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Abstract

We identify general domain properties that induce the non-existence of
efficient, strategy-proof, and non-dictatorial rules in the 2-agent exchange
economy. Applying these properties, we establish the impossibility result in
several restricted domains; the “intertemporal exchange problem” (without
saving technology) with preferences represented by the discounted sum of
a temporal utility function, the “risk sharing problem” with risk averse
expected utility preferences, the CES-preference domain, etc. None of the
earlier studies applies to these domains.
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1 Introduction

In the “exchange economy”, an allocation rule, or simply, a rule, associates with
each profile of agents’ preferences a single desirable allocation, a list of individ-
ual consumption bundles. We refer to the set of admissible preference profiles
as the domain. We are interested in the following two basic requirements of
rules. The first is efficiency, the requirement that no one can be made better off
without anyone else being made worse off. The second is strategy-proofness (Gib-
bard, 1973, Satterthwaite, 1975), the requirement that truthful representation of
one’s preference always weakly dominates any admissible misrepresentation.

A number of earlier studies have shown impossibilities of satisfying the two
requirements together with other standard equity criteria. In particular, in the 2-
agent case, Dasgupta, Hammond, and Maskin (1979), Zhou (1991a), and Schum-
mer (1997) show that there is no efficient and strategy-proof rules satisfying the
minimal equity criterion, “non-dictatorship”; a rule is dictatorial if there is an
agent, the dictator, who always receives his best bundle.1 However, their results
are not fully satisfactory because they provide no implication for various inter-
esting allocation problems in which agents’ preferences are restricted for some
intuitive or technical reasons.

For example, in the “intertemporal exchange problem” (without saving tech-
nology), we often consider preferences that are represented in the additively sep-
arable form by temporal utility functions and discount factors. In the “risk shar-
ing problem”, we often consider preferences that are represented in the expected
utility form by strictly convex (“risk aversion”) utility indices and subjective
probability distributions over states. Also, in many applications, we focus on
preferences that satisfy technical conditions such as “smoothness”, “continuous
differentiability of utility functions”, “quasilinearity”, etc.

Our main objective is to strengthen the impossibility result for the 2-agent
exchange economy by identifying general domain properties sufficient for the
impossibility. They are satisfied by the domains considered in the earlier studies;
our result simplifies the proofs by Dasgupta, Hammond, and Maskin (1979),
Zhou (1991a), and Schummer (1997). More importantly, our domain properties
are applicable to several restricted domains such as the intertemporal exchange
problem, the risk sharing problem, the domain of “CES preferences”, and the
domain of quasilinear, strictly convex, and smooth preferences, etc., while none
of the earlier studies applies to them.

The seminal study by Hurwicz (1972) shows that in the 2-agent and 2-good
exchange economy, there exists no efficient and strategy-proof rule satisfying

1See also Hurwicz (1972), Satterthwaite and Sonnenschein (1981), Hurwicz and
Walker (1990), and Barberà and Jackson (1995).
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“individual rationality”, the requirement that everyone should be at least as well
off as in his endowment. Dasgupta, Hammond, and Maskin (1979) strengthen his
result by replacing individual rationality with non-dictatorship. However, their
conclusion crucially relies on the admissibility of “discontinuous” preferences,
while Hurwicz’s result pertains to preferences satisfying the classical assumptions,
“continuity”, “monotonicity”, and “convexity”.

Zhou (1991) reinforces the impossibility result by Dasgupta, Hammond, and
Maskin (1979), considering the classical domain consisting of continuous, strictly
monotonic, and strictly convex preferences. When preferences are strictly mono-
tonic, this conclusion extends to any larger domain, as he remarks. A natural
question addressed by Schummer (1997) is whether the impossibility applies to
smaller, yet interesting, domains. He shows that the impossibility continues to
hold both in the domain of “homothetic” preferences and in the domain of “lin-
ear” preferences (preferences with linear utility functions).

The arguments used by Zhou (1991) and Schummer (1997) crucially rely on
the admissibility of “kinked” preferences.2 So their results do not apply, for ex-
ample, to domains consisting of only smooth and strictly convex preferences. On
the other hand, Schummer (1997) crucially relies on the homotheticity restric-
tion. So, his result does not apply to other restricted domains, for example, the
domain consisting of only quasilinear and strictly convex preferences. Our do-
main properties do not necessarily require that kinked or homothetic preferences
be admissible. They are applicable not only to all the above domains but various
other restricted domains as we show in the application of our main result.

