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§1 Introduction

Since the linear programming was introduced from mathematics to economics to help

economists decide the allocation of limited resource, both mathematical programming meth-

ods and macroeconomics theories have made much more progresses. In the frontier of these

progresses, the mathematical theories, the computational methods, and the macroeconomic

models promote each other and make the boundaries among the three different subjects

melt. This survey provides a selective overview on how the relation between mathematical

programming and macroeconomics evolve from the past and about what the latest trend in

this interdisciplinary subject is nowadays.

Our review on this relation starts from the dynamic stochastic general equilibrium (DSGE)

models in discrete time dated back in 1970’s. The well known Bellman equations were applied

to solving the optimization problems of the agents within different microeconomic sectors in

the macroeconomy. In the mean time in history, the finance theory in continuous time was

thriving due to its popularity in asset pricing and the elegant combination of mathematics

and portfolio theories. It was until the burst of the financial crisis of 2008 that financial

sectors were added to the macroeconomic models to help people better understand how

the real sector of the economy and the business cycles are influenced by the financial mar-

ket’s turbulence. One critical tool to construct such a connection is through the continuous

time framework. Different from the optimization methods in discrete time, the stochastic

calculus, the stochastic control, the numerical methods to solve the stochastic differential

equations (SDEs), the ordinary differential equations (ODEs), and the partial differential

equations (PDEs) are often needed to solve the macroeconomic optimization problems in

continuous time. Therefore, the second half of this survey provide an overview of the latest

progresses of the macroeconomic modeling in continuous time, especially the heterogeneous

agent models (HAM), as well as the advanced computational methods to solve the models’

key equations, the transition dynamics, and the impulse response functions. Thanks to the

fast-growing computation power, the solutions that we can get from the nonlinear models

are global solutions.

The scope of the questions that macroeconomics can explore has been greatly expanded

due to the advances in the mathematical modeling and computational tools, from the macroe-

conomics models without micro-foundations, to the models that depict the households’,

firms’, and governments’ decision-making; from the static analysis to the dynamic analysis;
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from the deterministic equilibrium to the equilibrium with uncertainty; from the first-order

approximation to the solutions locally, to the nonlinear solutions globally. Throughout this

survey, we can find the efforts made by generations of scholars that clarify and promote

our knowledge on these matters continuously. Even though the current coverings in this

interdisciplinary subject can be thought as scattered, we look forward to more future studies

coming to fill the gap in the unknown space.

The rest of this paper is organized as follows. Section 2 gives a review on mathematical

programming for macroeconomics models with micro-foundations. Section 3 outlines some

challenges for the discrete-time nonlinear dynamic stochastic general equilibrium models.

Section 4 describes the dynamic programming methods for continuous-time macro-finance

models. Finally, Section 5 concludes the paper with some remarks for future research.

§2 Mathematical Programming for Macroeconomics
Models with Micro-foundations

The micro-foundation was first introduced in the macroeconomics models after the school of

the new classical macroeconomics. The two generations of the new classical macroeconomists

are the school of the rational expectation, such as Thomas J. Sargent, Robert E. Lucas Jr.,

and the school of the real business cycle, such as Edward C. Prescott and Neil Wallace,

respectively. There are three key assumptions in the new classical macroeconomics: agents’

maximization, rational expectation, and market clearing. The decision problems of the

microeconomic sectors of the economy are combined in a general equilibrium model, thus

serving as the micro-foundation of the macroeconomic model. Specifically, the determination

of the equilibrium output and prices are from the solutions of the optimization problems of

the households, the producers, the retailers, and the government. To solve these optimization

problems in discrete time, the dynamic programming, such as the Bellman equation, is

necessary.

The real business cycle school pointed that it is the real factors that cause the economic

fluctuations, rather than the monetary factors. To answer the questions that how the real

factors cause the economic fluctuations and what the underlying transmission mechanism

is, the real business cycle theory emphasizes on the importance of the supply shock and the

intertemporal substitution between the leisure and the work. The latter explains why a small

change in the wage can cause large and long-term variations of the output and employment.
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During the debate of the macroeconomic school of thoughts, the new Keynesian school

borrowed the merits of the new classical macroeconomics and developed its own framework

to support Keynes’s economic thoughts. The representatives of the new Keynesian school

macroeconomists include, but not limited to, N. Gregory Mankiw, Lawrence H. Summers,

Olivier Blanchard, Julio Rotemberg, Edmund S. Phelps, George A. Akerlof, Janet L. Yellen,

Joseph Stiglitz, Ben S. Bernanke, David H. Romer and so on. In contrast to the new classical

macroeconomics, the new Keynesian school does not assume that the market can clear once a

shock hits the economy, since the supply of labor and products, the wage and the price adjust

slowly. The new Keynesian school adopts the agents’ optimization and rational expectation

from the new classical macroeconomics, while following the Keynesian school to support that

the fluctuations of the aggregate demand shift both the output and the price in the short-run.

Therefore, the government’s policy plays a key role to bring the aggregate demand back to

the normal level during the economic recession.

As demonstrated in Gertler (2024), a typical macroeconomic model with micro-foundations

is consisted of the sectors of households, firms, monetary, and fiscal authorities. The dy-

namic programming serves as an important method of solution for the optimization prob-

lems. Compared to the dynamic programming applied in microeconomics, the application

in macroeconomics resides in a general equilibrium framework, which ultimately synthesizes

the individual sectors’ decisions into several types of equilibrium in macroeconomics, such

as the competitive equilibrium, the stationary equilibrium, and the Markov equilibrium. We

will compare these types of equilibrium later in Section 4.3.

2.1 Household’s Utility Maximization

Suppose that a representative household chooses {Ct, Lt,Mt/Pt, Bt+1/Pt, Kt+1}t≥0 to

maximize its utility

E0

󰀫 ∞󰁛

t=0

βt

󰀥
1

1− γ
C1−γ

t +
am

1− γm

󰀕
Mt

Pt

󰀖1−γm

− 1

1 + ϕ
L1+ϕ
t

󰀦󰀬
,

subject to the budget constraint given by

Ct =
Wt

Pt

Lt + ZtKt + Πt + TRt −
Mt −Mt−1

Pt

−

󰀓
1
Rn

t

󰀔
Bt+1 − Bt

Pt

−Qt (Kt+1 −Kt)

and assume that there is no Ponzi schemes, where β is the discount factor, which is assumed

to satisfy 0 < β < 1, and E0(·) denotes the mathematical expectation operator. Note that
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the solution of the optimization problem yields the control variable Kt+1 as a policy function

of the state variable Kt. In the aforementioned household’s optimization problem, Ct is the

household’s consumption, Wt is the nominal wage, Pt is the price level, Lt is the labor (hours

worked), Zt is the rental cost of capital, Kt is the capital holding, Πt is the profit from

monopoly competitive firms, TRt is the government transfer, Mt is the household’s money

holding, Bt is the bond holding, Rn
t is the gross nominal interest rate, 1/Rn

t is the price of

one period discount bond earning the gross nominal return Rn
t , and Qt is the price of capital.

The parameters γ and γm are the coefficients of the relative risk aversion, and ϕ−1 stands for

the Frisch elasticity of labor supply. The parameter am stands for the weight of real money

balance in the utility. For some special cases, γ, γm, ϕ, and am might take some specific

values. For example, when γ = γm = ϕ = 1, the constant relative risk aversion separable

utility becomes the log separable utility. For the case of cashless economy, am → 0.

2.2 Firms’ Profit Maximization and Cost Minimization

There are three types of firms in the general equilibrium model: the final good firms, the

intermediate good firms, and the capital producer.

2.2.1 Final Good Firms

Final good firms are competitive producers of a homogeneous good, Yt, using intermediate

goods, Yt(f). The production function that transforms intermediate goods into final output

is given by

Yt =

󰀗󰁝 1

0

Yt(f)
ε−1
ε df

󰀘 ε
ε−1

,

where ε > 1 is the (constant) elasticity of substitution between intermediate goods. Note

that this production function also exhibits constant returns to scale and diminishing marginal

product for each input (ε−1)/ε < 1. Each firm chooses Yt(f) to minimize costs
󰁕 1

0
Pt(f)Yt(f)df

for a given level of output Yt =
󰁫󰁕 1

0
Yt(f)

ε−1
ε df

󰁬 ε
ε−1 and given Pt(f). The result is the follow-

ing demand function for each intermediate good f :

Yt(f) =

󰀗
Pt(f)

Pt

󰀘−ε

Yt.

Combining with the production function yields the following nominal price index for the

final good:

Pt =

󰀗󰁝 1

0

Pt(f)
1−εdf

󰀘 1
1−ε

.
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2.2.2 Intermediate Good Firms

There is a continuum of intermediate good firms, indexed by f ∈ [0, 1]. Each produces a

differentiated good and is a monopolistic competitor. Each firm uses both labor Lt(f) and

capital Kt(f) to produce output according to

Yt(f) = AtKt(f)
αLt(f)

1−α,

where At is the level of productivity and 0 < α < 1 is the capital share. Firm f chooses

inputs Kt(f) and Lt(f) to minimize the total cost given by

Wt

Pt

Lt(f) + ZtKt(f)

subject to the output demand

AıKt(f)
αLt(f)

1−α = Ȳ

where Ȳ is a given output level. The first order conditions for this optimization problem are

as follows:

Wt/Pt

(1− α)Yt(f)/Lt(f)
= MCt(f) and

Zt

αYt(f)/Kt(f)
= MCt(f),

where MCt(f) is the Lagrange multiplier, interpretable as the marginal cost of producing out-

put. By combining the two first order conditions, it is easy to conclude that Lt(f)/Kt(f) =

(1− α)ZtPt/(αWt). With this condition and the production function Yt(f) = AtKt(f)
αLt(f)

1−α,

we could rewrite MCt(f) as MCt(f) =
1
At

󰀓
Wt/Pt

1−α

󰀔1−α 󰀃
Zt

α

󰀄α ≡ MCt. Note that the marginal

cost and the gross markup are reciprocal; that is, 1 + µt =
1

MCt
, where µt is defined as the

markup.

