′
iθ)

2/2) +
∑
j ̸=i

ω2
j

)
|ω2

j , j ̸= i

]
+ (P ′

iθ)
2 E

E
[
ϕ
(
diχ

2
5((P

′
iθ)

2/2) +
∑
j ̸=i

ω2
j

)
|ω2

j , j ̸= i

]
=

E
[
ϕ(χ2

r+2(θ
′Aθ/2)] + (P ′

iθ)
2 E[ϕ(χ2

r+4(θ
′Aθ/2)

]
, if di = 1

E
[
ϕ(χ2

r(θ
′Aθ/2)] + (P ′

iθ)
2 E[ϕ(χ2

r(θ
′Aθ/2)

]
, if di = 0

(B.1)

where the second equality holds by Lemma 1 of Appendix B.1 in Judge and Bock (1978).

Hence, the matrix form of the diagonal elements can be written as

DE
[
ϕ(χ2

r+2(θ
′Aθ/2))

]
+ E

[
ϕ(χ2

r+4(θ
′Aθ/2))

]
diag(DPθθ′P ′D)

+ (IJ −D)E
[
ϕ(χ2

r(θ
′Aθ/2))

]
+ E

[
ϕ(χ2

r(θ
′Aθ/2))

]
diag((IJ −D)Pθθ′P ′(IJ −D)).

The off-diagonal elements, for any i ̸= j, are

E
[
ϕ
( J∑

k=1

dkω
2
k

)
ωiωj

]
= E

ωj E
[
ϕ
(
diω

2
i +

∑
k ̸=i

dkω
2
k

)
ωi|ωk, k ̸= i

]
= E

ωjP
′
iθE

[
ϕ
(
diχ

2
3((P

′
iθ)

2/2) +
∑
k ̸=i

dkω
2
k

)
|ωk, k ̸= i

]
= E

ωjP
′
iθi E

[
ϕ
(
diχ

2
3((P

′
iθ)

2/2) + djω
2
j +

∑
k ̸=i&j

dkω
2
k

)
|χ2

3((P
′
iθ)

2/2), ωk, k ̸= i&j

]
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= P ′
iθP

′
jθE

[
ϕ
(
diχ

2
3((P

′
iθ)

2/2) + djχ
2
3((P

′
jθ)

2/2) +
∑
k ̸=i&j

dkω
2
k

)]

= P ′
iθP

′
jθ


E[ϕ(χr+4(θ

′Aθ/2))], if di = dj = 1

E[ϕ(χr+2(θ
′Aθ/2))], if di = 1 and dj = 0

E[ϕ(χr(θ
′Aθ/2))], if di = dj = 0

where the second equality holds by lemma 2 of Appendix B.1 in Judge and Bock (1978).

Hence, the off-diagonal terms can be written as

E
[
ϕ(χ2

r+4(θ
′Aθ/2))

]
(DPθθ′P ′D − diag(DPθθ′P ′D))

+ E
[
ϕ(χ2

r(θ
′Aθ/2))

]
((IJ −D)Pθθ′P ′(IJ −D)− diag((IJ −D)Pθθ′P ′(IJ −D)))

+ E
[
ϕ(χ2

r+2(θ
′Aθ/2))

]
(Pθθ′P ′ −DPθθ′P ′D − (IJ −D)Pθθ′P ′(IJ −D)).

Therefore the proof is complete by adding the diagonal and off-diagonal components.

Lemma B5 Let M1 and M2 be two T × T idempotent matrices where M1M2 = 0, and the

T × 1 vector u ∼ N(0, IT ). Then

E
(
u

u′M1u

(u′M2u)2
u′
)
=

tr(M1) + 2

(tr(M2)− 2)(tr(M2)− 4)
M1 +

tr(M1)

tr(M2)(tr(M2)− 2)
M2

+
tr(M1)

(tr(M2)− 2)(tr(M2)− 4)
, (IT −M1 −M2)

when tr(M2) > 4.

Proof: SinceM1 andM2 commute, let the orthogonal matrix Γ simultaneously diagonalize

them such that

Γ′M1Γ =


IN1 0 0

0 0 0

0 0 0

 = D1, and Γ′M2Γ =


0 0 0

0 IN2 0

0 0 0

 = D1,
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where N1 = tr(M1) and N2 = tr(M2). Further, define ν = Γu, and ν = (ν ′
1, ν

′
2, ν

′
3)

′ be

partitioned conformably with D1 and D2. Then

E
(
u

u′M1u

(u′M2u)2
u′
)
= ΓE

(
ν

ν ′
1ν1

(ν ′
2ν2)ν

)
Γ′

= Γ

[
N1 + 2

(N2 − 2)(N2 − 4)
D1 +

N1

N2(N2 − 2)
D2 +

N1

(N2 − 2)(N2 − 4)
(IT −D1 −D2)

]
Γ′,

where the use has been made of Lemma B2, Lemma B3, and Lemma B4.