Several recent authors bring out some important domain properties in dif-
ferent perspectives of their studies on strategy-proofness. In a voting model,
Barberà, Sonnenschein, and Zhou (1991) identify the unique maximal domain
in which a class of rules, called “voting by committees”, are strategy-proof. The
maximal domain issue is studied also by Berga and Serizawa (1998) in the 1-
dimensional public choice model. In a linear production model, Maniquet and
Sprumont (1999) identify domain properties under which their characterization
results apply.

Most of the earlier studies focus on “product domains”, Cartesian products
of families of individual preferences.3 Product domains do not capture the in-
terdependency, or correlation, of preferences across agents, which is common in
reality. Such an interdependency arises especially when agents share identical
cultural or historic background relevant to their preferences. Thus, it is standard
in implementation theory to capture such an interdependency by considering non-

2The only exception is the linear preference domain in Schummer (1997).
3Or “independent domains” (Moore, 1993, p 214).
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product domains: see Moore (1993) for a broad survey of literature. Therefore,
we do not restrict our attention only to product domains; our domain properties
are stated for possibly, non-product domains. Strategy-proofness is a necessary
condition for the implementability in dominant strategy equilibrium both in the
product domain case and in the non-product domain case. It is also sufficient
in the product domain case, while it is not sufficient in the non-product domain
case.

This paper is composed of five sections. In Section 2, we introduce the model
and basic concepts. In Section 3, we define general domain properties and estab-
lish our main result. In Section 4, we provide several applications. We conclude
in Section 5.

2 The model and basic concepts

We consider l-good exchange economies, l ≥ 2, with social endowment Ω ∈ Rl
++

and two agents. Let N ≡ {1, 2} be the set of agents. Let Z ≡ {z ∈ Rl·2
+ :

∑
N zi =

Ω} be the set of feasible allocations. Let Z0 ≡ {zi ∈ Rl
+ : 0 5 zi 5 Ω} be the set

of possible consumption bundles for each agent.4 We use z, z′, z′′, etc. to denote
allocations: zi denotes i’s bundle at z. Notation −i refers to the agent other than
i; that is, −1 ≡ 2 and −2 ≡ 1.

Each agent has a preference, a complete and transitive binary relation over
Rl

+. Preferences are continuous, strictly monotonic over Rl
++, and convex .5 LetR

be the class of all such preferences. A preference Ri ∈ R is strictly monotonic
if for all zi, z

′
i ∈ Rl

+. zi ≥ z′i implies zi Pi z′i. Let Ii (zi) be the set of all bundles
indifferent to zi under Ri.

A domain D is a subset of RN . Let D(R−i) ≡ {R′ ∈ D : R′
−i = R−i},

Di(R−i) ≡ {Ri : (Ri, R−i) ∈ D}, and Di ≡ {Ri : for some R−i, (Ri, R−i) ∈ D}.
Since we keep the social endowment fixed, an economy can be characterized by
a preference profile in D. A social choice rule, or simply a rule, over D is a
function ϕ : D → Z associating with each economy a feasible allocation.

A domain D is a product domain if for each i ∈ N, there exists Di ⊆ R
such that D = D1 × D2. Product domains do not capture the interdependency

4We denote elements of Z0 by zi, z0, x, y etc. Vector inequalities, 5, ≤, <, are defined as
follows. Let x, y ∈ Rl. Then x 5 y if for all k ∈ {1, · · · , l}, xk ≤ yk. We write x ≤ y if x 5 y
and x 6= y. We write x < y if for all k ∈ {1, · · · , l}, xk < yk.

