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Abstract. While expected utility maximization and its foundations in the Savage Axioms play a major role in nor-
mative economics and Bayesian statistics, the axiomatic foundations of expected utility maximization have been
the subject of extensive criticism over the years in terms of their descriptive ability to explain actual behavior in
laboratory experiments. As a result, behavioral economists do not accept expected utility maximization as descrip-
tive of observed consumer behavior. But the Savage Axioms have been substantially weakened and rendered more
widely descriptive of observed behavior by replacing the usual Riemann integral with the Choquet [14] integral. In
addition, the observed behavior under the weakened assumptions is relevant to behavior under uncertainty in the
Frank Knight [47] sense, rather than the more restrictive context of behavior under risk with known probabilities.

The behavioral implications of expected utility maximization with Choquet integration reduce to the more
restrictive axiomatic foundations for Riemann integration only if probabilities always sum to exactly 1.0. By per-
mitting probabilities to sum to more than or less than 1.0, called “nonadditive probabilities,” Choquet integration
is consistent with far more general observed behavior than is consistent with the Savage Axioms, as has been
recognized in Tversky and Kahneman’s Prospect Theory [64]. But the mathematical foundations for Choquet inte-
gration and its uses in modeling behavior under uncertainty are based on sophisticated mathematics on Riesz space.

Cerreia-Vioglio et al. [8] provided a general integral representation for nonadditive probabilities defined on an
Archimedean Riesz space, based on the fundamental work of Aliprantis et al [1, 2, 3]. Aliprantis introduced Riesz
space into the field of economics and established the relevancy of Riesz space to Choquet integration and thereby
to behavioral economics We shall show that Aliprantis’s deep theoretical research in this area has had formidable
consequences for advancing behavioral economics in many applications in a rigorous but very practical manner.
This approach provides a formal mathematical improvement that is compatible with Allais’ [4] and Ellsberg’s [29]
paradoxes, which Savage’s [61] theorem fails to explain.

Keywords. Choquet integral; Sure-thing principle; Knightian uncertainty; Non-additive probabilities.
2020 Mathematics Subject Classification. 28A12, 28A25, 28C05, 28E10, 91B05, 91B06, 91B86.

1. INTRODUCTION

Capacity and Choquet Integral were introduced by Choquet [14] and initially applied in sta-
tistical mechanics and potential theory. As an elegant generalization of probability measure, the
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Choquet integral has attracted increasing interest from economists, especially decision theorists.
Schmeidler [62, 63] rediscovered the Choquet Integral to put forward a generalized axiomatic
model of choice with non-additive beliefs.

This survey introduces the Choquet integral and discusses its pivotal role in the development
of decision theory under uncertainty. Some existing applications are described. Many more are
possible and likely to appear in the future. In this survey, we use the term “uncertainty” [47], as
opposed to “risk”, to describe the situation where objective probabilities are unknown.

In section 2, we introduce the notion of capacity as a generalization of probability measure
and we describe the mathematical intuition of the Choquet integral. Section 3 presents the
Savage’s Axioms and the subjective utility theorem as the starting point of the theoretical de-
velopment. Section 4 briefly recalls Ellsberg’s [29] paradoxes, which the strictness of Savage’s
model fails to include and capture. Section 5 further introduces the revolutionary theoretical
generalization, Schmeidler’s Choquet expected utility theorem, with its weakened assumptions.
Some mathematical properties are listed in Section 6. Section 7 presents some relevant the-
oretical developments. In section 8, we display some existing applications in economics and
finance. Section 9 contains the conclusions.

2. CHOQUET INTEGRAL

Let F be algebra of the nonempty finite set Ω. A set function µ : F → [0,1] is called a capacity
if

Definition 2.1. (Normalized) µ( /0) = 0, µ(Ω) = 1, and

Definition 2.2. (Monotone) A ⊆ B ⇒ µ(A)≤ µ(B) for all A,B ∈ F .

As a generalization of probability measure, capacity is not necessarily additive. That is, for
disjoint A,B ∈ F , µ(A) + µ(B) ̸= µ(A∪B) in general. The capacity, µ , is supermodular is
µ(A∪B)+ µ(A∩B) ≥ µ(A)+ µ(B), and submodular is µ(A∪B)+ µ(A∩B) ≤ µ(A)+ µ(B)
for all A,B ∈ F . If capacity µ is both supermodular and submodular, it is restricted to a classical
probability measure.