Lemma B6 Under assumptions 1 and 2, the bias of the k−class estimators up to order σ2,

is

E(β̂(k)− β) = σ2Qq(Lk − 1), for fixed k, (B.2)

E(β̂(λ)− β) = −σ2Qq, for LIML estimator. (B.3)

The mean squared error matrix up to order σ4 is

E(β̂(k)− β)(β̂(k)− β)′ = σ2Q+ σ4
{
(3− 2Lk)tr(C1Q)Q+ tr(QC2)Q

+QC1Q((Lk − 2)2 + 2 + 2sk) +QC2Q(2 + sk − Lk)
}
,

(B.4)

E(β̂(λ)− β)(β̂(λ)− β)′ = σ2Q+ σ4
{
3tr(C1Q)Q+ tr(QC2)Q

+ 6QC1Q+QC2Q[
(L1 + 2)(T −K + L1 − 2)

T −K − 2
]
}
,

(B.5)

where Lk = (1− k)T + kK −N and sk = k(k − 1)(T −K).

Proof: See Kadane (1971).

Lemma B7 Under assumptions 1–3, the asymptotic expansions of the density functions of
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ê1 =
1
σ
(β̂1 − β), and êλ = 1

σ
(β̂λ − β) as σ goes to zero are given, respectively, by

f1(ξ) = ϕQ(ξ)

1 + σ2δ′ξ
(
N + 1 + L1 − ξ′Q−1ξ

)

+
σ2

2

[
L1 tr(C2Q)− ξ′C2ξ

(
N + 2 + L1 − ξ′Q−1ξ

)]+O(σ3),

(B.6)

fλ(ξ) = ϕQ(ξ)

1 + σ2δ′ξ
(
N + 1− ξ′Q−1ξ

)
+

σ2

2

[
− L1(T −N)

T −K − 2
tr(C2Q)

− ξ′C2ξ
(
N + 2− L1(T +N)

T −K − 2
− ξ′Q−1ξ

)]+O(σ3),

(B.7)

where ξ is an N × 1 vector and ϕQ(ξ) is the multivariate normal density function with mean

0 and covariance matrix Q.

Proof: See Anderson et al. (1986).

Proof of Theorem 1: From equation (A.12), we have

1

σ
(β̂c,k − β) = e

(0)
k + σ

(
e
(1)
k + e(1)c

)
+ σ2

(
e
(2)
k + e(2)c

)
+O(σ3), (B.8)

where e
(i)
k , i = 0, 1, 2 are terms with order σi of 1

σ
(β̂(k) − β) and e

(i)
c , i = 0, 1, 2 are the

other terms with order σi which are defined below

e
(0)
k = QW ′u1,

e
(1)
k = Q(ΨH

(0)
k u1 − SΨe

(0)
k ),

e
(2)
k = QΨ′H

(1)
k u1 +Qδu′

1H
(0)
k u1 −Q(δu′

1W +W ′u1δ
′)e

(0)
k

+QSΨQSΨe
(0)
k −QΨ′H

(0)
k Ψe

(0)
k −QSΨQΨ′H

(0)
k u1,

e(1)c =
τ

T −N

u′
1MWu1

u′
1PΨu1

QΨ′Mxu1,
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e(2)c =
τ

T −N

u′
1MWu1

u′
1PΨu1

[
Qδu′

1Mxu1 + 2u′
1MxΨ(Ψ′MxΨ)−1δQΨ′Mxu1 −QΨ′MxΨe

(0)
k

−QSΨQΨ′Mxu1 +
2

u′
1PΨu1

[
u′
1MxΨe

(0)
k QΨ′Mxu1 − u′

1MxΨ(Ψ′MxΨ)−1δu′
1Mxu1QΨ′Mxu1

]]
− τ

T −N

u′
1MWΨe

(0)
k

u′
1PΨu1

QΨ′MXu1,

where PΨ = MxΨ(Ψ′MxΨ)−1Ψ′Mx, and SΨ = Ψ′W +W ′Ψ. When k is fixed Hk = H
(0)
k = Px,

so H
(1)
k = 0. When k = λ, since λ is random, we have H

(0)
k = IT −λ0Mx, and H

(1)
k = −λ1Mx,

because by Kadane (1970)

λ =
u′
1MWu1

u′
1MXu1

+ 2σ
(u′

1WQV ′
2MXu1)(u

′
1MWu1)− (u′

1WQV ′
2MWu1)(u

′
1MXu1)

(u′
1MXu1)2

+Op(σ
2)

≡ λ0 + σλ1 +Op(σ
2),

where the definition of λi, i = 0, 1 should be apparent.