5For Ri ∈ R, we use Pi and Ii to denote its strict and indifference relations respectively. A
preference Ri is strictly monotonic over Rl

++ if for all zi, z
′
i ∈ Rl

++, zi ≥ z′i implies zi Pi z′i,
where the vector inequality zi ≥ z′i means that each component of zi is weakly larger than each
component of z′i and zi 6= z′i. It is convex if for all zi, z

′
i ∈ Rl

++ with zi Ri z′i and all λ ∈ [0, 1],
λzi + (1− λ) z′i Ri z′i.
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of preferences across agents, which is commonly observed in reality. Thus we
do not restrict ourselves to product domains. However, the following general
features of domains are important in our result. Let R, R′ ∈ D. Profile R′ is
a unilateral variation of R if R′

1 = R1 or R′
2 = R2. A unilateral variation of

R, R′, is 0-indifference-monotonic for i if I ′i (0) ⊇ Ii (0). Profile R′ is reachable
from R through iterative unilateral variations if there exists a finite sequence of
profiles (R1, · · · , Rn) in D such that R1 = R, Rn = R′, and for all k ∈ {2, · · · , n},
Rk is a unilateral variation of Rk−1. A domain D is everywhere reachable if
for all R, R′ ∈ D, R′ is reachable from R through iterative unilateral variations.
It is everywhere reachable∗ if for all i ∈ N and all R,R′ ∈ D with Ii (0) ⊆
I ′i (0) , R′ is reachable from R through iterative unilateral variations 0-indifference-
monotonic for i.

Note that everywhere reachability∗ implies everywhere reachability and that
every product domain is everywhere reachable∗. When R1 and R2 are strictly
monotonic, I1 (0) = I2 (0) = {0}. So if D is everywhere reachable∗, then for
all R′ ∈ D, R′ is reachable from R both through iterative unilateral varia-
tions 0-indifference-monotonic for 1 and through iterative unilateral variations
0-indifference-monotonic for 2. When all preferences in D are strictly monotonic,
then everywhere reachability is equivalent to everywhere reachability∗.

We next define our two main requirements of rules. Given R ∈ D, an alloca-
tion z ∈ Z is efficient for R if there exists no z′ ∈ Z such that for all i ∈ N, z′i
Ri zi and for some j ∈ N , z′j Pj zj. Let P (R) be the set of all efficient allocations
for R. For all i ∈ N, let Pi(R) ≡ {zi ∈ Rl

+ : (zi, z−i) ∈ Z for some z−i ∈ Rl
+}. A

rule ϕ : D → Z satisfies efficiency if for all R ∈ D, ϕ(R) ∈ P (R).
In order to define the next requirement, let i ∈ N have preference Ri. Let

(Ri, R−i) and (R′
i, R−i) ∈ D. Consider a rule ϕ : D → Z. Let z ≡ ϕ (R) and

z′ ≡ ϕ (R′
i, R−i) . Agent i will have an incentive to represent his true preference

as opposed to the misrepresentation R′
i if zi Ri z′i. We refer to this condition as

i’s incentive compatibility condition associated with (Ri,R
′
i, zi), where Ri

is i’s true preference, R′
i is a misrepresentation, and zi is the truthful outcome.

Our next requirement is that the incentive compatibility condition should never
be violated. Formally, a rule ϕ : D → Z satisfies strategy-proofness if for all
i ∈ N and all R, R′ ∈ D with R−i = R′

−i, ϕi(R) Ri ϕi(R
′).

We show that every efficient and strategy-proof rule has the following dis-
pleasing features. A rule ϕ : D → Z is dictatorial over D∗ ⊆ D if there exists
i ∈ N such that for all R ∈ D∗ and all zi ∈ Z0, ϕi (R) Ri zi. The rule is dic-
tatorial if it is dictatorial over the entire domain. Since preferences are strictly
monotonic over Rl

++, a rule ϕ is dictatorial over D∗ if and only if there exists
i ∈ N such that for all R ∈ D∗, ϕi (R) = Ω.
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We use the following notation. For all Ri ∈ R and all zi ∈ Rl
+, let UC(Ri, zi) ≡

{x ∈ Z0 : x Ri zi} and UC0(Ri, zi) ≡ {x ∈ Z0 : x Pi zi} be the upper
contour set of Ri at zi and the strict upper contour set, respectively. Let
LC(Ri, zi) ≡ {x ∈ Z0 : zi Ri x} and LC0(Ri, zi) ≡ {x ∈ Z0 : zi Pi x} be
the lower contour set of Ri at zi and the strictly lower contour set.

3 The main result

In this section, we define general domain properties and derive our main conclu-
sion based on these properties.

We consider domain D ⊆ RN that has a subdomain D̄ ⊆ D and a reference
set M ⊆ Z satisfying the following three properties. For all i ∈ N, let Mi ≡
{zi ∈ Rl

+ : (zi, z−i) ∈ Z for some z−i ∈ Rl
+}.