The intermediate good firms set prices on a staggered basis. Following Calvo (1983), each

period a firm adjusts its price with probability 1 − θ and keeps it fixed with probability θ.

All firms have the same likelihood of adjustment. The adjustment probability is independent

over time and across firms. The average time for a price remaining fixed is given by

(1− θ)
∞󰁛

i=1

θi−1i =
∞󰁛

i=0

θi =
1

1− θ
.

Firms that are able to adjust their prices choose Pt(f), Yt(f), Kt(f) and Lt(f). These firms

maximize expected discounted profits given the production technology and the demand curve.
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They choose the optimal reset price P o
t (f) to maximize

Et

󰀫 ∞󰁛

i=0

θi
󰀗
Λt,i

󰀕
P o
t (f)

Pt+i

−MCt+i

󰀖
Yt,t+i(f)

󰀘󰀬

subject to

Yt,t+i(f) =

󰀕
P o
t (f)

Pt+i

󰀖−ε

Yt+i,

where Et(·) is the mathematical expectation operator, Λt,i = βiC−γ
t+i/C

−γ
t is the stochastic

discount factor, ε is the elasticity of substitution between intermediate goods, and MCt+i is

the nominal marginal cost. Then, the first order condition is

Et

󰀫 ∞󰁛

i=0

θiΛt,iYt,t+i(f)

󰀗
P o
t

Pt+i

− (1 + µ)MCt+i

󰀘󰀬
= 0,

where 1+µ = ε/(ε−1) is the steady state gross markup. Given that (i) all firms that adjust

in period t choose the same price P 0
t and (ii) the average price of firms that do not adjust is

simply last period’s price level Pt−1, then, we can rewrite the price index as

Pt =
󰀅
θ (Pt−1)

1−ε + (1− θ) (P o
t )

1−ε󰀆 1
1−ε .

The entrance of Pt−1 in Pt introduces nominal inertia.

2.2.3 Capital Producer

The capital producer’s optimization problem is to choose the investment level It such that

the profit from producing the capital is maximized:

max
It

[QtJt − It]

subject to

Jt = It −
1

2
c

󰀕
It
Kt

− δ

󰀖2

Kt,

where Jt stands for the technology for producing new capital goods, and the capital producer

invests It units of final output and rents Kt units of capital to produce Jt units of new capital.

c is the adjustment cost parameter, δ is the capital depreciation, and 1
2
c (It/Kt − δ)2 Kt

reflects increasing marginal costs of producing new capital goods after the depreciation.

Then, the first order condition yields

It
Kt

= δ +
1

c

󰀕
1− 1

Qt

󰀖
.
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2.3 Monetary and Fiscal Authorities

The central bank sets the nominal interest rate according to the following simple feedback

rule

1 + rnt = (1 + r)

󰀕
Pt

Pt−1

󰀖φπ
󰀕
Yt

Y ∗
t

󰀖φy

evt ,

where Y ∗
t is the natural (i.e. flexible price equilibrium) level of output with φπ > 1 and

φy > 0, rnt is the nominal interest rate, and r is the zero inflation steady state nominal

interest rate.

The fiscal policy is given by

Gt = Ḡ,

where Gt is the government expenditure, and Ḡ is an exogenously given level of the govern-

ment spending.

The government budget constraint is

Gt = Tt + (Mt −Mt−1) /Pt,

where Tt is the government’s tax revenue, and Mt is the monetary supply.

2.4 Competitive Equilibrium

The resource constraints in the economy contain the income and expenditure constraint

Yt = Ct + It +Gt,

and the evolution of capital constraint

Kt+1 = It −
1

2
c

󰀕
It
Kt

− δ

󰀖2

Kt + (1− δ)Kt.

A competitive equilibrium is defined as an allocation (Yt, Lt, Ct, It, Kt+1) and a price sys-

tem (Zt,Wt, Pt, P
o
t , r

n
t , Qt, µt) such that all agents are maximizing subject to their respective

constraints, all markets clear, and all resource constraints are satisfied, given Pt−1, At, and

Kt.

In practice, it is convenient to express the equilibrium as a system of 10 equations for

(Yt, Ct, It, Lt, Pt, P
o
t , r

n
t , Qt, µt, Kt+1), given the predetermined states Pt−1, At, Kt. It is useful

to group the equations into aggregate demand, aggregate supply and policy blocks as follows.

First, the aggregate demand block has the following 4 equations:

Yt = Ct + It + Ḡ, (resource constraint)
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Ct = Et

󰀫󰀗
(1 + rnt )

Pt

Pt+1

β

󰀘−σ

Ct+1

󰀬
, (consumption Euler equation)

It
Kt

= δ +
1

c

󰀕
1− 1

Qt

󰀖
, (link between asset prices and investment)

and

Et

󰀝
Λt,+1 (1 + rnt )

Pt

Pt+1

󰀞
= Et

󰀝
Λt,+1

󰀕
Zt + (1− δ)Qt+1

Qt

󰀖󰀞
,

(marginal cost of funds = marginal return to capital)

with Zt = αYt/[(1 + µt)Kt], Λt,+1 = βC−γ
t+1/C

−γ
t , and σ = 1/γ. These equations define an

investment-savings curve that relates spending inversely to the real rate (1 + rnt )Pt/Pt+1 and

expectations of the future. Second, the aggregate supply block has the following 5 equations

as follows:

Yt = AtK
α
t L

1−α
t Vt, (production function)

(1− α)
Yt

Lt

= (1 + µt)
Lϕ
t

C−γ
t

, (labor market equilibrium)

Pt =
󰀅
θ (Pt−1)

1−ε + (1− θ) (P o
t )

1−ε󰀆 1
1−ε , (price adjustment)

Et

󰀫 ∞󰁛

i=0

θiΛt,i

󰀗
P o
t

Pt+i

󰀘−ε

Yt+i

󰀗
P o
t

Pt+i

− 1 + µ

1 + µt+i

󰀘󰀬
= 0, (Phillips curve)

and

Kt+1 = It −
1

2
c

󰀕
It
Kt

− δ

󰀖2

Kt + (1− δ)Kt, (evolution of capital)

with Vt =

󰀗󰁕 1

0

󰀓
Pt(f)
Pt

󰀔−ε

df

󰀘−1

and [1 + µt+i]
−1 = MCt+i. Vt reflects the misallocation of

intermediate inputs due to relative price dispersion. Note that Vt = 1 in the zero inflation

steady state. Finally, the policy block is given by

1 + rnt = (1 + r)

󰀕
Pt

Pt−1

󰀖φπ
󰀕
Yt

Y ∗
t

󰀖φy

eυt , (interest rate rule)

where Y ∗
t denotes the level of output in the flexible price equilibrium (the natural output).

Given the exogenous processes for the log of productivity At satisfying the AR(1) model:

lnAt = ρa lnAt−1 + εat,

and the monetary shock υt satisfying the AR(1) model:

υt = ρmυt−1 + εmt.

Therefore, the equilibrium system with 10 unknown variables (Yt, Ct, It, Lt, Pt, P
o
t , r

n
t , Qt, µt, Kt+1)

in the above 10 equations is complete.
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§3 Computational Challenges of the Discrete-Time DSGE models

3.1 Log-linearization

To solve this typical nonlinear dynamic stochastic general equilibrium models, the most

common practice since Kydland and Prescott (1982) and King et al. (1988) is to approx-

imate the solutions using linear methods, especially the log-linearization method. As an

illustration, we follow the model that has been set up above and show the procedure of the

log-linearization as below.

Let X with no time subscript, no star superscript, and no tilde denote the level of a

variable at the zero-inflation steady state, where Pt/Pt−1 = 11. Let 󰁨Xt ≡ lnXt − lnX stand

for the log-linear deviation of a variable from its zero-inflation steady state. Specially, since

the interest rate has already been in a percentage, its log-linearization follows 󰁩Rn
t ≡ lnRn

t ,

where Rn
t = 1+ rnt denotes the gross nominal interest rate. Further, we have the net interest

rate rnt ≈ 󰁩Rn
t and 󰁨rnt = drnt = rnt −r. Let µ̂t = µt−µ denote the deviation of the markup from

its steady state level. Let X∗
t denote the level of a variable in the flexible price equilibrium

(the natural level). Let ρ ≡ − log β and r ≈ β−1 − 1. Log-linearize around the steady

state with zero inflation and we can write the log-linearized equilibrium into three blocks as

follows.

The first block is for the aggregate demand given by

󰁨Yt =
C

Y
󰁨Ct +

I

Y
󰁨It, (resource constraint)

󰁨Ct = Et

󰁱
−σ (rnt − πt+1 − ρ) + 󰁪Ct+1

󰁲
, (consumption Euler equation)

󰁨It − 󰁩Kt =
1

cδ
󰁩Qt, (link between asset prices and investment)

rnt − πt+1 − ρ = (1− τ)
󰀓
−󰁥µt + 󰁨Yt − 󰁩Kt

󰀔
+ τ󰁨Qt+1 − 󰁩Qt,

(marginal cost of funds = marginal return to capital)

where 󰁨Zt = −󰁥µt+ 󰁨Yt− 󰁨Kt, πt = 󰁨Pt− 󰁪Pt−1, and τ = 1− δ
󰁫

αY
(1+µ)K

+ (1− δ)
󰁬−1

= (1−δ)/[Z+

(1− δ)].