We derive the approximate expansions of the density function of êc,k by inverting its

characteristic function up to order σ2. Using (B.8) the characteristic function of êc,k can be

expressed as

Cc,k(θ) = Ck(θ) + σ E(iθ′ E(e(1)c |e(0)k ) exp(iθ′e
(0)
k )) + σ2 E(iθ′ E(e(2)c |e(0)k ) exp(iθ′e

(0)
k ))

+
σ2

2
E(i2θ′ E(e(1)c e(1)

′

c |e(0)k )θ exp(iθ′e
(0)
k )) +

σ2

2
E(i2θ′ E(e(1)c e

(1)′

k |e(0)k )θ exp(iθ′e
(0)
k ))

+
σ2

2
E(i2θ′ E(e(1)k e(1)

′

c |e(0)k )θ exp(iθ′e
(0)
k )) +O(σ3),

(B.9)

where θ is a N × 1 vector, Ck(θ) is the characteristic function of the k-class estimator, and

E(.|e(0)k ) denotes the conditional expectation given e
(0)
k . The conditional expectations given

the first-order term, e
(0)
k , are calculated below.

E(e(1)c |e(0)k ) = 0, (B.10)
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as it is the product of odd numbers of normal distribution.

E(e(2)c |e(0)k ) =
τ

T −N

[
Qδ

(T −N)(T −K)

N

]
−QC2e

(0)
k

[(T −N)(T −K)

N

]]
, (B.11)

E(e(1)c e(1)
′

c |e(0)k ) = =
τ 2

(T −N)

(T −K)(T −N − 2)

N(N − 2)
QC2Q, (B.12)

E(e(1)c e
(1)′

k |e(0)k ) =

0, if k = 1

τ
T−N

cQC2Q, if k = λ,

(B.13)

where c is a negative constant.

Now, we invert the terms of the characteristic function of the Stein-like shrinkage

estimator in (B.9) term by term. The inverse transformation of the first term in (B.9)

is

F−1[Ck(θ)] = fk(ξ), (B.14)

where fk(ξ) is the approximate distribution of the k-class estimators given in Lemma

B7. Note that, for any polynomial g(.), F−1[h(−iθ)E(g(x) exp(iθ′x))] = h( ∂
∂ξ
)g(ξ)ϕQ(ξ),

where h(·) is any polynomial, and ∂/∂ξ′ = (∂/∂ξ1, ..., ∂/∂ξN). Using this fact, the inverse

transformation of the rest of the terms in (B.9) are given below.

F−1[(iθ)′ E(E(e(1)c |e(0)k ) exp(iθ′e
(0)
k ))] = − ∂

∂ξ′
{E(e(1)c |e(0)k = ξ)ϕQ(ξ)} = 0, (B.15)
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F−1[(iθ)′ E(E(e(2)c |e(0)k ) exp(iθ′e
(0)
k ))] = − ∂

∂ξ′
{E(e(2)c |e(0)k = ξ)ϕQ(ξ)}

=
τ

T −N
ϕQ(ξ)

α1δ
′ξ + α1

[
tr(QC2)− ξ′C2ξ

], (B.16)

where α1 = (T −K)/N, and

F−1[i2θ′ E(E(e(1)c e(1)
′

c |e(0)k )θ exp(iθ′e
(0)
k ))] =

∂

∂ξ′
{E(e(1)c e(1)

′

c |e(0)k = ξ)ϕQ(ξ)}
∂

∂ξ

=
τ 2

T −N
α2

[
ξ′C2ξ − tr(QC2)

]
ϕQ(ξ),

(B.17)

where α2 = (T −K)(T −N − 2)/N(N − 2). Furthermore, the inverse transformation of the

last term is

F−1[i2θ′ E(E(e(1)c e
(1)′

k |e(0)k )θ exp(iθ′e
(0)
k ))] =

∂

∂ξ′
{E(e(1)c e

(1)′

k |e(0)k = ξ)ϕQ(ξ)}
∂

∂ξ

=

0, if k = 1

τ
T−N

c
[
ξ′C2ξ − tr(QC2)

]
, if k = λ.