The first property is that the reference set M is the Pareto set for at least
one economy in D̄ with strictly monotonic preferences.

Potential efficiency: There exists R ∈ D̄ such that P (R) = M and both R1

and R2 are strictly monotonic.

The second property is that each agent can always make M be the Pareto set
by announcing a preference admissible in D̄.

Attainability: For all i ∈ N and all R−i ∈ D̄−i, there exists Ri ∈ D̄i(R−i) such
that P (Ri, R−i) = M .

The third property is stated in terms of the following notions. Both incentive
compatibility conditions associated with (Ri, R

′
i, zi) and (R′

i, Ri, z
′
i) imply that

z′i ∈ LC (Ri, zi)∩UC (R′
i, zi) (also zi ∈ LC (R′

i, z
′
i)∩UC (Ri, z

′
i)). Therefore, given

R−i and the truthful outcome zi for Ri, the set of incentive compatible outcomes
for R′

i coincides with LC(Ri, zi) ∩ UC(R′
i, zi). We call LC(Ri, zi) ∩ UC(R′

i, zi)
the incentive compatibility set associated with (Ri,R

′
i, zi). For all R ∈ D,

all i ∈ N, and all z ∈ P (R) , R′
i ∈ D (R−i) is a local transformation of

Ri at zi relative to R−i if zi is the unique efficient bundle for (R′
i, R−i), in

i’s incentive compatibility set associated with (Ri, R
′
i, zi); that is, Pi(R

′
i, R−i) ∩

LC(Ri, zi)∩UC(R′
i, zi) = {zi}. A preference Ri of agent i exhibits crossly local

dominance of z′i relative to (R−i,R
′
−i, zi) if agent i with Ri prefers z′i to every

allocation that is efficient for (Ri, R
′
−i) and is in −i’s incentive compatibility

set associated with (R−i, R
′
−i, z−i); that is Pi(Ri, R

′
−i) ∩ {x ∈ Z0 : Ω − x ∈

LC(R−i, z−i) ∩ UC(R′
−i, z−i)} ⊂ LC0(Ri, z

′
i).
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Our next property states that for any two profiles R and R′ with the Pareto
set M and for any two efficient allocations z and z′, there exist an agent i ∈ N
and his preference R̄i that is a local transformation of Ri at zi relative to R−i

and at the same time exhibits crossly local dominance of z′i relative to R−i, R′
−i,

and zi.

Transformability with crossly local dominance: For all R,R′ ∈ D̄ and all
z, z′ ∈ M, if P (R) = P (R′) = M and z 6= z′, then there exist i ∈ N and
R̄i ∈ D̄i(R−i) ∩ D̄i(R

′
−i) such that

(i) Pi(R̄i, R−i) ∩ LC(Ri, zi) ∩ UC(R̄i, zi) = {zi};
(ii) Pi(R̄i, R

′
−i)∩ {x ∈ Z0 : Ω− x ∈ LC(R−i, z−i)∩UC(R′

−i, z−i)} ⊂ LC0(R̄i, z
′
i).

There are domains that satisfy the above three properties and yet, over which
we do have efficient, strategy-proof, and non-dictatorial rules.

Example 1 Risk sharing with an objective probability distribution and aggregate
certainty : Let l be the number of states. Each state k = 1, · · · , l is realized with
probability πk. Each bundle x ∈ Rl

+ is a state-contingent commodity. Let R∗
be the family of all preferences R0 ∈ R that has the following “expected utility”
representation: there exists a concave function u0 : R+ → R such that for all
x, x′ ∈ Rl

+, x R0 x′ ⇐⇒ ∑l
k=1 πku0 (xk) ≥

∑l
k=1 πku0 (x′k) . Suppose aggregate

certainty, that is, Ω1 = · · · = Ωl. Let m̄ be the constant aggregate wealth across
states.