The second block is for the aggregate supply formulated as

󰁨Yt = 󰁨At + α 󰁨Kt + (1− α)󰁨Lt, (production function)

󰁨Yt − 󰁨Lt = 󰁥µt + ϕ 󰁨Lt + γ 󰁨Ct, (labor market equilibrium)
1Note that in the zero-inflation steady state rn = r = ρ.
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πt = −λ󰁥µt + βEt {πt+1} , (price adjustment and Phillips curve)

where λ = (1− θ)(1− θβ)/θ, and

󰁨Kt+1 = δ󰁨It + (1− δ)󰁩Kt, (evolution of capital)

Finally, the last one is for the monetary policy provided by

rnt = ρ+ φππt + φy

󰀓
󰁨Yt − 󰁩Y ∗

t

󰀔
+ υt. (interest rate rule)

For readers with further interests in the details of the log-linearization method, we provide

the detailed technical derivations in Appendix for the above results.

The log-linearization method is a simple and convenient tool to study the equilibrium

dynamics. If the shocks driving aggregate fluctuations are small and an interior stationary

solution exists, the first-order approximations provide adequate answers to questions such as

local existence, determinacy of equilibrium and the size of the second moments of endogenous

variables; see, for example, Schmitt-Grohé and Uribe (2004) for details. However, there are

several problems that exist in the process of log-linearization. First, the log-linearization

omits the higher-order terms. Therefore, the topics that are closely related with the higher-

order terms, such as the risk terms, are not able to be fully studied. Due to this shortage, the

model’s connection with the asset prices and the financial risk is very limited. In addition,

the first-order approximation techniques are not well suited to handle questions such as

welfare comparisons across alternative stochastic or policy environments.

Second, the log-linearization is not able to provide the global solution for nonlinear mod-

els. It is only able to solve the model locally, at the cost of missing the most optimal

solution due to missing the true global optimum2. This becomes a relevant issue not only

for its qualitative and quantitative economic implications but also from an econometric and

statistical perspective. When concerned about the estimation of the structural parameters of

the model, an econometrician/statistician is more interested in studying the global shape of

the approximated likelihood function. This will not be possible if the solution of the model

is built from a local approximation. Furthermore, as shown in Fernández-Villaverde and

Rubio-Ramírez (2005), it is possible to obtain a better fit of the model to the data as well

as more accurate point estimates of the moments of the model by exploiting the nonlinear
2One exception is that the equivalent linearization representation of a nonlinear problem generates the

same global optimum but more efficiently.
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structure of the economic and mathematical model, which can only be achieved through the

use of global methods; see, for instance, Parra-Alvarez (2018) for details.

Finally, we mark that even if the performance of linear methods is disappointing along

a number of dimensions, linearization in levels is preferred to log-linearization for both the

benchmark calibration and the highly nonlinear cases in some real applications, as argued

in Aruoba et al. (2006).

3.2 Nonlinear Methods of Solutions

The ability to find global solutions and estimate highly nonlinear DSGE models is of

critical importance for central banks and policy makers with their interests in quantifying

the impacts of economic policies in a DSGE model. Since Taylor and Uhlig (1990) and

Coleman (1990, 1991), a number of nonlinear solution methods in discrete time have been

proposed, including the perturbation methods proposed by Judd and Guu (1997) and the

projection methods initiated by Judd (1992), as alternatives to the linear approaches and

to the value function iteration. The perturbation method, formally introduced by Fleming

(1971), has been applied extensively to economic models by Judd and co-authors. Note

that a first order perturbation is equivalent to linearization when performed in levels, and

is equivalent to log-linearization when performed in logs. Aruoba et al. (2006) found that

higher order perturbations display a much superior performance over linear methods for a

trivial marginal cost. These findings are based on the computations in first, second, and fifth

order, both in levels and in logs. The projection method, on the other hand, is found to be

more stable and accurate than the perturbation method. For the projection method, Aruoba

et al. (2006) found that finite elements perform very well for all parameterizations. It is

extremely stable and accurate over the range of the state space even for high values of the

risk aversion and the variance of the shock. This property is crucial in estimation procedures,

where accuracy is required to obtain unbiased estimates. Chebyshev polynomials share all the

good results of the finite elements method and are easier to implement. However, in a model

where policy functions have complicated local behavior, finite elements might outperform

Chebyshev polynomials.

Other methods to solve the DSGE models globally include the state space based approach,

as in Krusell and Smith (1997, 1998) with a parametric law of motion and as in Den Haan

and Rendahl (2010) with a nonlinear law of motion, and the simulation based approach as in
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Judd et al. (2011) and Maliar et al. (2011), which solve a model only in the realized ergodic

state space in the equilibrium. For more details, the reader is referred to the aforementioned

papers.

Even though the nonlinear methods as mentioned above can overcome some shortages of

the linear methods by improving the approximation, there exist some limitations as noted

by several papers. For example, Taylor and Uhlig (1990) found that the nonlinear solution

methods for solving the stochastic growth models are not satisfactory in answering the

volatility related questions, such as the relative volatility of investment and consumption.

Schmitt-Grohè and Uribe (2004) derived a second-order approximation to the policy function

of a general class of dynamic, discrete time, rational expectations models, and showed that

the coefficients on the terms linear and quadratic in the state vector in a second-order

expansion of the decision rule are independent of the volatility of the exogenous shocks.

Therefore, up to the second order, the presence of uncertainty affects only the constant term

of the decision rules.

In parallel, a desire to understand the economic phenomena that can not easily be cap-

tured by linear models makes nonlinear models more relevant for empirical macroeconomics,

especially since the end of the great moderation, such as the financial crisis and the COVID-

19 pandemic. As noted by Aruoba et al. (2013), there are several types of nonlinearities that

can appear in a nonlinear DSGE model. The first is for the case that decision rules display

curvature and possibly asymmetries such as non-convex adjustment costs, and the second is

for kinks in decision rules, such as the zero lower bound on interest rates, credit constraints,

borrowing constraints, and default. In addition to this categorization, we add a third type

of nonlinearities, that are the nonlinearities related with uncertainty, such as the stochastic

volatility, time-varying risk premia, rare disasters, Poisson jumps, and Markov switches; see

Fernández-Villaverde et al. (2011) and Rudebusch and Swanson (2012) for examples.

More recently, Fernández-Villaverde and Levintal (2018) used a mixture of projection and

perturbation methods for computing the equilibrium of DSGE models with rare disasters.

They found that the Taylor projection delivers the best accuracy/speed tradeoff compared to

the third-order perturbations and the Smolyak collocation. Cao et al. (2023) introduced the

global DSGE (GDSGE) framework and a novel global solution method, called simultaneous

transition and policy function iterations, for solving DSGE models. In the GDSGE, the state

variables and their global domain need to be specified. The algorithm solves jointly for policy
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and transition functions over the iterations and is a pure projection method using wealth

share as an endogenous state variable with an implicit law of motion, different from the

standard policy function iteration algorithms as in Coleman (1990, 1991) and Judd (1992).

Auclert et al. (2021) and Lee (2024) solved the DSGE models globally in the sequence space.

Additionally, Lee (2024) developed the repeated transition method to accurately compute the

sequence of the conditional expectation of economic agents utilizing the ergodicity of DSGE

models. Neither a parametric law of motion nor parametrized expectation is necessary for

the implementation. The method is flexibly applicable to standard macro models with and

without micro-level heterogeneity, especially for solving models with substantial nonlinear-

ities in aggregate fluctuations, as the method does not rely on a (potentially misspecified)

parametric form of the aggregate law of motions. This method provides a novel angle that a

nonlinear model with complex endogenous aggregate states (e.g., heterogeneous-agent mod-

els) can be solved using the sufficient statistic approach, and the validity of the approach

can be tested based on some theory. For further explorations, there are approaches which

adopt the machine learning and deep learning techniques, as in Han et al. (2021), Azinovic

et al. (2022), and Fernández-Villaverde et al. (2023), as well as the adaptive sparse grids,

as in Winschel and Krätzig (2010) and Brumm and Scheidegger (2017).

The estimation of the DSGE models can be categorized into likelihood based approaches

and moments based approaches; see DeJong and Dave (2007) and Canova (2007). The like-

lihood based approaches use nonlinear filters for the construction of the likelihood function,

such as the particle filter and the Kalman filter. Farmer (2021) developed the discretization

filter for approximating the likelihood of nonlinear, non-Gaussian state space models. The

major difficulty that arises when studying nonlinear state space models is that the likelihood

cannot be evaluated recursively in closed form as it can in linear models with the Kalman

filter. The discretization filter solves this problem by constructing a discrete-valued Markov

chain that approximates the dynamics of the state variables.

The moments based approaches for estimating the nonlinear DSGE models include the

generalized method of moments (GMM); reviewed as in Ruge-Murcia (2013), the instrumen-

tal variables approach; see Canova (2007), the simulated method of moments (SMM); see

Duffie and Singleton (1993), Ruge-Murcia (2007), and Ruge-Murcia (2012), and the indirect

inference; see Smith (1993), Dridi et al. (2007), and Creel and Kristensen (2011).

Finally, as noted in Andreasen, et al. (2017), the higher-order approximations often
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generate explosive sample paths because of the resulting unstable steady states in the ap-

proximated system. The presence of explosive behavior complicates any model evaluation

because no unconditional moments exist in this approximation. Any estimation method us-

ing unconditional moments, such as GMM or SMM, is inapplicable because it relies on finite

moments from stationary and ergodic probability distributions. Non-explosive sample paths

are also required for likelihood methods, for instance, when using the particle filter outlined

in Fernández-Villaverde and Rubio-Ramírez (2007). To overcome this issue, Andreasen et

al. (2017) applied pruning to perturbation approximations of any order and showed how

pruning greatly facilitates the inference of DSGE models.