The Choquet Integral of a measurable function f with respect to capacity µ is defined as∫
f dµ =

∫
∞

0
µ({s | f (s)> t})dt +

∫ 0

−∞

µ({s | f (s)> t})−1dt,

where f : Ω → R is an F -measurable function. That is, {s | f (s)> t} and {s | f (s)≥ t} for
any t ∈ R. If we restrict f to be nonnegative, the Choquet integral is simplified as∫

f dµ =
∫

∞

0
µ({s | f (s)> t})dt.

The Choquet integral integrates rectangles horizontally, as opposed to the vertical Riemann
integral on the right-hand side. To see this, let u : Ω → R denote a function with finite range.
If we permute the range of u in an ascending order such that range(u) = {u1,u2, ...,un}, where
0 = u0 ≤ u1 < u2 < ... < un, then the Choquet integral of a nonnegative function u with respect
to µ is ∫

udµ =
n

∑
i=1

(ui −ui−1)µ(u−1({ui, ...,un})).
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To interpret this, the heights of rectangles are the marginal increments in u; the widths are
the capacities of subsets containing all elements in Ω that are mapped to a real number greater
than or equal to ui. The vertical representation immediately follows:∫

udµ =
n

∑
i=1

ui[µ(u−1({ui−1...,un})−µ(u−1({ui, ...,un}))].

The Choquet Integral was rediscovered by Schmeidler [62, 63] to put forward an axiomatic
model of decision-making under uncertainty. In Schmeidler’s approach, subjective probabili-
ties that reflect the willingness to bet need not be additive, when the objective probabilities are
unknown to the economic agent. This approach provides a formal mathematical improvement
that is compatible with Allais’ [4] and Ellsberg’s [29] paradoxes, which Savage’s [61] theo-
rem fails to explain. Schmeidler’s theorem weakens the assumptions of Savage’s subjective
probability and proposes an elegant generalization to the classic expected utility theorem.

3. SAVAGE’S SUBJECTIVE EXPECTED UTILITY MODEL

First, we present the framework of Savage’s subjective expected utility model. For axioms,
we use names given in Machina and Schmeidler [50] for better intuitive indications.

Let S be a set of states of the world, and let C be a set of consequences (or outcomes). An act
is a function f : S → C , that yields the decision-maker a consequence given each state. Let F
denote the set of acts. Let A be the collection of events, that is, an algebra of subsets of S.

Axiom 1 (Ordering). The preference relation is complete, reflexive, and transitive.

Axiom 2 (Sure-Thing Principle). For all events E and acts f , f ∗,g and h,[
f ∗(s) if s ∈ E
g(s) if s /∈ E

]
⪰
[

f (s) if s ∈ E
g(s) if s /∈ E

]
⇒

[
f ∗(s) if s ∈ E
h(s) if s /∈ E

]
⪰
[

f (s) if s ∈ E
h(s) if s /∈ E

]
.

Axiom 3 (Eventwise Monotonicity). For all events E, consequences x and y, and act f ,[
x if s ∈ E

f (s) if s /∈ E

]
⪰
[

y if s ∈ E
f (s) if s /∈ E

]
⇔ x ⪰ y.

Axiom 4 (Weak Comparative Probability). For all events A,B, and consequences x∗ ≻ x, y∗ ≻ y,[
x∗ if s ∈ A
x if s /∈ A

]
⪰
[

x∗ if s ∈ B
x if s /∈ B

]
⇒

[
y∗ if s ∈ A
y if s /∈ A

]
⪰
[

y∗ if s ∈ B
y if s /∈ B

]
.

Axiom 5 (Nondegeneracy). There exists consequences x and y, such that x ≻ y.

Axiom 6 (Small Event Continuity). For any acts f and g, and consequence x, there exists a
finite set of events {A1, ...,An} forming a partition of S such that

f ⪰
[

x if s ∈ Ai
g(s) if s /∈ Ai

]
and

[
x if s ∈ Ai

f (s) if s /∈ Ai

]
⪰ g, for all i, j ∈ 1, ...,n.

Axiom 7 (Uniform Monotonicity). For all events E and all acts f and f ∗, if[
f ∗(s) if s ∈ E
g(s) if s /∈ E

]
⪰ (⪯)

[
x if s ∈ E

g(s) if s /∈ E

]
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for all g ∈ F and rach x ∈ f (E), then[
f ∗(s) if s ∈ E
h(s) if s /∈ E

]
⪰ (⪯)

[
x if s ∈ E

h(s) if s /∈ E.

]
for all h ∈ F.