The equal division (( m̄
2
, · · · , m̄

2
), ( m̄

2
, · · · , m̄

2
)) is efficient for all profiles in RN

∗ .
Let ϕed : RN

∗ → Z be the equal division rule, that is, for all R ∈ RN
∗ , ϕed (R) ≡

(( m̄
2
, · · · , m̄

2
), ( m̄

2
, · · · , m̄

2
)). Then ϕed is efficient and strategy-proof over RN

∗ .
Let M ≡ {z ∈ Z : for all i ∈ N, zi1 = · · · = zil}. We now show that RN

∗
and M satisfy the above three properties. Potential efficiency and attainability
are trivial. Let R, R′ ∈ RN

∗ be such that P (R) = P (R′) = M. Let z, z′ ∈ M
and z 6= z′. Then since Mi is a monotonic path for each i ∈ N, without loss of
generality we may assume z1 < z′1. Since z1 is on the 45◦-line, there exists R̄1 ∈ R∗
such that R̄1 is strictly convex and LC (R1, z1)∩UC

(
R̄1, z1

)
= {z1}. Then (i) of

transformability with crossly local dominance holds. Since R̄1 is strictly convex,
P1

(
R̄1, R

′
2

)
= M1. Therefore, P1(R̄1, R

′
2) ∩ {x ∈ Z0 : Ω − x ∈ LC(R2, z2) ∩

UC(R′
2, z2)} = {z1}. Hence (ii) also holds. ¤

We show that under the following additional richness properties, no rule sat-
isfies efficiency, strategy-proofness, and non-dictatorship. We use the following
notation.

For each differentiable numerical representation ui of Ri and all zi ∈ Rl
++,

let ∇ui(zi) ≡ (∂ui(zi)/∂x1, · · · , ∂ui(zi)/∂xl). The hyperplane through zi nor-
mal to ∇ui(zi) supports UC(Ri, zi). Formally, for all p ∈ Rl

++ and all z0 ∈ Z0,
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let H(p, z0) ≡ {x ∈ Z0 : p · x ≥ p · z0} be the set of bundles lying above
the hyperplane through z0 normal to p. We say that H(p, z0) supports Ri at
z0 if UC(Ri, z0) ⊆ H(p, z0). Similarly, for all R0 ∈ R and all z0 ∈ Z0, let
∇R0(z0) ≡ {p ∈ Rl

++ : UC(R0, z0) ⊆ H(p, z0)} be the set of all vectors nor-
mal to a hyperplane supporting R0 at z0. For all R ∈ D and all z ∈ Z, let
∇R(z) ≡ {p ∈ Rl

++ : UC(R1, z1) ⊆ H(p, z1) and UC(R2, z2) ⊆ H(p, z2)} be the
set of all vectors normal to a hyperplane supporting both R1 at z1 and R2 at z2.
Note that when z is efficient for R, ∇R (z) 6= ∅.

A domain is flexible if there exist a subdomain and a reference set satisfying
potential efficiency, attainability, transformability with crossly local dominance,
and the following two properties, F1 and F2.

Condition F1 states that for any preference and any bundle, it is admissible
to flatten the preference sufficiently without changing the local structure of the
preference at the bundle.

F1: For all R ∈ D̄, all i ∈ N, all z ∈ P (R), and all x ∈ Rl
+,

if for some p ∈ ∇R(z), p · zi < p · x, then there exists R′
i ∈ D̄i(R−i) such that

Pi(R
′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi) = {zi} and x P ′
i zi.

Note that F1 implies the admissibility of local transformation.
Condition F2 states that for each agent i and allocation d ∈ M, there exists a

profile R ∈ D̄ whose Pareto set intersects with Mi only at (0, Ω) and (Ω, 0) , and
such that whenever an efficient allocation z 6= d for R happens to have d in its
supporting hyperplane, changing i’s preference is admissible so that for the new
profile (R′

i, R−i) , such a coincidence never happens at any efficient allocation in i’s
incentive compatibility set associated with (Ri, R

′
i, zi), LC (Ri, zi) ∩ UC (R′

i, zi).

F2: For all i ∈ N and all d ∈ M, there exists R ∈ D̄ such that
(i) Pi(R) ∩Mi = {0, Ω}, and
(ii) if z ∈ P (R)\{d} and p · zi = p · di for all p ∈ ∇R(z), then there exists
R′

i ∈ D̄i(R−i) such that for all z′i ∈ Pi(R
′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi),

p′ · z′i 6= p′ · di, for some p′ ∈ ∇(R′
i, R−i)(z

′).

We next provide an example of flexible domain.

Example 2 Homothetic preferences: Let RH be the family of all homothetic
preferences that are smooth,6 strictly convex, and strictly monotonic over Rl

++.