§4 Dynamic Programming Methods for Continuous-Time
Macro-Finance Models

The continuous-time models can be dated back to the finance literature since the seminal

works by Robert C. Merton and others in 1970s. During 1990s, the continuous-time mod-

els were successfully applied to the growth and the neoclassical investment theories. Since

the financial crisis in 2008, there has been a boom of continuous-time methods in macroe-

conomics, especially in the fields of business cycle and financial market. These literatures

connect the areas that are seemingly disconnected in the past: finance, macroeconomics, and

mathematics as well as statistics. As a bridge, the continuous-time methods can provide a

promising framework to integrate asset pricing theories studied in the finance literature to

the real side of the economy studied in macroeconomics, together with mathematical and

statistical tools.

Theoretically, macroeconomics models in continuous time are preferred over the discrete-

time models because of their analytical tractability. The continuous-time methods transform

optimal control problems into stochastic differential equations, such as the Hamilton-Jacobi-

Bellman (HJB) equation, the Kolmogorov forward (KF) equation, and the Black-Scholes

model. Solving these SDEs is much simpler than solving the Bellman or the Chapman-

Kolmogorov equations in discrete time. Compared with the discrete-time framework, the

elegant and powerful mathematics such as differential equations and stochastic processes can

be well applied in the continuous-time framework. In fact, it is possible to derive closed-form

solutions for a wider class of models in continuous time without the need for strong parametric

restrictions. On the handling of borrowing constraints, the continuous-time framework is
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advantageous in the presence of occasionally binding constraints, as these are dealt with

using boundary conditions rather than inequalities of the optimality conditions. Finally,

continuous-time methods are suited to studying optimal stopping problems and situations

where actions are taken infrequently because they entail a fixed cost impulse control problem

as described in Stokey (2009), such as a country’s decision to default on its sovereign debt

as discussed in Parra-Alvarez (2018).

In particular, the continuous-time framework is well applied in the heterogeneous agent

models as in the work of Achdou et al. (2022). When recast in continuous time, heteroge-

neous agent models boil down to systems of two coupled SDEs. The first SDE is the HJB

equation for the optimal choices of a single individual who takes the evolution of the distribu-

tion and hence prices as given. An individual’s consumption saving decision depends on the

evolution of the interest rate which is in turn determined by the evolution of the distribution.

And, the second SDE is the KF equation characterizing the evolution of the distribution,

given optimal choices of individuals. The evolution of the distribution depends on individu-

als’ saving decisions. More generally, this approach is to cast heterogeneous agent models in

terms of the mathematical theory of the mean field games (MFG) initiated by Huang et al.

(2003, 2007) and Lasry and Lions (2007). The system of coupled HJB and KF equations is

known as the backward-forward MFG system. The two equations run in opposite directions

in time: the HJB equation runs backward and looks forward. It answers the question “given

an individual’s valuation of income and wealth tomorrow, how much will she save today and

what is the corresponding value function today?” In contrast, the KF equation runs forward

and looks backward. It answers the question “given the wealth distribution, savings decisions

and the random evolution of income today, what is the wealth distribution tomorrow?”

Computationally, continuous time has resurfaced as a popular environment for economic

models because of its efficiency in numerical analysis. Solving a workhorse incomplete mar-

kets model in continuous time is much faster compared to its discrete-time counterpart as

argued in Rendahl (2022). Financial frictions in macroeconomics require the nonlinear tech-

niques. This is especially important for the macro-finance models which include the financial

intermediary in the continuous-time framework, such as Chen (2010), Brunnermeier and San-

nikov (2014), Phelan (2016), Drechsler, Savov, and Schnabl (2018), He and Krishnamurthy

(2019), Hansen et al. (2024) and D’Avernas and Vandeweyer (2024). Modeling this class of

problems rarely leads to analytical solutions and needs to resort to the numerical techniques
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that provide accurate and fast solution methods.

Continuous time imparts a number of computational advantages relative to the discrete

time. First, in the continuous-time models, the optimality conditions (the first-order con-

ditions) that describe the equilibrium allocations of a stochastic economy are deterministic;

see, Chang (2010). Since the HJB equation does not contain future values of the value func-

tion and the optimal policies only depend on the current value function, there is no need

to approximate expected values numerically. Hence, the computational cost and the numer-

ical errors can be reduced. This feature can also tame the “curse of dimensionality”, with

which the standard dynamic programming in discrete-time models often struggle with, given

that the dynamic programming equation does not include any composition of functions or

expectation operators in the continuous-time framework; see, for example, Doraszelski and

Judd (2012). The efficiency of the perturbation methods and the projection methods can

be improved in continuous time as well. Since there is no need to approximate composition

of unknown functions, neither to numerically approximate the integrals associated with ex-

pected values, the approximations use much less computing time in both perturbation and

projection methods. Specifically, Parra-Alvarez (2018) assessed the performance of the first-

and second-order perturbation and the projection methods to compute an approximated

solution of continuous-time DSGE models based on the maximized HJB equation and the

first-order conditions. It is found that the fit of perturbation deteriorates when the degree

of nonlinearities increases and the approximated value is different from that obtained by

global methods. Despite perturbation being only locally accurate, the increase in the order

of approximation improves substantially the goodness of fit. Aruoba (2006) pointed that

the projection methods are more accurate and robust than perturbations for a wide range

of values of the state-space centered around the deterministic steady state, similarly to the

discrete-time case. Their accuracy extends to different degrees of nonlinearities.

Second, the continuous-time problems with discretized state space are very sparse. The

sparse structure of the implicit method (with finite differences) is by many considered the

most important practical implication of continuous time, such as the sparsity of transition

matrices as discussed in Rendahl (2022).

Third, the viscosity solutions and finite difference methods can handle the non-differentiable

and non-convex problems in continuous time without the need to change the algorithm, while

these problems are difficult to handle in the standard discrete time methods.
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To compare and contrast the performance of the continuous-time methods and the

discrete-time methods further, Rendahl (2022) compared the value function iteration for

discrete time, and the explicit and implicit finite difference methods for continuous time.

The implicit finite difference method is the continuous time equivalent to Howard’s improve-

ment algorithm in discrete time, yet the implicit method is faster. Since the HJB equation

does not contain future values of the value function, the update of the value function can

be formulated as the solution to a system of linear equations. Through the sparse matrix

operations, this system can be solved efficiently. The explicit finite difference method in

continuous time is where the value function iteration in discrete time converges to. Since the

value function iteration is less efficient, the explicit method generally has slow convergence.

Mathematically or statistically, the continuous-time models do not impose a priori a

perfect synchronization of decisions among economic agents, since the decision interval of

the model is not tied to the observation interval in the data. They also allow for a clear

distinction between flows and stocks in the economy; see, the paper by Parra-Alvarez (2018)

for more discussions.

4.1 Hamilton-Jacobi-Bellman Equations

The HJB model is one of the most popular mathematical and statistical models in

macroeconomics to characterize the macroeconomic activities; see, for example, Fernández-

Villaverde and Nuño (2021) for details. The basic setup is that an agent maximizes the

following

max
{αt}∞t=0

E0

󰀗󰁝 ∞

0

e−ρtu (αt, xt) dt

󰀘

subject to the law of motion for the state

dxt = µt (xt,αt) dt,

where xt ∈ X ⊂ RN is the state variable (such as Kt in the new Keynesian model), αt ∈
A ⊂ RM is the control variable (such as Ct, Lt, and Kt+1 in the new Keynesian model),

αt = αt (xt) is the policy function, ρ > 0 is the discount factor (recall that in the notation

of new Keynesian model: β = e−ρ), µ(·) is the drift, and u(·) is the instantaneous utility. It

satisfies the HJB equation as follows

ρV (x) =
∂V

∂t
+max

α

󰀋
u(α, x) + µ(x,α)⊤∇xV (x)

󰀌
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with a transversality condition limT→∞ e−ρTVT (x) = 0, where V (x) stands for the value

function at time t with the time subscript dropped, which might abuse notation. Here, A⊤

denotes the transpose of a vector or matrix A and tr(·) stands for the trace of a matrix. Note

that in the HJB equation, we use x to denote the vector of the state variables (dimension

N × 1), µ(x,α) as the vector of the drift terms (dimension N × 1), and σ(x,α) as the vector

of the risk terms (dimension N × 1), and σ2(x,α) stands for the N ×N variance-covariance

matrix. Finally, we use ∇xV (x) to denote the gradient of V (x) (dimension N × 1) and

∆xV (x) to denote the Hessian matrix of V (x) (dimension N ×N).

In a diffusion format, popular in the finance literature, the state is now

dxt = µt (xt,αt) dt+ σt (xt,αt) dWt,

where Wt is the standard Brownian motion. Then, the HJB equation is given by

ρV (x) =
∂V

∂t
+max

α

󰀝
u(α, x) + µ(x,α)⊤∇xV (x) +

1

2
tr
󰀃
∆xV (x)σ2(x,α)

󰀄󰀞
.