Theorem 3.1 (see Savage [61]). let ⪰ be a preference relation on F that satisfies Axioms 1 to
7, then there exists a unique, finitely additive, non-atomic probability measure p(·) on A , and a
unique up to positive affine transformation, state-dependent utility function u(·) on C, such that
for all acts f and g, f ⪰ g is and only of∫

u( f (s))d p(s)≥
∫

u(g(s))d p(s).

Savage’s Theorem provides axiomatic support for the classic von Neumann and Morgenstern
expected utility model. Satisfying the above seven Axioms is equivalent to having a prefer-
ence relation implemented by maximizing the expectation of a utility function with a unique
probability measure on the set of all events.

Many people believed the expected utility model was the only legitimate theory to describe
decision-making under uncertainty. However, the model, particularly the Sure Thing Principle,
often fails to capture some observed experimental behaviors. The two famous experiments that
fall outside this model are Allais’ paradox and Ellsberg’s Paradox. Here we present the more
general case, Ellsberg’s Paradox, where the objective probabilities are unknown.

4. ELLSBERG’S PARADOX

Ellsberg’s thought experiment considers an urn known to contain 30 red balls and 60 black
and yellow balls. The proportion of black and yellow balls is unknown. One ball is drawn at
random from the urn. The possible outcomes are displayed in the table below.

Acts Red Black Yellow
f1 $100 $0 $0
f2 $0 $100 $0
f3 $100 $0 $100
f4 $0 $100 $100

TABLE 1. Ellsberg’s Paradox

An uncertainty-averse decision-maker has the following preferences that violate the Sure
Thing Principle: f1 ≻ f2, and f4 ≻ f3. The classical expected utility theorem is also incom-
patible with this, since f1 ≻ f2 indicates p(Red) > p(Black), and f4 ≻ f3 indicates p(Red) <
p(Black), which yields a contradiction.

5. SCHMEIDLER’S GENERALIZED MODEL AND THE WEAKENED AXIOM

Schmeidler solves Ellsberg’s Paradox by sketching the following generalized theorem.

Theorem 5.1 (see Schmeidler [63]). let ⪰ be a preference relation that satisfies weak order,
comonotonic independence, continuity, monotonicity and nondegeneracy. Then there exists a
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unique capacity µ(·) on A , and a state-independent utility function u(·) on C, such that for all
acts f and g, f ⪰ g, if and only if ∫

u( f )dµ ≥
∫

u(g)dµ,

where u(·) is unique up to positive affine transformations.

Schmeidler generalizes the probability measure p(·) to the non-additive capacity µ(·). As
integration is with respect to capacity, this way of calculating expected utility is referred to as
Choquet Expected Utility. This representation better describes the economic agent’s perception
of different levels of prizes and attitude toward uncertainty. Under expected utility theory,
perception of prizes and attitude toward uncertainty are mixed, and both are indicated by the
curvature of the utility function.

Now, we demonstrate how Choquet expected utility is well compatible with the Ellsberg
paradox. As given by the setting µ( /0) = 0, µ({Red}) = 1

3 , µ({Black,Yellow}) = 2
3 , and

µ({Red,Black,Yellow})= 1. However, the decision maker perceives µ({Black})= µ({Yellow})=
1
6 and µ({Red,Black}) = µ({Red,Yellow}) = 1

2 . For simplicity, we assume u($x) = x, then

CEU( f1) = (u($100)−u($0))µ(Red) = 33
1
3
,

CEU( f2) = (u($100)−u($0))µ(Black) = 16
2
3
,

CEU( f3) = (u($100)−u($0))µ(Red,Yellow) = 50,

CEU( f1) = (u($100)−u($0))µ(Black,Yellow) = 66
2
3
.

The above Choquet expected utilities represent f1 ≻ f2, and f4 ≻ f3. Note the illustrated capac-
ity is not additive, µ({Black})+µ({Yellow}) = 1

3 ̸=
2
3 = µ({Black,Yellow}) . To interpret, the

economic agent is informed of the sum of black and yellow balls, but the uncertainty aversion
makes neither of them attractive to bet on.