6A preference R0 ∈ R is smooth if for all x ∈ Rl
+ with 0 < x < Ω, ∇R0 (x) is unique.

8



Let D̄ ≡ RN
H and M ≡ {z ∈ Z : for some λ ∈ [0, 1], z1 = λΩ + (1− λ) 0

and z2 = Ω − z1}. Then we show that D̄ and M satisfy potential efficiency,
attainability, transformability with crossly local dominance, F1, and F2; so RN

H is
flexible.

For all Ri ∈ RH , if R−i = Ri, P (Ri, R−i) = M. Hence potential efficiency
and attainability hold.

In order to show transformability with crossly local dominance, let R, R′ ∈ D̄
and z, z′ ∈ M be such that P (R) = P (R′) = M and z 6= z′. Without loss of
generality, let z1 < z′1. When z1 = 0, if we let R̄1 = R1, then (i) and (ii) of
transformability with crossly local dominance hold. Now suppose z1 6= 0. Then
let RLeon

1 be the Leontieff-type preference with the locus of kinks equal to M1.
Then (i) and (ii) holds with R̄1 = RLeon

1 . Note that RLeon
1 /∈ RH but that RH

contains a sequence of preferences, which is composed of local transformations of
R1 at z1 relative to R−1 and, at the same time, converges to RLeon

1 . Therefore,
there exist a local transformation of R1, R̄1, which is sufficiently close to RLeon

1

so that (i) and (ii) can be satisfied.
For all x ∈ Rl

++ and all p ∈ Rl
++, there exists a sequence of preferences in RH ,

which are supported by p at x and converge to the linear preference associated
with normal vector p. Therefore F1 holds. Now we only have to verify F2. We
show F2 for the 2-good case. However, our argument can be easily extended to
the l-good case.

Let i ≡ 1 and d ∈ M. Let R be the preference such that P1 (R) = {z1 : z11 = 0
or z12 = Ω2} and the slope of indifference curves of R1 over P1 (R) is bounded
above by −δ < 0. Clearly R satisfies (i) of F2. Let z ∈ P (R) \{d} be such
that for all p ∈ ∇R (z) , p · z1 = p · d1. Then there exists R′

1 ∈ RH such that
the slopes of indifference curves of R′

1 is bounded below by −δ. Then clearly,
P (R′

1, R2) = P (R) and since P1 (R) is a boundary and monotonic path of the
Edgeworth box, P1 (R′

1, R2) ∩ LC (R1, z1) ∩ UC (R′
1, z1) = {z1}. Since for all

p ∈ ∇R (z) , p ·z1 = p ·d1, and the indifference curve of R′
1 through z1 is flatter at

z1 than the indifference curve of R1, there exists p′ ∈ ∇ (R′
i, R−i) (z′) such that

p′ · z1 6= p′ · d1. Therefore, (ii) of F2 also holds. ¤

We next provide an example in which F1 and F2 do not hold.

Example 3 Linear domain: Let RL be the family of preferences that are rep-
resented by linear utility functions. Let D̄ ≡ RN

L . Then we show that for
any reference set M, D̄ and M do not satisfy F1. Let R1 = R2 ∈ RL. Then
P (R) = Z. Let z ∈ P (R) be such that z1 ∈ RL

++. Then for all R′
1 ∈ RL, either

z1 /∈ P1(R
′
1, R2) or R′

1 = R1; hence there is no local transformation of R1 at z1

relative to R2(= R1). ¤
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We show in Lemma 1 that F1 and F2 imply the following more general
property.

Double transformability: For all i ∈ N and all d ∈ M, there exists R ∈ D̄
with Pi(R) ∩Mi = {0, Ω} such that for all z ∈ P (R) with zi 6= di, there exists
R′

i ∈ D̄i(R−i) such that
if z′i ∈ Pi(R

′
i, R−i) ∩ UC(R′

i, zi) ∩ LC(Ri, zi), then either
(ii-1) for some R′′

i ∈ D̄i(R−i),

Pi(R
′′
i , R−i) ∩ LC(R′

i, z
′
i) ∩ UC(R′′

i , z
′
i) = {z′i} and di P ′′

i z′i,

or
(ii-2) for some R′

−i ∈ D̄−i(R
′
i),

P−i(R
′
i, R

′
−i) ∩ LC(R−i, z

′
−i) ∩ UC(R′

−i, z
′
−i) = {z′−i} and d−i P ′

−i z′−i.