To characterize a possible extension, one can use the following jump model

dxt = µt (xt,αt, st) dt,

where st is a two-state continuous-time Markov chain st ∈ {s1, s2} and the Poisson process

jumps from state 1 to state 2 with intensity λ1 and vice-versa with intensity λ2, which is

the so-called famous Markov switching (diffusion) model in the finance literature. Thus, the

HJB equation for this case is

ρVi(x) =
∂Vi

∂t
+max

α

󰁱
u(α, x) + µ (x,α, si)

⊤ ∇xVi(x)
󰁲
+ λi (Vj − Vi)

for i, j = 1, 2 for i ∕= j, where Vi(x) ≡ V (x, si) denotes the value function at time t and state

si, with the time subscript dropped. When the HJB equation includes both the volatility

and jumps, we can have the following jump-diffusion process:

dxt = µt (xt,αt, st) dt+ σt (xt,αt) dWt,

where st and σt (xt,αt) dWt constitute a Lévy process. Hence, the HJB equation that we

want to solve numerically is given by

ρVi(x) =
∂Vi

∂t
+max

α

󰀝
u(α, x) + µ (x,α, si)

⊤ ∇xVi(x) +
1

2
tr
󰀃
∆xVi(x)σ

2(x,α)
󰀄󰀞

+ λi (Vj − Vi)

with a transversality condition limT→∞ e−ρTVT (x) = 0, and some boundary conditions de-

fined by the dynamics of xt.
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4.2 Fokker-Plank Equations

Given a stochastic process xt with an associated infinitesimal generator A, its probability

density function g(x) is defined as: Pt0 [xt ∈ Ω] =
󰁕
Ω
g(x)dx for any Ω ⊂ X following the

dynamics: ∂g/∂t = A∗g, where A∗ is the adjoint operator of A. Note that we omit the time

subscript of the function g(x). Let xt be a stochastic process given by the SDE as follows

dxt = µt (xt) dt+ σt (xt) dWt,

which is a diffusion model or the so-called Black-Scholes model, widely used in the finance

literature. The evolution of the associated density is given by:

∂g

∂t
= A∗g = − ∂

∂x
[µ(x)g(x)] +

1

2

∂2

∂x2

󰀅
σ2(x)g(x)

󰀆

with initial value g0(xt) = δ (xt − x0), which is the well known Kolmogorov forward equation.

Now, consider the case with a Poisson jump. To do so, let xt be a stochastic process

given by:

dxt = µt (xt, st) dt,

where st is a two-state continuous-time Markov chain st ∈ {s1, s2} with intensities λ1 and

λ2, respectively. Then, the evolution of the density is given by:

∂gi/∂t = A∗g = − ∂

∂x
[µ (x, si) gi(x)]− λigi(x) + λjgj(x)

for i, j = 1, 2 for j ∕= i with initial value g1,0(xt) = δ (xt − x0) and g2,0(xt) = 0. Next, for xt

following a Lévy process

dxt = µt (xt, st) dt+ σt (xt) dWt,

the evolution of the density is given by:

∂gi/∂t = A∗g = − ∂

∂x
[µ (x, si) gi(x)]− λigi(x) + λjgj(x) +

1

2

∂2

∂x2

󰀅
σ2(x)gi(x)

󰀆
.

4.3 Markov Equilibrium

Similar to the discrete-time model, a competitive equilibrium in the continuous time model

is characterized by the market prices together with the allocations, such that given prices,

agents optimize and markets clear. From the perspective of the macroeconomic dynamics,

the continuous-time framework can be used to further study the stationary equilibrium and
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Table 1: Types of equilibrium in macroeconomics models

Type of
equilibrium

Property Steady state
Dynamics of

state variables

Competitive
equilibrium

Deterministic
(no shock)

Converge to
a deterministic steady state
(stationary value);
Time-invariant
competitive equilibrium

Deterministic evolution

Stationary
equilibrium

Stochastic
(subject to shocks, but volatilities
are at constant levels);
Time-invariant Markov equilibrium

Converge to
a stochastic steady state
(the value of the state variable
with the highest probability
from the stationary distribution)

Evolution with
constant volatilities
eg. σt = σ

Markov
equilibrium

Stochastic
(subject to shocks and
volatilities are time-varying)

Converge to
a stationary distribution

Evolution with
time-varying volatilities
eg. σt ∕= σ

the Markov equilibrium due to its advanced stochastic features. In particular, the three

types of equilibrium in macroeconomics models are summarized in Table 1 below.

The stationary equilibrium is reached when the volatilities in the economic system are

at constant levels, even though the economy is still subject to the fundamental shocks. A

Markov equilibrium is a set of functions for the control variables, the monetary and fiscal

policies, the drifts and diffusions such that the agents’ optimal controls solve their respective

HJB equations given the law of motion of the state variable. In contrast to the stationary

equilibrium, the Markov equilibrium is where there is uncertainty in the value of the state

variable and its law of motion is endogenously solved by other structural variables in the

model. The state variable reaches a stationary distribution in the Markov equilibrium, in

contrast to the case where the state variable reaches a steady state value in the competitive

equilibrium. A stochastic steady state under the stationary distribution is the value of the

state variable with the highest frequency in the stationary distribution3.

To solve the Markov equilibrium in continuous time, firstly we need to solve the opti-

mization problems and derive the allocations and prices as smooth functions of the state

variable. Then, define the stochastic process for the state variable and derive the law of

motion of the state variable, which is determined by the structural variables in the model
3Note that the stationary equilibrium in our paper is not equivalent to the stationary value, which stands

for the deterministic steady state under the competitive equilibrium. Indeed, Achdou et al. (2022) defined
the stationary equilibrium as the time-invariant competitive equilibrium. However, we refer this concept as
the stationary value in this paper.
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using Ito’s lemma. Finally, solve for the equilibrium by converting the stochastic differential

equations into a system of ODEs in the asset prices to find a numerical solution if there is

no explicit solution; see, for example, the book by Zhu et al. (2013) for more details. The

ODEs can be solved using appropriate boundary conditions.

4.4 Solution Methods

There are several methods to solve the SDEs (the HJB equations and the KF equations)

in the continuous-time models. First, the finite difference methods can approximate the

derivatives by differences; see, for instance, the book by Zhu et al. (2013) for details. Second,

the perturbation method can use a Taylor expansion of order q to solve the SDEs around

the deterministic steady state. Third, the projection method can project the value function

over a subspace of functions.

As an illustrative example, an implicit upwind finite difference scheme is used to solve

a simple heterogeneous agent model, the so-called Huggett (1993) model. This scheme

converges to the viscosity solution of the problem, as long as it satisfies three properties:

monotonicity, stability, and consistency. To be specific, an agent maximizes:

max
{ct}∞t=0

E0

󰀗󰁝 ∞

0

e−ρtu (ct) dt

󰀘

subject to dat = (st +Rtat − ct) dt, which yields a global solution, where st ∈ {s1, s2} is a

Markovian chain with intensities s1 → s2 : λ1 and s2 → s1 : λ2, at is the agent’s wealth at

the period t, ct is the consumption, ρ > 0, u(·) is the momentary utility function, Rt is the

gross real interest rate, and st is the idiosyncratic endowment. Then the HJB equation is as

follows

ρVi(a) = max
c

{u(c) + µi(a)V
′
i (a)}+ λi (Vj(a)− Vi(a))

for i = 1 and 2, where µi(a) is the drift with µi(a) = si + Ra − c(a) and V ′
i (a) is the

derivative of Vi(a). When the market clears, the aggregate income normalizes to one; that

is, E [st] = 1. Total assets in zero net supply is
󰁓2

i=1

󰁕
agt (a, si) da = 0, where gt (a, si) is

the income wealth density. Using the implicit finite difference scheme, we can write the finite

difference approximation of the HJB equation as:

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u
󰀃
cni,j

󰀄
+
󰀃
V n+1
i,j

󰀄′ 󰀃
sj +Rai − cni,j

󰀄
+ λj

󰀃
V n+1
i,−j − V n+1

i,j

󰀄
,
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where the derivative V ′
i,j = V ′

j (ai) is approximated with either a forward or a backward

difference approximation

V ′
i,j,F ≡ Vi+1,j − Vi,j

∆a
, and V ′

i,j,B ≡ Vi,j − Vi−1,j

∆a
.

Under the upwind scheme, using the forward difference approximation whenever the drift

of the state variable is positive and the backward difference approximation whenever it is

negative, we have

µi,j,F = sj +Rai − ci,j,F , µi,j,B = sj +Rai − ci,j,B,

and

V ′
i,j = V ′

i,j,F1{µi,j,F>0} + V ′
i,j,B1{µi,j,B<0} + V̄ ′

i,j1{µi,j,F󰃑0󰃑µi,j,B},

where V̄ ′
i,j = u′ (sj +Rai). Thus, the HJB equation can be written as:

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u
󰀃
cni,j

󰀄
+
󰀃
V n+1
i,j,F

󰀄′ 󰀅
sj +Rai − cni,j,F

󰀆+
+
󰀃
V n+1
i,j,B

󰀄′ 󰀅
sj +Rai − cni,j,B

󰀆−

+ λj

󰀅
V n+1
i,−j − V n+1

i,j

󰀆

This equation constitutes a system of 2×I 4 linear equations, and it can be written in matrix

notation using the following steps
V n+1
i,j − V n

i,j

∆
+ρV n+1

i,j = u
󰀃
cni,j

󰀄
+
V n+1
i+1,j − V n+1

i,j

∆a

󰀃
µn
i,j,F

󰀄+
+
V n+1
i,j − V n+1

i−1,j

∆a

󰀃
µn
i,j,B

󰀄−
+λj

󰀅
V n+1
i,−j − V n+1

i,j

󰀆
.

Collecting terms with the same subscripts on the right-hand side, it leads to the following
V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u
󰀃
cni,j

󰀄
+ V n+1

i−1,jxi,j + V n+1
i,j yi,j + V n+1

i+1,jzi,j + V n+1
i,−j λj,

where xi,j = −
󰀃
µn
i,j,B

󰀄−
/∆a, yi,j = −

󰁫󰀃
µn
i,j,F

󰀄+ −
󰀃
µn
i,j,B

󰀄−󰁬
/∆a−λj, and zi,j =

󰀃
µn
i,j,F

󰀄+
/∆a.