(B.18)

Summation of the terms in equations (B.15)–(B.18) will provide the results in the

theorem.

Proof of Theorem 2:

Using (4.2), the approximate bias of the Stein-like shrinkage estimator up to order of

interest is equal to

E(
1

σ
(β̂c,k − β)) = E(

1

σ
(β̂(k)− β)) +O(σ2) = 0, (B.19)

where the last equality holds by Lemma B6. The approximate MSE matrix of the Stein-like
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shrinkage estimator up to the order of interest is

E
( 1

σ2
(β̂c,1 − β)(β̂c,1 − β)′

)
= E

( 1

σ2
(β̂(1)− β)(β̂(1)− β)′

)
+

τ

T −N
σ2α1

∫
ξξ′δ′ξϕQ(ξ)dξ

+
1

2

τ

T −N
σ2
[
τα2 − 2α1

] ∫ (
ξξ′C2ξξ

′ − tr(QC2)ξξ
′
)
ϕQ(ξ)dξ

= E
( 1

σ2
(β̂(1)− β)(β̂(1)− β)′

)
+

τ

T −N
σ2
[
τα2 − 2α1

]
QC2Q.

(B.20)

Similarly,

E
( 1

σ2
(β̂c,λ − β)(β̂c,λ − β)′

)
≤ E

( 1

σ2
(β̂(λ)− β)(β̂(λ)− β)′

)
+

τ

T −N
σ2
[
τα2 − 2α1

]
QC2Q.

(B.21)

Proof of Theorem 3:

To derive
∫
· · ·

∫
||Q−1/2ξ||<z

(fc,k(ξ) − fk(Q
1/2ξ)) dξ, we take the integral of each term of the

difference of the approximate distributions below.

∫
· · ·

∫
||ζ||<z

τ

T −N
α1δ

′Q1/2ζϕI(ζ)dζ = 0, (B.22)

∫
· · ·

∫
||ζ||<z

1

2

τ

T −N

[
τα2−2α1

]
tr(QC2)ϕI(ζ)dζ =

1

2

τ

T −N

[
τα2−2α1

]
tr(QC2)

[
Φ(z)−Φ(−z)

]N
,

(B.23)

∫
· · ·

∫
||ζ||<z

1

2

τ

T −N

[
τα2 − 2α1

]
ζ ′Q1/2C2Q

1/2ζϕI(ζ)dζ

=
1

2

τ

T −N

[
τα2 − 2α1

]
tr(QC2)

{
− 2zϕ(z)

[
Φ(z)− Φ(−z)

]N−1

+
[
Φ(z)− Φ(−z)

]N}
,
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(B.24)

where the last equality holds by using

∫
|x|<z

x2ϕ(x)dx = −2zϕ(z) + Φ(z)− Φ(−z).

The results follow by adding the right-hand side of equations (B.22)–(B.24).

Remark 1 Sawa (1973a) introduces a combined estimator using the OLS and the 2SLS

estimators that takes the following form

β̂S =
T −N − 1

T −K
β̂(1)− K −N − 1

T −K
β̂(0). (B.25)

Under assumptions 1–3, given T > K and K −N > 1, the asymptotic MSE matrix of Sawa

(1973a)’s combined estimator is equal to

AMSE(β̂S) = E
( 1

σ2
(β̂S − β̇)(β̂S − β̇)′

)
= AMSE(β̂(1)) + σ2

(
(K −N − 1)2

T −K
+ 2(K −N − 1)

)
QC2Q+O(σ3) ≥ 0 +O(σ3),

where the proof follows easily from Theorem 5.1 of Sawa (1973a). Since right hand side of

the above equation is always nonnegative, it implies that Sawa (1973a)’s combined estimator

is always dominated by the 2SLS estimator in terms of their MSEs.

Remark 2 Morimune (1978) introduces a combined estimator using the OLS and the LIML

estimators that takes the following form

β̂M =
T −N − 1

T −N
β̂(λ) +

1

T −N
β̂(0). (B.26)
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Under assumptions 1–3, given T −K − 2 > 0 and K > N, the asymptotic MSE matrix of

Morimune (1978)’s combined estimator is equal to

AMSE(β̂M) = E
( 1

σ2
(β̂M − β̇)(β̂M − β̇)′

)
= AMSE(β̂(λ))− σ2

(
1 +

K −N

T −K − 2

)(
2− 1

T −N

)
QC2Q+O(σ3),

where the proof follows easily from Theorem 2 of Morimune (1978).