Double transformability has wider applicability. For example, as we saw in
Example 3, there is no reference path M such that RN

L and M satisfy flexibility.
However, our conclusion in Section 4.1 shows that there exists a reference path
M such that RN

L and M satisfy double transformability.

A domain D satisfies rich transformability if there exist a subdomain D̄
and a reference set M satisfying potential efficiency, attainability, trasformability
with crossly local dominance, and double transformability. In Lemma 1, we show
that every flexible domain satisfies rich transformability.

Lemma 1: Every flexible domain satisfies rich transformability.

Proof : Let D be flexible with respect to a subdomain D̄ ⊆ D and a reference
set M ⊆ Z. Let i ∈ N and d ∈ M. By F2, there exists R ∈ D̄ such that
Pi (R) ∩Mi = {0, Ω}. Let z ∈ P (R) with zi 6= di. We divide into three cases.

Case 1: There exists p ∈ ∇R (z) such that p · zi < p · di.

Then by F1, there exists R′
i ∈ D̄i(R−i) such that

Pi(R
′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi) = {zi} and di P ′
i zi.

Therefore, if we let R′′
i ≡ R′

i, then (ii)-1 holds. ¤
Case 2: There exists p ∈ ∇R (z) such that p · zi > p · di.

By F1, there exists R′
i ∈ D̄i(R−i) such that Pi (R

′
i, R−i)∩LC (Ri, zi)∩UC (R′

i, zi) =
{zi}.

10



Since p ·z−i < p ·d−i, then applying F1 for (R′
i, R−i) and agent −i, there exists

R′
−i ∈ D̄−i(R

′
i) such that

Pi(R
′
i, R

′
−i) ∩ LC(R−i, z−i) ∩ UC(R′

−i, zi) = {z−i} and d−i P ′
−i z−i.

Therefore, if we let R′
i ≡ Ri, then (ii)-2 holds. ¤

Case 3: For all p ∈ ∇R (z), p · zi = p · di.

By F2, there exists R′
i ∈ D̄i(R−i) such that for all z′i ∈ Pi(R

′
i, R−i)∩LC(Ri, zi)∩

UC(R′
i, zi),

p′ · z′i 6= p′ · di, for some p′ ∈ ∇(R′
i, R−i)(z

′).

If z′i ∈ Pi(R
′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi) and p′ · z′i < p′ · di, for some
p′ ∈ ∇(R′

i, R−i)(z
′), then by F1, there exists R′′

i ∈ D̄i(R−i) such that

Pi(R
′′
i , R−i) ∩ LC(R′

i, zi) ∩ UC(R′′
i , zi) = {z′i} and di P ′′

i z′i.

Hence (ii-1) holds.
On the other hand, if z′i ∈ Pi(R

′
i, R−i) ∩ LC(Ri, zi) ∩ UC(R′

i, zi) and p′ · z′i >
p′ · di, for some p′ ∈ ∇(R′

i, R−i)(z
′), then p′ · z′−i < p′ · d−i. Now applying F1 for

(R′
i, R−i) and agent −i, there exists R′

−i ∈ D̄−i(R
′
i) such that

Pi(R
′
i, R

′
−i) ∩ LC(R−i, z

′
−i) ∩ UC(R′

−i, z
′
i) = {z′−i} and d−i P ′

−i z′−i.

Hence (ii-2) holds. ¤ Q.E.D.

Zhou (1991) and Schummer (1997) establish an invariance property of efficient
and strategy-proof rule with respect to “Maskin monotonic” transformations of
preferences.7 Lemma 1 states an even stronger invariance property related with
local transformation. Formally, a rule ϕ is invariant with respect to local
transformation if for all R ∈ D and all i ∈ N, if R′

i is a local transformation of
Ri at zi relative to R−i, then ϕ (R′

i, R−i) = ϕ (R) .

Lemma 2: Every efficient and strategy-proof rule is invariant with respect to
local transformation.

Proof : Let ϕ be an efficient and strategy-proof rule. Let z ≡ ϕ (R) , i ∈ N, and
R′

i be a local transformation of Ri at zi relative to R−i. Let z′ ≡ ϕ (R′
i, R−i) .