Thus, this equation can be written in the matrix notation as 1
∆
(vn+1 − vn) + ρvn+1 =

un +Anvn+1, where

An =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

y1,1 z1,1 0 . . . 0 λ1 0 0 . . . 0
x2,1 y2,1 z2,1 0 . . . 0 λ1 0 0 . . .
0 x3,1 y3,1 z3,1 0 . . . 0 λ1 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . ...

0
. . . . . . xI,1 yI,1 0 0 0 0 λ1

λ2 0 0 0 0 y1,2 z1,2 0 0 0
0 λ2 0 0 0 x2,2 y2,2 z2,2 0 0
0 0 λ2 0 0 0 x3,2 y3,2 z3,2 0

0 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 · · · · · · 0 λ2 0 · · · 0 xI,2 yI,2

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

2I×2I

,

4We assume that i = 1, . . . , I and j = 1, . . . , J .
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which is from the final HJB iteration, and un =
󰀃
u
󰀃
cn1,1

󰀄
, . . . , u

󰀃
cnI,1

󰀄
, u

󰀃
cn1,2

󰀄
, . . . , u

󰀃
cnI,2

󰀄󰀄⊤.

This system can be written as Bnvn+1 = bn, Bn =
󰀃

1
∆
+ ρ

󰀄
I−An, and bn = un+ 1

∆
vn, which

can be solved very efficiently using sparse matrix (since An is a sparse matrix) routines.

To solve the KF equation, we have to solve the following ODE using the finite difference

method

0 = − d

da
[µj(a)gj(a)]− λjgj(a) + λ−jg−j(a).

where g(·) is the density function. With the Poisson jumps, gj(·) denotes the density function

under state j, and g−j(·) is the density function under state −j. Then, the ODE can be

approximated by

−
gi,j

󰀃
µn
i,j,F

󰀄+ − gi−1,j

󰀃
µn
i−1,j,F

󰀄+

∆a
−

gi+1,j

󰀃
µn
i+1,j,B

󰀄− − gi,j
󰀃
µn
i,j,B

󰀄−

∆a
− gi,jλj + gi,−jλ−j = 0.

Collecting terms, we obtain

gi−1,jzi−1,j + gi,jyi,j + gi+1,jxi+1,j + gi,−jλ−j = 0,

where xi+1,j = −
󰀃
µn
i,j+1,B

󰀄−
/∆a, yi,j = −

󰁫󰀃
µn
i,j,F

󰀄+ −
󰀃
µn
i,j,B

󰀄−󰁬
/∆a − λj, and zi−1,j =

󰀃
µn
i,j−1,F

󰀄+
/∆a. This approximation can be written in the matrix form A⊤g = 0 where A⊤

is the transpose of the intensity matrix A (A = limn→∞ An) from the HJB equation.

The matrix A captures the evolution of the discrete Poisson process (continuous-time

Markov chain). To find the stationary distribution, one solves the eigenvalue problem ATg =

0, a system of 2 × J linear equations. The reason for using the transpose of the intensity

matrix A can be made more precise by the differential operators, so that one can write the

HJB equation in terms of a differential operator A, the infinitesimal generator of the process.

Similarly, the Kolmogorov forward equation can be written in terms of an operator A∗, the

adjoint of the operator A in the HJB equation, which is the infinite-dimensional analogue of

a matrix transpose. A is simply the discretized infinitesimal generator, whereas A⊤ is the

discretized version of its adjoint, the Kolmogorov forward operator.

4.5 Transition Dynamics and Impulse Responses

In this section, we provide several recent methods in the existing literature on computing

the transition dynamics and impulse response functions in the continuous-time models. The

computational method for solving transition dynamics from an arbitrary initial condition

can also be used to compute nonlinear impulse responses to unanticipated aggregate shocks,
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the so-called MIT shocks, i.e., an unanticipated (zero probability) shock followed by a de-

terministic transition as in Krusell and Smith (1998). Recently, Fernández-Villaverde, et al.

(2023) further extended the model in Krusell and Smith (1998) by proposing a nonparametric

perceived law of motion and updated with machine learning, and Boppart et al. (2018) and

Auclert et al. (2021) used the linearized counterpart to compute linear impulse responses

to small MIT shocks in order to obtain further speed gains. Additionally, both Auclert et

al. (2021) and Oskolkov (2023) used the sequence-space Jacobians to compute the impulse

responses. For the type of the representative agent model, He and Krishnamurthy (2019)

provided a method to compute the impulse responses in a continuous-time framework. Now,

let us introduce these methods in detail.

When there is aggregate uncertainty, Krusell and Smith (1998) proposed a bounded ra-

tionality method. Households in the model approximate the distribution by a number of its

moments, e.g., the mean
󰁕∞
0

󰁕 s̄

s
ag(a, s)dads = Kt, where st is the labor productivity follow-

ing the Ornstein-Uhlenbeck process as dst = θ (ŝ− st) dt+σdBt. The production function is

given by Yt = F (At, Kt, Lt) = AtK
α
t L

1−α
t with the aggregate total factor productivity (TFP)

shock At, following a diffusion process as dAt = µA (At) dt + σA (At) dWt. The capital Kt

evolves according to dKt = µK (Kt, At)Ktdt. Then, the HJB simplifies to

ρV (a, s, A,K) =max
c≥0

u(c) + [ws+Ra− c]
∂V

∂a
+ θ(ŝ− s)

∂V

∂s
+

σ2

2

∂2V

∂s2

+ µA(A)
∂V

∂A
+

σ2
A(A)

2

∂2V

∂A2
+KµK(K,A)

∂V

∂K
.

Suppose the perceived law of motion (PLM) has a simple parametric (linear) form:

µK(K,A;θ) = θ0 + θ1K + θ2KA+ θ3A. (PLM)

Then, begin with an initial guess of θ0 = (θ00, θ
0
1, θ

0
2, θ

0
3), and set n := 0,

1. Given µK

󰀃
K,A;θ0

󰀄
, solve the HJB equation and obtain matrix A.

2. Conduct the Monte Carlo simulation to obtain the simulated data {Am}Mm=0 based on

the model ∆Am = µA (Am−1)∆t+ σA (Am−1)
√
∆tεm, where εm ∼ N (0, 1).

3. Compute the dynamics of the distribution using the KF equation and use it to obtain

aggregate capital:
󰁕∞
0

󰁕 s̄

s
ag(a, s)dads = Kt.
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4. Run an ordinary least squares ∆Km/Km = µK (Km, Am; θ)∆t over the simulated

sample {Am, Km}Mm=0 to update coefficients θn+1. If θn+1 = θn or they are very

close, stop, otherwise go back to step 1 .

For models with aggregate nonlinear dynamics, which is a general form of PLM, Fernández-

Villaverde et al. (2023) extended the Krusell and Smith (1998) methodology and proposed a

nonparametric perceived law of motion to globally compute and estimate the heterogeneous

agent model, updated using machine learning such as a neural network. As claimed by

Fernández-Villaverde et al. (2023), their algorithm can approximate the PLM arbitrarily

well; see, for instance, the paper by Fernández-Villaverde et al. (2023) for details.

Households consider a PLM of aggregate debt Bt:

dBt = h (Bt, Nt) dt,

where h (Bt, Nt) = E [dBt | Bt, Nt]/dt and Nt = Kt − Bt, the net wealth (i.e., inside equity)

of the expert, which is the difference between his assets (capital) and liabilities (debt). Given

the PLM, the household’s HJB equation becomes to the following:

ρVi(a,B,N) =max
c

c1−γ − 1

1− γ
+ µi(a,B,N)

∂Vi

∂a
+ h(B,N)

∂Vi

∂B
+ µN(B,N)

∂Vi

∂N

+ λi [Vj(a,B,N)− Vi(a,B,N)] +

󰀅
σN(B,N)

󰀆2

2

∂2Vi

∂N2
,

where the net wealth Nt evolves as dNt = µN (Bt, Nt) dt + σN (Bt, Nt) dWt, and the house-

hold’s saving at follows dat = (wtst +Rtat − ct) dt = µi (at, Bt, Nt) dt and Bt ≡
󰁕
adGt(a, s).

Instead of using the projection method to approximate the PLM: h(µ; θ) = θ0+
󰁓Q

q=1 θqψq(µ),

Fernández-Villaverde et al. (2023) approximated the PLM with a neural network as h(µ; θ) =

θ10 +
󰁓Q

q=1 θ
1
qφ

󰀓
θ20,q +

󰁓D
i=1 θ

2
i,qµ

i
󰀔
, where φ(·) is an activation function, such as φ(x) =

log (1 + ex), and θ is selected to minimize the quadratic error function E(θ;µ,h); that is,

θ∗ = argmin
θ

E(θ;µ,h) = argmin
θ

J󰁛

j=1

E
󰀓
θ;µj, ĥj

󰀔
= argmin

θ

1

2

J󰁛

j=1

󰀐󰀐󰀐h (µj; θ)− ĥj

󰀐󰀐󰀐
2

.

Fernández-Villaverde et al. (2023) solved the HJB equation with a first-order, implicit

upwind scheme using the finite difference method. Note that some other machine learning

or deep learning methods can be applied to solve the above system too.

In a linearized system, Boppart et al. (2018) employed the MIT shock and obtained the

first-order perturbation solution just by computing transitional dynamics. The initial state
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is the deterministic steady state fss(·). The aggregate TFP evolves with time according to:

∆A0 = µA (A0)∆t+ σA (A0)
√
∆t, and ∆At = µA (At)∆t, t > 0,

where A0 = Ass. If the model is approximately linear, the response to an MIT shock is the

impulse response function of the model. The method can be extended to the case with n

shocks dA ≡ (dA0, dA1, . . . , dAn)
⊤.