Schmeidler’s axiomatic conditions are slightly different from Savage’s. Schmeidler’s Theo-
rem is under a simpler framework developed by Anscombe and Aumann [5]. Instead of acts
(actions), they introduced horse lotteries that map the state to a probability distribution over
money amount prizes. Some alternative derivations of this axiomatic model1 use similar but not
quite equivalent approaches. But all of them adopt some form of the Comonotonic Sure-Thing
Principle (i.e., Comonotonic Independence in Schmeidler’s Theorem):

Axiom 8 (Comonotonic Sure-Thing Principle). For all events E and pairwise comonotonic
actions f , f ∗, g, and h,[

f ∗(s) if s ∈ E
g(s) if s /∈ E

]
⪰
[

f (s) if s ∈ E
g(s) if s /∈ E

]
⇒

[
f ∗(s) if s ∈ E
h(s) if s /∈ E

]
⪰
[

f (s) if s ∈ E
h(s) if s /∈ E

]
.

1 As listed in Machina [49], see Gilboa [30] and Axiom (ii) of Schmeidler [63], Yutaka Nakamura [56], Rakesh
Sarin and Peter P. Wakker [60], Chew and Karni [12], Chew and Wakker [13], Wakker [69], Mohammed Abdel-
laoui and Wakker [53], and Veronika Köbberling and Wakker [65].
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Acts f and g are comonotonic, if there exist no states s and s′, such that f (s) ≻ f (s′) and
g(s)≻ g(s′) . In other words, two acts are said to be comonotonic if they never move in opposite
directions. The rankings of consequences are unchanged among comonotonic actions.

Suppose the Choquet expected utility holds. Then the Comonotonic Sure-Thing Principle
also holds; to have an additive expected utility representation, the stricter Sure-Thing Princi-
ple must hold for all acts in F [69]. Chew and Wakker [13] further studied the comonotonic
sure thing principle to form a generalization of all cumulative forms, including rank-dependent
expected utility, Choquet expected utility, and the famous cumulative prospect theory.

6. PROPERTIES

We list some basic properties of the Choquet Integrals (see Choquet [14], and Grabisch [32,
34]):

Proposition 6.1 (Positive homogeneity). For all α ≥ 0,∫
α f dµ = α

∫
f dµ

Proposition 6.2 (Monotonicity with respect to the integrand). For any capacity µ , and bounded
F -measurable function f and f ′,

f ≤ f ′ ⇒
∫

f dµ ≤
∫

f ′ dµ

Proposition 6.3 (Boundaries). If int f and sup f are attained, then

int f =
∫

f dµmin, sup f =
∫

f dµmax,

with µmin(A) = 0 for all A ⊂ Ω, A ∈ F, µmin(Ω) = 1, and µnax(A) = 1 for all nonempty A ∈ F.
For any normalized capacity µ ,

ess in fµ f ≤
∫

f dµ ≤ ess supµ f .

Proposition 6.4 (Strongly uncertainty averse [63]). A decision maker is strongly uncertainty
averse if, for every pair of acts X and Y , and α ∈ [0,1]

X ⪰ Y ⇒ αX +(1−α)Y ⪰ Y

In other words, a decision maker is strongly uncertainty averse if her preferences are convex.
For a decision-maker whose preferences are represented by (µ,u), she is strongly uncertainty
averse if and only if µ is convex and u is concave (see Chateauneuf, Dana, and Tallon [10]).

The following properties are applied to any set function ν : F → R that satisfies ν( /0) = 0,
called a game, a generalization of capacity.

Proposition 6.5 (Comonotonic Additivity). For all comonotonic functions f and g : Ω → R,
that is, (( f (s)− f (s′))(g(s)−g(s′))≥ 0 for all s,s′ ∈ Ω, then∫

f +gdν =
∫

f dν +
∫

gdν .
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Proposition 6.6 (Monotonicity with respect to the game). If f ≥ 0, then

ν ≤ ν
′ ⇒

∫
f dν ≤

∫
f dν

′.

Proposition 6.7 (Linearity with respect to the game). For all α ∈ R,

∫
f d(ν +αν

′) =
∫

f dν +α

∫
f dν

′.

7. THEORETICAL DEVELOPMENT

First, we present the closely related theorems mentioned in the previous section.

Rank-Dependent Expected Utility

Rank-Dependent Expected Utility (RDEU) was developed to explain observed economic be-
havior under risk (see Quiggin [58]), such as the Allais paradox, where objective probability is
known. Here we present Yaari’s dual theory, a special case of RDEU.

Let P be a probability measure on Ω and f : [0,1]→ [0,1] be a non-decreasing function such
that f (0) = 0, and f (1) = 1. Then the composition of f and P, i.e. µ(A) = f (P(A)), is called a
distorted probability.