Furthermore, the MSE of the Stein-like shrinkage estimator using the OLS and the LIML

estimators introduced in this paper, using the optimal choice of the tuning parameter, is equal

to

AMSE(β̂c,λ) = E
( 1

σ2
(β̂c,λ − β̇)(β̂c,λ − β̇)′

)
= AMSE(β̂(λ))− σ2

(
(T −K)(T −N)(N − 2)

(T −N − 2)N

)
QC2Q+O(σ3).

Therefore, the Stein-like shrinkage estimator dominates Morimune (1978)’s combined

estimator when the following condition holds,

(T −N − 2)(2(T −N)− 1)

(T −K − 2)(T −N)
≤ (T −K)(T −N)(N − 2)

(T −N − 2)N
.

The condition depends on the sample size, the number of included endogenous variables, and

the number of excluded exogenous variables. However, a necessary condition for the above

inequality to hold is when T ≥ 2(K + 1).

C Appendix C

This section provides further Monte Carlo simulation results considered in the main text

when the error terms are generated from normalized chi-squared distribution with two
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degrees of freedom. The observations are generated by the process

y1 = Y2β + u1,

Y2 = XΠ2 + V2,

where u1 has a (χ2 − 2)/2 distribution. Similarly columns of V2 are generated from

independent normalized chi-squared distribution with two degrees of freedom, and X has a

multivariate normal distribution with mean zero, and variance-covariance matrix IK . We

set the correlation between u1 and the rows of V2 equal to ρ/
√
N, where ρ takes values

on {0.01, 0.1, 0.5, 0.9, 0.99}. We set β to 0.1ιN , where ιq is a q-dimensional vector of unity.

Π2 = c(IN ⊗ ιK/N), where ⊗ denotes the Kronecker product, and c =
√

R2/K(1−R2).

We consider three values for the reduced form population R2, which are {0.1, 0.5, 0.9}. The

number of monte carlo simulations for each design is set to 1, 000. We set the value of τ = τopt

when N = {3, 6} and set τ = 1/8 when N = 1. The results are reported for T = {100, 1000},

N = {1, 3, 6}, and K = {6, 18, 30} in Table C.1– Table C.6.
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Table C.1: Relative Median Squared Errors when (T,N) = (100, 1)

K = 6 K = 18

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.120 0.603 0.126 0.058 0.593 0.063 2.028 0.237 0.810 0.257 0.034 0.663 0.039 5.708

0.1 0.339 0.784 0.364 0.161 0.681 0.173 1.832 0.484 0.813 0.509 0.077 0.660 0.088 5.130

0.5 4.415 1.150 4.022 3.940 1.049 3.623 1.023 2.039 1.130 1.913 2.061 1.123 1.958 0.983

0.9 7.981 1.043 1.054 17.363 1.006 1.077 0.443 2.179 1.013 1.002 12.653 0.962 1.213 0.164

0.99 7.639 1.033 1.034 19.890 0.973 1.010 0.362 2.216 1.008 1.000 21.141 0.932 1.011 0.097

0.5

0.01 0.537 0.934 0.659 0.480 0.864 0.586 1.036 0.519 0.827 0.579 0.364 0.813 0.406 1.402

0.1 0.816 0.970 0.849 0.699 0.918 0.771 1.105 0.987 0.970 1.068 0.723 0.902 0.814 1.269

0.5 12.762 1.021 1.036 11.755 1.004 1.070 1.068 8.487 1.027 1.059 11.920 0.973 1.141 0.674

0.9 39.751 1.018 1.000 46.086 0.969 1.000 0.820 11.603 1.025 1.000 44.403 0.986 1.000 0.251

0.99 41.786 1.017 1.000 46.468 0.985 1.000 0.871 11.682 1.013 1.000 58.873 1.022 1.000 0.200

0.9

0.01 0.880 0.942 0.906 0.877 0.928 0.884 0.989 0.959 0.989 0.992 0.971 1.025 0.992 1.024

0.1 0.924 0.953 0.968 0.907 0.932 0.912 0.996 1.015 0.994 1.019 0.983 1.002 0.981 1.040

0.5 4.714 0.992 1.000 4.931 0.998 1.002 0.961 4.517 1.024 1.018 4.800 1.010 1.192 0.929