Auclert et al. (2021) proposed a general and highly efficient method for solving and

estimating the general equilibrium heterogeneous-agent models with aggregate shocks in dis-

crete time. The model is set up in the sequence space by assuming perfect foresight with

respect to aggregates. The approach relies on the rapid computation of sequence space Jaco-

bians, the derivatives of perfect-foresight equilibrium mappings between aggregate sequences

around the steady state. This algorithm can be combined with a systematic approach of

composing and inverting Jacobians to solve for general equilibrium impulse responses. A

rapid procedure is obtained for likelihood-based estimation and computation of nonlinear

perfect-foresight transitions.

Equilibrium in the sequence space can always be expressed as a solution to a nonlinear

system F(X,Z) = 0, where X represents the time path of endogenous variables (usually

aggregate prices and quantities) and Z represents the time path of exogenous shocks. Ob-

taining the impulse responses of unknowns to shocks, dX = −F−1
X FZdZ, requires computing

the Jacobians FX and FZ, which are formed by combining Jacobians from different parts of

the model.

Similarly, Oskolkov (2023) employed the methods from Kaplan et al. (2018) and Auclert

et al. (2021) to analyze nonlinear solutions for aggregate one-time unanticipated shocks. In

particular, this paper works in the sequence space and computes the sequence-space Jaco-

bians by solving the linearized version of the coupled system of equations. For estimation,

a sample path of x(t) is integrated from a simulated sequence of shocks dW given the pa-

rameters, which come from the calibration and determine the steady state. To estimate the

parameters of the processes, the simulated method of moments (SMM) of McFadden (1989)

is used, which is to compute the moments of these series, to compare them to the moments of

simulated sequences, and to look for a combination of parameters that minimize a quadratic

distance.

Finally, in a representative agent model, He and Krishnamurthy (2019) studied the effect

of −1% shock in σdWt, which means the fundamental shock leads capital to fall exogenously
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by 1%. The computational algorithm to calculate the impulse response functions is as follows,

where the focus is on the mean path by shutting future shocks to zero.

1. Compute the benchmark path of these variables without any shocks, but still subject

to the endogenous drift of the state variable in the model. In other words, calculate

the benchmark path for the realizations of dWt+m = 0 for m ≥ 0.

2. Compute the shocked path of these variables given the initial shock σdWt = −1%, but

setting future realizations of shocks to be zero, i.e., dWt+m = 0 for m > 0.

3. Calculate and plot the (log) difference between the path with the shock and the mean

path without any shock. This computation is meant to mimic a deviation-from-steady-

state computation that is typically plotted in impulse-response functions in the linear-

non-stochastic models.

Note that in traditional linear models, the impulse-response functions are independent of

future shocks. However, the impact of a shock depends on future shocks in nonlinear models.

For more on the difference between impulse responses in linear models with a non-stochastic

steady state and those nonlinear models with a stochastic steady state; see, for example,

the papers by Koop et al. (1996) and Borovic̆ka et al. (2011). An alternative method to

calculate the impulse response functions in the stochastic nonlinear models is to calculate

the expected impact of the initial shock σdWt = −1% on the variable at t+m by integrating

over all possible future paths.

4.6 A More General Framework

Achdou et al. (2022) extended the study to the backward-forward mean field games

system in n dimensions, which is a natural generalization of the equations for the Bewley-

Huggett-Aiyagari (BHA) models, proposed by Bewley (1987), Hugget (1993), and Aiyagari

(1994), respectively. The mathematical MFG literature typically writes this system using the

language of the modern theory of SDEs, especially the vector calculus notation, described

as follows. For more details about modeling BHA type models, the reader is referred to the

papers by Kirkby (2018) and Hansak (2023).

The mathematics literature typically only considers the case where the state variables

follow diffusion processes rather than processes featuring jumps. Under this assumption, a
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general backward-forward MFG system in n dimensions is:

ρV = max
α

󰀫
r(x,α, g) +

n󰁛

i=1

αi∂iV

󰀬
+

1

2

n󰁛

i=1

σ2
i (x)∂iiV + ∂tV

in Rn × (0, T ), where we use the short-hand notation ∂av = ∂v/∂a, and so on, and

∂tg = −
n󰁛

i=1

∂i (α
∗
i (x, g)g) +

1

2

n󰁛

i=1

∂ii
󰀃
σ2
i (x)g

󰀄

in Rn × (0, T ), with

g0 = g(0) and VT = V (x, T )

in Rn, where V (x, t) is the value function, g(x, t) the density, x ∈ Rn an n-dimensional

state vector, r(x,α, g) a period return function, σ2
i (x) a diffusion coefficient, α ∈ Rn a

control vector and α∗ its optimally chosen policy function. The first equation is the HJB

equation, the second equation is the KF equation and the equations in the third line are

the initial condition on the density and the terminal condition on the value function. The

system iterates backward-forward in the sense that given the steady state value function,

the system updates backward using the HJB equation to obtain the policies. Given the

initial distribution, the system updates forward using the KF equation to propagate the

distribution.

Now, we define three useful operators: the gradient ∇, the Laplacian ∆ and the diver-

gence. First, for a function f : Rn → R, the gradient vector is the vector of first derivatives

∇f := [∂f/∂x1, . . . , ∂f/∂xn]
⊤. Second, for a function f : Rn → R, the Laplacian is the sum

of all the unmixed second derivatives ∆f :=
󰁓n

i=1 ∂
2f/∂x2

i . Third, for a vector-valued func-

tion v : Rn → Rn, i.e. v (x1, . . . , xn) = [v1 (x1, . . . , xn) , . . . , vn (x1, . . . , xn)]
⊤, the divergence

of v is div(v) :=
󰁓n

i=1 ∂vi/∂xi. Note that ∆f = div(∇f).

Then, the backward-forward MFG system above describes general heterogeneous agent

models without aggregate uncertainty. However, in many economically interesting situations,

it is important to allow for aggregate risk in addition to idiosyncratic risk as in Den Haan

(1997) and Krusell and Smith (1998). Fortunately, the theory of MFGs has also studied

that case, with mathematicians referring to aggregate uncertainty as “common noise”. In the

most general case, such MFGs can be written in terms of the so-called “Master equation” as

in Cardaliaguet et al. (2019). This Master equation is an equation on the space of measures,

i.e. it is an equation that is set in infinite-dimensional space. In the case without aggregate

uncertainty, the Master equation reduces to the backward-forward MFG system.
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§5 Conclusion

This selective review outlined the mathematical/statistical tools and the computa-

tional methods in mathematics for solving both discrete-time and continuous-time models in

macroeconomics. As the mathematical tools and computational methods are more advanced

in continuous time, we see a bright future for the macroeconomics modeling in continuous

time. For example, in addition to a neural network as employed by Fernández-Villaverde et

al. (2023), some advanced machine learning such as deep learning methods or AI methods

can be applied to this field too, especially for nonlinear models, which can attract some

young scholars and Ph.D. students in economics, mathematics and statistics, to find their

own interesting research topics for continuous-time models in macroeconomics. In addition,

the well-developed asset pricing theories in continuous time also shed light on the inclusion

of financial risk analysis in the macroeconomics models. Looking forward, more work can

be for sure done to study the connection between the real economy’s business cycles and

the financial market’s fluctuations within a continuous-time general equilibrium framework.

Even though the discrete-time model and the continuous-time model may share similar com-

putational accuracy, we still have much confidence on the scope of the analysis that can be

done only in continuous time which can not be substituted by the discrete-time model, such

as the formulation of problems related with uncertainty. Finally, similar to the model speci-

fication problem for conventional stochastic diffusions, well studied in the literature such as

the pioneer work by Aït-Sahalia (1996), it would be interesting to consider some possible

model specification tests for heterogenous agent models with aggregate shocks under full

or partial information as addressed in Cai et al. (2024), which is definitely warranted as

future research. The reader is referred to the paper by Cai, Mei and Wang (2024) for more

discussions.
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Appendix. The details of log-linearization

In the following detailed derivation of the equations in Section 3.1, we use the general
formula of the log-linearization as follows: 󰁨Xt ≡ lnXt − lnX ≈ (Xt −X)/X, so that Xt =

Xe
󰁨Xt , Xt ≈ X

󰀓
1 + 󰁩Xt

󰀔
, and e

󰁨Xt ≈ 1 + 󰁨Xt. Also, ln (1 +Xt) ≈ Xt and d lnXt = lnXt −
lnX = Xt −X/X = dXt/X ≈ 󰁨Xt. Next, we derive the equations listed in Section 3.1.

1. The resource constraint can written as follows: Yt = Ct + It + G and Y
󰀓
1 + 󰁨Yt

󰀔
=

C
󰀓
1 + 󰁨Ct

󰀔
+ I

󰀓
1 + 󰁨It

󰀔
+G. At the steady state, we have that Y = C + I +G. Thus,

Y 󰁨Yt = C 󰁨Ct + I󰁨It and 󰁨Yt = C 󰁨Ct/Y + I󰁨I/Y .