Theorem 7.1. (see Yaari [73]) The preference relation is neutral, weak order, continuous,
monotonic, and comonotonic independent, if and only if there exists a distortion function f :
[0,1]→ [0,1] such that for all acts g and h, g ⪰ h if and only if

∫
u(g(s))d f (p(s))≥

∫
u(h(s))d f (p(s))

Details can be found in Wakker [68] and Heilpern’s [36] survey.

Maxmin Expected Utility

Gilboa and Schmeridler [31] axiomatized the maxmin decision rule by choosing the act that
maximizes the minimal expected utility, where the minimum is taken over the set of prior prob-
abilities. The decision maker is extremely uncertainty-averse under this approach, selecting the
worst subjective probability measure, given the objective probability.

To illustrate, we show De Castro and Yannelis’ [16] interpretation in solving Ellsberg’s para-
dox with maxmin expected utility. The set of probabilities with respect to the objective proba-
bility is

Pi ≡ {π ∈ ∆ : π({Red}) = 1
3

;π({Black,Yellow}) = 2
3
}.
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Again, we assume u($x) = x, then the maxmin decision maker chooses acts by assuming the
worst case scenario:

MEU( f1) = min
π∈P1

∫
Ω

u($100)×1{Red} dπ = min
π∈P1

π({Red}) = 33
1
3

;

MEU( f2) = min
π∈P1

∫
Ω

u($100)×1{Black} dπ = min
π∈P1

π({Black}) = 0;

MEU( f3) = min
π∈P1

∫
Ω

u($100)×1{Red,Yellow} dπ = min
π∈P1

π({Red,Yellow}) = 33
1
3

;

MEU( f4) = min
π∈P1

∫
Ω

u($100)×1{Black,Yellow} dπ = min
π∈P1

π({Black,Yellow}) = 66
2
3
.

This approach solves the paradox by completing preferences. Again, f1 ≻ f2 and f4 ≻ f3 as
desired.

Cumulative Prospect Theory

Cumulative Prospect Theory [64] is the sum of two separate Choquet Integrals with the value
of gains and losses. Cumulative prospect theory defines the outcome set X as a set of monetary
outcomes for simplicity. The mapping f : S → X is called an uncertain prospect under the
following conditions. The positive part of f , denoted f+, is defined by letting f+ = f (s) if
f (s)> 0. The negative part of f , f− is defined similarly. Let V be the functional that represents
the weak preference ⪰. Then

V ( f ) =V ( f+)+V ( f−),

where V ( f+) is a Choquet integral, and V ( f−) is a Choquet integral in the opposite direction,
with respect to the reference level.

With the support of experimental evidence, prospect theory finds the following common risk
attitude: risk aversion for gains and risk seeking for losses of high probability; risk seeking for
gains and risk aversion for losses of low probability.

Waegenaere and Wakker [67] studied signed Choquet integrals, which relax the monotonicity
condition of regular Choquet integrals. One of their results gives the conditions under which
the Choquet pricing functional can be decomposed into a linear part and a non-negative, sub-
additive part.

Jaffray et al. [37]-[43] further developed capacities and made the most tractable separation
of risk attitudes, ambiguity attitudes, and ambiguity beliefs in their works. Different ways of
updating Choquet beliefs are compared in the Eichberger, Grant, and Kelsey [25] paper.

Cerreia-Vioglio et al. [8] gave a general integral representation for nonadditive probabilities
defined on an Archimedean Riesz space based on the foundation of Aliprantis’s fundamental
work [1, 2, 3], which introduced Riesz space into the field of economics and established the
relevancy of Riesz Space to Choquet integration and thereby to behavioral economics.

Other important approaches to weakening the Savage Axioms include Wald [70], De Castro
and Yannelis [17], De Castro, Pesce, and Yannelis [15], and Gilboa and Schmeidler [31].
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8. APPLICATION

Choquet Integration is widely used in many areas. Here we list some applications in econom-
ics and finance.

Choquet Pricing
Kelsey and Milne [46] used the Choquet integral to extend the arbitrage pricing theorem

and showed that the linear representation of price remains true if certain non-expected utility
preferences are used. To capture the uncertainty aversion of the economic agent, Chateauneuf,
Kast, and Lapied [11] proposed to use Choquet integrals as pricing functions for insurance and
finance. Waegenaere, Kast, and Lapied [66] then introduced a general equilibrium model that
allows for non-linearity and showed that Choquet pricing is consistent with general equilibrium.
Choquet pricing is further studied by Castagnoli et al. [7], who showed if prices in a market are
Choquet expectations, the existence of one frictionless asset may force the whole market to be
frictionless.