0.9 15.640 0.990 1.000 16.512 1.013 1.000 0.969 11.677 0.995 1.000 14.066 1.031 1.000 0.861

0.99 18.112 0.996 1.000 19.066 1.009 1.000 0.963 13.839 1.006 1.000 19.470 0.996 1.000 0.704

Note: This table reports the relative median squared errors of the OLS (β̂(0)), the 2SLS (β̂(1)), the LIML (β̂(λ)) estimators,
the Stein-like shrinkage estimator using the OLS and the 2SLS estimators (β̂c,1), the Stein-like shrinkage estimator using the

OLS and the LIML estimators (β̂c,λ), and two pre-test estimators (β̂pre), i.e.,
β̂(0)

β̂(1)
indicates the median squared errors of the OLS

estimator divided by the median squared errors of the 2SLS estimator. The pre-test estimators use the Wu-Hausman test static
under 5% critical value to choose between the OLS and the 2SLS/LIML estimators.
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Table C.2: Relative Median Squared Errors when (T,N) = (100, 3)

K = 6 K = 18

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.055 0.166 0.055 0.014 0.033 0.014 0.785 0.163 0.420 0.168 0.009 0.055 0.009 2.442

0.1 0.073 0.190 0.073 0.018 0.037 0.018 0.811 0.225 0.461 0.227 0.012 0.071 0.012 2.830

0.5 0.616 0.608 0.616 0.144 0.151 0.144 1.063 0.940 0.921 0.940 0.109 0.139 0.109 1.299

0.9 1.765 1.104 1.752 0.601 0.508 0.601 1.350 1.319 1.087 1.309 0.510 0.462 0.510 1.099

0.99 2.086 1.095 2.072 0.640 0.581 0.639 1.728 1.366 1.040 1.142 0.531 0.501 0.531 1.240

0.5

0.01 0.232 0.501 0.237 0.185 0.477 0.190 1.195 0.338 0.604 0.350 0.120 0.470 0.124 2.198

0.1 0.319 0.551 0.320 0.270 0.547 0.271 1.170 0.443 0.659 0.456 0.170 0.526 0.176 2.078

0.5 2.219 0.957 1.940 1.770 0.861 1.603 1.127 2.212 1.114 1.923 1.258 0.807 1.233 1.273

0.9 7.121 0.994 1.004 6.047 0.923 1.000 1.094 4.027 1.091 1.000 4.297 0.895 1.005 0.768

0.99 7.912 0.990 1.000 6.734 0.936 1.000 1.111 4.182 1.073 1.000 4.951 0.885 1.000 0.697

0.9

0.01 0.775 0.861 0.786 0.757 0.831 0.763 0.988 0.824 0.928 0.849 0.740 0.857 0.747 1.028

0.1 0.802 0.874 0.857 0.790 0.865 0.826 1.005 0.815 0.888 0.832 0.747 0.839 0.753 1.031

0.5 2.566 0.989 1.021 2.550 0.995 1.039 1.013 2.503 1.021 1.046 2.380 0.989 1.160 1.019

0.9 7.333 0.988 1.000 7.092 0.986 1.000 1.032 5.941 1.025 1.000 6.199 0.991 1.000 0.926

0.99 7.541 0.991 1.000 7.395 0.994 1.000 1.023 7.168 1.033 1.000 7.599 0.978 1.000 0.893

See the note to Table C.1.
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Table C.3: Relative Median Squared Errors when (T,N) = (100, 6)

K = 6 K = 18

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.006 0.006 0.006 0.006 0.006 0.006 1.000 0.140 0.172 0.140 0.005 0.006 0.005 0.855

0.1 0.008 0.008 0.008 0.008 0.008 0.008 1.000 0.149 0.177 0.149 0.006 0.007 0.006 0.865

0.5 0.045 0.045 0.045 0.045 0.045 0.045 1.000 0.558 0.576 0.558 0.038 0.038 0.038 0.979

0.9 0.168 0.168 0.168 0.168 0.168 0.168 1.000 1.055 1.038 1.055 0.183 0.182 0.183 1.012

0.99 0.246 0.246 0.246 0.246 0.246 0.246 1.000 1.127 1.068 1.126 0.289 0.288 0.289 1.053

0.5

0.01 0.088 0.102 0.088 0.088 0.102 0.088 1.000 0.218 0.295 0.219 0.034 0.045 0.034 0.969