2. The consumption Euler equations become to the following equations

Ct = Et

󰀫󰀗
(1 + rnt )

Pt

Pt+1

β

󰀘−σ

Ct+1

󰀬
, Ce

󰁩Ct = Et

󰀫󰀥
e
󰁩1+rnt × e

󰁩Pt

e 󰁪Pt+1

× β

󰀦−σ

Ce
󰁪Ct+1

󰀬
,

1 + 󰁨Ct = Et

󰀝󰁫󰀓
1 + 󰁩1 + rnt

󰀔󰀓
1 + 󰁨Pt − 󰁪Pt+1

󰀔
β
󰁬−σ 󰀓

1 + 󰁪Ct+1

󰀔󰀞
,

ln
󰀓
1 + 󰁨Ct

󰀔
= Et

󰁱
−σ

󰁫
ln
󰀓
1 + 󰁩1 + rnt

󰀔
+ ln (1− πt+1) + ln β

󰁬
+ ln

󰀓
1 + 󰁪Ct+1

󰀔󰁲
,

and
󰁨Ct = Et

󰁱
−σ

󰀓
󰁩1 + rnt − πt+1 − ρ

󰀔
+ 󰁪Ct+1

󰁲
,

where πt = 󰁨Pt − 󰁪Pt−1 and ln β = −ρ. Since 1 + rnt = e󰁩1+rnt , then, ln (1 + rnt ) = 󰁩1 + rnt ,
so that rnt ≈ 󰁩1 + rnt and

󰁨Ct = Et

󰁱
−σ (rnt − πt+1 − ρ) + 󰁪Ct+1

󰁲
.

3. The link between asset prices and investment is given by

It
Kt

= δ +
1

c

󰀕
1− 1

Qt

󰀖
,

Ie
󰁨It

Ke󰁩Kt

= δ +
1

c

󰀕
1− 1

Qe󰁩Qt

󰀖
,

IQe
󰁨Ite

󰁩Qt = δQKe
󰁩Qte

󰁩Kt +
1

c

󰀓
QKe

󰁩Qte
󰁩Kt −Ke

󰁩Kt

󰀔
,

and

IQ
󰀓
1 + 󰁨It

󰀔󰀓
1 + 󰁨Qt

󰀔
= δQK

󰀓
1 + 󰁨Qt

󰀔󰀓
1 + 󰁨Kt

󰀔
+
1

c

󰁫
QK

󰀓
1 + 󰁨Qt

󰀔󰀓
1 + 󰁨Kt

󰀔
−K

󰀓
1 + 󰁨Kt

󰀔󰁬
.

At the steady state, we have

I

K
= δ +

1

c

󰀕
1− 1

Q

󰀖
.
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Therefore,

IQ󰁨It −
1

c
K 󰁨Qt = IQ 󰁨Kt and 󰁨It − 󰁨Kt =

1

c

K

IQ
󰁨Qt.

In the equilibrium, we have
I

K
− δ = 0,

which also implies Q = 1 with the steady state condition. Thus,

󰁨It − 󰁨Kt =
1

cδ
󰁨Qt.

4. Marginal cost of funds and marginal return to capital are given by

Et

󰀝
Λt,+1 (1 + rnt )

Pt

Pt+1

󰀞
= Et

󰀝
Λt,+1

󰀕
Zt + (1− δ)Qt+1

Qt

󰀖󰀞

and
ln (1 + rnt ) + lnPt − lnPt+1 = ln [Zt + (1− δ)Qt+1]− lnQt.

Take total differential to obtain the following

d ln (1 + rnt ) + d lnPt − d lnPt+1 = d ln [Zt + (1− δ)Qt+1]− d lnQt

and

drnt + 󰁨Pt − 󰁪Pt+1 =
[dZt + (1− δ)dQt+1]

Z + (1− δ)
− 󰁨Qtr

n
t − πt+1 − ρ = (1− τ) 󰁨Zt + τ󰁨Qt+1 − 󰁨Qt.

Since drnt = rnt − r = 󰁨rnt , Zt = αYt/[(1 + µt)Kt], and at the steady state r = ρ, it easy
to see that

rnt − ρ− πt+1 =
Z

Z + (1− δ)
󰁨Zt +

1− δ

Z + (1− δ)
󰁨Qt+1 − 󰁩Qt.

Now, define τ = (1 − δ)
󰁫

αY
(1+µ)K

+ (1− δ)
󰁬−1

= (1 − δ)/[Z + (1 − δ)]. Then, 1 −

τ = Z/[Z + (1 − δ)]. Thus, rnt − πt+1 − ρ = (1 − τ) 󰁨Zt + τ󰁨Qt+1 − 󰁩Qt. Since 󰁨Zt =

d lnZt = d ln
󰀓

1
1+µt

α Yt

Kt

󰀔
= −d ln (1 + µt) + d lnYt − d lnKt = −󰁥µt + 󰁨Yt − 󰁨Kt, and

d ln (1 + µt) = dµt = 󰁥µt, in particular, we arrive at

rnt − πt+1 − ρ = (1− τ)
󰀓
−󰁥µt + 󰁨Yt − 󰁩Kt

󰀔
+ τ󰁨Qt+1 − 󰁩Qt.

5. Production function is Yt = AtK
α
t L

1−α
t Vt, so that lnYt = lnAt+α lnKt+(1−α) lnLt+

lnVt. Taking total differential leads to
dYt

Y
=

dAt

A
+ α

dKt

K
+ (1− α)

dLt

L
.

Since Vt =

󰀗󰁕 1

0

󰀓
Pt(f)
Pt

󰀔−ε

df

󰀘−1

, it vanishes in a first-order log linearization around a

zero inflation steady state due to the reason that the deviation of ln (Pt(f)/Pt) must
average to zero. Thus,

󰁨Yt = 󰁨At + α󰁩Kt + (1− α)󰁨Lt.
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6. Labor market equilibrium is (1−α) Yt

Lt
= (1 + µt)

Lϕ
t

C−γ
t

, then, ln(1−α) + lnYt − lnLt =

ln (1 + µt) + ϕ lnLt + γ lnCt. By taking total differential, one obtains that 󰁨Yt − 󰁨Lt =
󰁥µt + ϕ 󰁨Lt + γ 󰁨Ct.

7. Price adjustment and Phillips curve can be simplified as follows. It follows from
Pt =

󰀅
θ (Pt−1)

1−ε + (1− θ) (P o
t )

1−ε󰀆 1
1−ε that 󰁨Pt = θ󰁪Pt−1 + (1 − θ)󰁩P o

t , which can be

transformed into πt = 󰁨Pt − 󰁪Pt−1 = (1 − θ)
󰀓
󰁩P o
t − 󰁨Pt

󰀔
/θ. Also, it is easy to see from

Et

󰁓∞
i=0 θ

iΛt,i (P
o
t /Pt+i)

−ε Yt+i [P
o
t /Pt+i − (1 + µ)/(1 + µt+i)] = 0 that

󰁩P o
t = (1− θβ)Et

∞󰁛

i=0

(θβ)i
󰀓
󰁩MCt+i + 󰁪Pt+i

󰀔
= (1− θβ)

󰀓
󰁪MCt + 󰁨Pt

󰀔
+ θβEt

󰁱
󰁪P o
t+1

󰁲
.

Therefore,

󰁩P o
t − 󰁨Pt = (1− θβ)󰁪MCt + θβEt

󰁱
󰁪P o
t+1 − 󰁪Pt+1 + 󰁪Pt+1 − 󰁨Pt

󰁲
.

Thus,
θ

1− θ
πt = (1− θβ)󰁪MCt + θβEt

󰀝
θ

1− θ
πt+1 + πt+1

󰀞

and
πt =

(1− θ)(1− θβ)

θ
󰁪MCt + βEt {πt+1} = −λ󰁥µt + βEt {πt+1} ,

where λ = (1− θ)(1− θβ)/θ.

8. Evolution of capital is approximated by

Kt+1 = It −
1

2
c

󰀕
It
Kt

− δ

󰀖2

Kt + (1− δ)Kt,

Ke
󰁩Kt+1 = Ie

󰁨It − 1

2
c

󰀕
I

K
e
󰁨It󰁩Kt − δ

󰀖2

Ke
󰁩Kt + (1− δ)Ke

󰁩Kt

and

K
󰀓
1 + 󰁨Kt+1

󰀔
= I

󰀓
1 + 󰁨It

󰀔
−1

2
c

󰀗
I

K

󰀓
1 + 󰁨It − 󰁨Kt

󰀔
− δ

󰀘2
K

󰀓
1 + 󰁨Kt

󰀔
+(1−δ)K

󰀓
1 + 󰁨Kt

󰀔
.

At the steady state, the fact that K = I − 1
2
c
󰀃

I
K
− δ

󰀄2
K + (1 − δ)K implies that

K 󰁨K󰁨Kt+1 = I󰁨It − cI
󰀃

I
K
− δ

󰀄 󰀓󰁨It − 󰁩Kt

󰀔
+ [K − I − (1− δ)K]󰁩Kt + (1− δ)K󰁩Kt and

󰁨Kt+1 − 󰁩Kt =

󰀗
I

K
− c

I

K

󰀕
I

K
− δ

󰀖󰀘󰀓
󰁨It − 󰁩Kt

󰀔
.

In the equilibrium, I/K = δ, so that 󰁨Kt+1 = δ󰁨It + (1− δ)󰁩Kt.
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9. Interest rate rule is given by 1 + rnt = (1 + r)
󰀓

Pt

Pt−1

󰀔φπ
󰀓

Yt

Y ∗
t

󰀔φy

evt . Then, ln (1 + rnt ) =

ln(1 + r) + φπ (lnPt − lnPt−1) + φy (lnYt − lnY ∗
t ) + vt, which yields that rnt = r +

φπ

󰀓
󰁨Pt − 󰁪Pt−1

󰀔
+ φy

󰀓
󰁨Yt − 󰁩Y ∗

t

󰀔
+ vt. Since in the equilibrium, r = ρ, thus, rnt =

ρ+ φππt + φy

󰀓
󰁨Yt − 󰁩Y ∗

t

󰀔
+ vt.
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