Game Theory
Dow and Werlang [23] defined Nash equilibrium for two-person normal-form games in the

presence of Knightian [47] uncertainty. Eichberger and Kelsey [26] introduced the concept of
an “equilibrium under uncertainty” in n-player games. By using a class of capacities proposed
by Jaffray and Philippe [42]. Eichberger and Kelsey [27] further studied comparative statics of
changes in ambiguity-attitude in games with strategic complements. Marinacci [52] introduced
ambiguous games, which allow vagueness in players’ beliefs over opponents’ choice of strate-
gies. Haller [35] studied how the introduction of non-additive capacities affects the solvability
of strategic games. Eichberger, Kelsey, and Schipper [28] showed that pessimism has the effect
of increasing(decreasing) equilibrium prices under Cournot (Bertrand) competition. Dominiak
and Eichberger [19] proposed Context-Dependent Equilibrium Under Ambiguity, for strategic
games where players’ beliefs are influenced by exogenous information.

Multi-Criteria Decision-Making Problems
Grabisch [33] introduced fuzzy measures, including both the Choquet Integral and Sugeno

Integral, for aggregation in multi-criteria decision-making problems. Marichal [51] presented
an axiomatic approach to support the Choquet integral as a tool to aggregate interacting criteria.
The Choquet integral serves as an extension of the weighted arithmetic mean by taking inter-
action among criteria into consideration. This approach is further developed by Kojadinovic
[48].

Monetary Assets
Barnett, Han, and Zhang [6] found that using the Choquet integral yields boundaries to the

user cost of monetary assets. Their findings explain why there are situations in which people
are not active in changing their monetary asset portfolios.

Auctions
To explain why experimental submitted bids in first-price sealed-bid auctions exceed Nash

equilibrium predictions for risk-neutral bidders, Salo and Weber [59] used the Choquet expected
utility theory to attribute the observed bidding behavior to uncertainty aversion.

Search
To present the difference between risk and uncertainty in job searching, Nishimura and Ozaki

[57] used the Choquet integral to show that an increase in risk increases the reservation wage,
while an increase in uncertainty reduces it.
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Wages
Mukerji and Tallon [55] studied optimal wage contracting by assuming agents are uncertainty

averse in decisions and found that such agents will choose not to include any indexation cov-
erage in their wage contracts even when inflation is uncertain, under low inflation uncertainty
perception.

Portfolio Choice Capital Investment
In optimal investment decisions, Dow and Werlang [24] suggest that maximizing Choquet

expected utility may be a good model to explain an uncertainty-averse investor’s behavior.
Insurance
In actuarial sciences, Denneberg [18] and Wang [71] proposed the Choquet integral with

respect to the concave monotone set function to represent the premium principle relative to risk.
Axiomatic characterization and theorems of Choquet insurance prices can be found in Wang,

Young and Panjer [72]. Jeleva [44] showed that the impact of the background risk on the demand
for insurance is attributed to the attitude towards wealth, when the insurable and the background
risk are comonotonic. It they are anti-comonotonic, the attitude towards uncertainty determines
the impact.

Risk Sharing
In the context of optimal risk sharing, Chateauneuf, Dana, and Tallon [9] showed that if the

capacity is convex in a Choquet expected utility setting, then the set of Pareto optima is the
same as if agents have beliefs with a common vNM probability measure.

Incomplete Contracts
Mukerji [54] used the Choquet integral to show that ambiguity aversion can explain the exis-

tence of incomplete contracts, where instructions for some possible events are not included.
Trade
Kajii and Ui [45] initiated the characterization of the existence of an aggregable bet and an

aggregable trade by applying convex capacity. Dominiak, Eichberger, and Lefort [20] extended
the aggregable trade results in Kajii and Ui [45] by allowing Choquet preferences to be non-
convex.

Agreement Theorems
Dominiak and Lefort [21, 22] discussed the impact on “agreeing to disagree” type results by

relaxing the expected utility assumption, using the Choquet integral.

9. CONCLUSION

Much of the research in behavioral economics diverges from formal microeconomic foun-
dations, with the divergences motivated by paradoxes in experimental results that are not fully
compatible with implications of rational behavior under risk implied by the Savage Axioms. We
have shown that consistency between behavioral economics and formal microeconomic foun-
dations can be reestablished in many applications be replacement of the Riemann integral with
the Choquet integral on Riesz space. The needed theory has been provided by Choquet [14],
Cerreia-Vioglio et al. [8], and in its most fundamental form by Aliprantis et al [1, 2, 3].
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