0.1 0.117 0.127 0.117 0.117 0.127 0.117 1.000 0.242 0.295 0.242 0.036 0.043 0.036 0.993

0.5 0.473 0.422 0.473 0.473 0.422 0.473 1.000 0.958 0.845 0.959 0.188 0.180 0.188 1.085

0.9 1.285 0.678 1.267 1.285 0.678 1.267 1.000 2.039 1.230 1.757 0.554 0.453 0.551 1.354

0.99 1.596 0.690 1.573 1.596 0.690 1.573 1.000 2.344 1.192 1.059 0.626 0.494 0.623 1.551

0.9

0.01 0.587 0.645 0.590 0.587 0.645 0.590 1.000 0.638 0.714 0.645 0.529 0.596 0.533 1.007

0.1 0.625 0.676 0.644 0.625 0.676 0.644 1.000 0.668 0.707 0.688 0.547 0.592 0.556 1.024

0.5 1.433 0.891 1.100 1.433 0.891 1.100 1.000 1.704 1.006 1.200 1.371 0.842 1.233 1.040

0.9 3.733 0.918 1.000 3.733 0.918 1.000 1.000 3.857 1.046 1.000 3.407 0.895 1.000 0.969

0.99 4.179 0.927 1.000 4.179 0.927 1.000 1.000 4.595 1.054 1.000 4.097 0.923 1.000 0.982

See the note to Table C.1.
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Table C.4: Relative Median Squared Errors when (T,N) = (1000, 1)

K = 6 K = 30

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.120 0.596 0.130 0.109 0.604 0.118 1.117 0.125 0.645 0.139 0.077 0.642 0.095 1.619

0.1 2.132 1.149 2.251 1.992 1.139 2.140 1.061 2.239 1.187 2.302 1.332 1.022 1.486 1.448

0.5 53.757 0.995 1.000 49.121 1.027 1.000 1.130 17.959 1.034 1.000 46.733 1.004 1.000 0.373

0.9 140.893 1.003 1.000 186.025 1.033 1.000 0.780 18.323 1.009 1.000 147.932 0.995 1.000 0.122

0.99 166.671 1.003 1.000 187.700 0.971 1.000 0.860 17.981 1.007 1.000 201.557 0.997 1.000 0.088

0.5

0.01 0.459 0.865 0.491 0.455 0.863 0.486 1.008 0.537 0.890 0.604 0.508 0.875 0.573 1.039

0.1 5.509 1.018 2.080 5.624 1.047 2.163 1.007 5.497 1.042 2.099 5.193 1.062 2.193 1.079

0.5 141.624 0.992 1.000 126.901 0.995 1.000 1.120 104.037 0.994 1.000 136.370 1.002 1.000 0.769

0.9 436.847 1.001 1.000 423.353 1.005 1.000 1.036 222.012 1.008 1.000 459.761 0.998 1.000 0.478

0.99 561.181 1.002 1.000 585.026 0.988 1.000 0.946 273.067 1.006 1.000 509.227 1.005 1.000 0.536

0.9

0.01 0.837 0.945 0.886 0.832 0.936 0.883 0.997 1.071 1.009 1.054 1.066 1.014 1.058 1.010

0.1 2.136 0.995 1.090 2.143 1.002 1.093 1.003 2.520 1.027 1.038 2.595 1.020 1.081 0.965

0.5 49.777 0.993 1.000 49.314 0.999 1.000 1.016 44.174 1.001 1.000 46.857 1.003 1.000 0.945

0.9 166.949 0.997 1.000 162.073 0.997 1.000 1.030 169.999 0.998 1.000 176.045 1.000 1.000 0.968

0.99 183.427 1.004 1.000 179.194 0.996 1.000 1.016 170.166 0.998 1.000 191.305 1.002 1.000 0.893

See the note to Table C.1.

48



Table C.5: Relative Median Squared Errors when (T,N) = (1000, 3)

K = 6 K = 30

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.035 0.328 0.036 0.029 0.358 0.029 1.330 0.065 0.345 0.068 0.018 0.528 0.020 5.631

0.1 0.170 0.394 0.171 0.146 0.407 0.147 1.202 0.286 0.486 0.295 0.090 0.539 0.098 3.527

0.5 3.733 0.957 2.033 3.104 0.909 1.906 1.142 2.911 1.168 2.496 1.887 0.878 1.660 1.160

0.9 12.854 0.997 1.000 10.468 0.932 1.000 1.148 4.449 1.063 1.000 6.877 0.926 1.000 0.563

0.99 15.729 1.016 1.000 13.351 0.939 1.000 1.090 4.757 1.042 1.000 8.873 0.923 1.000 0.475

0.5

0.01 0.258 0.544 0.267 0.255 0.546 0.265 1.012 0.279 0.546 0.291 0.235 0.523 0.250 1.136

0.1 0.966 0.845 1.072 0.953 0.844 1.067 1.013 1.075 0.906 1.186 0.936 0.831 1.081 1.053

0.5 20.098 1.006 1.000 19.896 0.991 1.000 0.995 18.476 1.035 1.000 18.087 0.998 1.000 0.985

0.9 66.760 0.992 1.000 65.088 0.997 1.000 1.031 45.804 1.033 1.000 57.506 0.982 1.000 0.757

0.99 79.496 1.003 1.000 77.485 0.992 1.000 1.015 48.778 1.029 1.000 71.379 0.989 1.000 0.657

0.9

0.01 0.793 0.871 0.838 0.788 0.867 0.833 1.001 0.748 0.878 0.765 0.741 0.868 0.754 0.997

0.1 1.418 0.983 1.178 1.407 0.978 1.172 1.003 1.498 0.988 1.186 1.470 0.978 1.219 1.009

0.5 20.074 1.006 1.000 19.898 0.992 1.000 0.995 21.057 0.989 1.000 20.755 1.011 1.000 1.037

0.9 67.314 0.999 1.000 67.734 0.999 1.000 0.994 58.662 0.996 1.000 61.731 0.999 1.000 0.953

0.99 77.247 1.002 1.000 77.033 1.001 1.000 1.002 74.963 1.000 1.000 77.572 0.994 1.000 0.961

See the note to Table C.1.
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Table C.6: Relative Median Squared Errors when (T,N) = (1000, 6)

K = 6 K = 30

R2 ρ β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

β̂(0)

β̂(1)

β̂c,1

β̂(1)

β̂pre

β̂(1)

β̂(0)

β̂(λ)

β̂c,λ

β̂(λ)

β̂pre

β̂(λ)

β̂c,λ

β̂c,1

0.1

0.01 0.013 0.018 0.013 0.013 0.018 0.013 1.000 0.040 0.077 0.040 0.004 0.010 0.004 1.329

0.1 0.035 0.043 0.035 0.035 0.043 0.035 1.000 0.109 0.163 0.109 0.011 0.023 0.011 1.400

0.5 0.618 0.496 0.619 0.618 0.496 0.619 1.000 1.265 1.067 1.264 0.207 0.201 0.208 1.152

0.9 2.011 0.703 1.957 2.011 0.703 1.957 1.000 2.273 1.189 1.005 0.706 0.490 0.698 1.327

0.99 2.742 0.735 1.563 2.742 0.735 1.563 1.000 2.422 1.110 1.000 0.825 0.485 0.822 1.282

0.5

0.01 0.139 0.217 0.141 0.139 0.217 0.141 1.000 0.159 0.251 0.166 0.118 0.237 0.126 1.274

0.1 0.339 0.393 0.362 0.339 0.393 0.362 1.000 0.390 0.446 0.410 0.288 0.380 0.316 1.154

0.5 5.587 0.914 1.000 5.587 0.914 1.000 1.000 6.070 1.083 1.000 4.895 0.907 1.000 1.039

0.9 17.486 0.951 1.000 17.486 0.951 1.000 1.000 16.425 1.117 1.000 15.779 0.953 1.000 0.888

0.99 21.467 0.923 1.000 21.467 0.923 1.000 1.000 18.801 1.105 1.000 19.390 0.960 1.000 0.842

0.9

0.01 0.616 0.696 0.635 0.616 0.696 0.635 1.000 0.586 0.675 0.624 0.571 0.661 0.605 1.004

0.1 0.997 0.864 1.065 0.997 0.864 1.065 1.000 0.997 0.901 1.030 0.966 0.875 1.014 1.002

0.5 11.985 0.985 1.000 11.985 0.985 1.000 1.000 11.498 1.002 1.000 11.263 0.986 1.000 1.005

0.9 36.093 0.990 1.000 36.093 0.990 1.000 1.000 37.182 1.027 1.000 35.950 0.982 1.000 0.989

0.99 43.981 0.998 1.000 43.981 0.998 1.000 1.000 43.738 1.008 1.000 43.534 0.992 1.000 0.989

See the note to Table C.1.
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