7Let R ∈ D. Let z ∈ P (R) . A preference R′i is a (strong) Maskin monotonic transformation
of Ri at z if LC(R′i, zi) ⊇ LC(Ri, zi) and LC(Ri, zi)∩UC(R′i, zi) = {zi}. Clearly, such R′i is a
local transformation of Ri at zi relative to R−i. However, there are various local transformations
that are not Maskin monotonic transformations.
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By the two incentive compatibility conditions associated with (Ri, R
′
i, zi) and

(R′
i, Ri, z

′
i), z′i ∈ LC (Ri, zi)∩UC (R′

i, zi) . Therefore by efficiency, z′i ∈ Pi(R
′
i, R−i)∩

LC(Ri, zi) ∩ UC(R′
i, zi) = {zi}. Hence z′i = zi, that is, ϕ (R′

i, R−i) = ϕ (R) .
Q.E.D.

This strong invariance property plays an important role in our result. As
we will see in the following argument, it simplifies the proof of Zhou (1991) and
Schummer (1997) and moreover leads us to the impossibility result for a number
of other restricted domains.

Next, we show that if our domain has rich transformability with respect to a
subdomain D̄ and a set M, then for a rule to be efficient and strategy-proof, it
should always pick a fixed allocation for each economy in D̄ for which M is the
Pareto set.

Lemma 3: Let D have rich transformability with respect to D̄ ⊆ D and M ⊂
Z. Let ϕ : D → Z be efficient and strategy-proof . Then for all R, R′ ∈ D̄, if
P (R) = P (R′) = M, then ϕ(R) = ϕ(R′).8

Proof: Let D have rich transformability with respect to D̄ ⊆ D and M ⊂ Z. Let
ϕ be efficient and strategy-proof. Let R, R′ ∈ D̄ be such that P (R) = P (R′) = M.
Let z ≡ ϕ(R) and z′ ≡ ϕ(R′).

Suppose to the contrary z1 6= z′1. By transformability with crossly local domi-
nance, there exists R̄1 ∈ D̄1(R2) ∩ D̄1(R

′
2) such that

(i) P1(R̄1, R2) ∩ LC(R1, z1) ∩ UC(R̄1, z1) = {z1};
(ii) P1(R̄1, R

′
2) ∩ {x ∈ Rl

+ : Ω− x ∈ LC(R2, z2) ∩ UC(R′
2, z2)} ⊂ LC0(R̄1, z

′
1).

By (i) and Lemma 2, ϕ(R̄1, R2) = z. By the incentive compatibility associated
with (R2, R

′
2, z), ϕ2(R̄1, R

′
2) ∈ LC(R2, z2) ∩ UC(R′

2, z2). Hence by efficiency,

ϕ1(R̄1, R
′
2) ∈ P1(R̄1, R

′
2) ∩ {x ∈ Rl

+ : Ω− x ∈ LC(R2, z2) ∩ UC(R′
2, z2)}.

Therefore by (ii), ϕ1(R̄1, R
′
2) ∈ LC0(R̄1, z

′
1): that is, ϕ1(R

′
1, R

′
2) P̄1 ϕ1(R̄1, R

′
2).

This contradicts strategy-proofness. Q.E.D.

8Lemma 3 corresponds to Step 4 of Proof of Theorem 1 by Zhou (1991) and Lemmas 2,
3, and Corollary 1 by Schummer (1997). Zhou and Schummer make use of Maskin monotonic
transformation in the proofs. Particularly in Schummer (1997), Mi is the line segment between
0 and Ω. He uses a preference which is a Maskin monotonic transformation of both Ri at zi

and Ri at z′i, where zi, z
′
i ∈ Mi. This preference should be kinked as far as it is homothetic

and Ri has a different supporting hyperplane at zi from the supporting hyperplane of R′i at
z′i. In restricted domains without kinked preferences, the proof in Schummer (1997) does not
work. Our proof does not necessarily require such Maskin monotonic transformation. We only
use a preference that satisfies (i) and (ii) in the above proof. Our argument is based on strong
invariance property established in Lemma 2. Consequently, as we show in Example 2 and in
Section 4 later, Lemma 3 applies in a number of domains without kinked preferences.
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We will show that the allocation commonly chosen for profiles with Pareto
set M, should be either (Ω, 0) or (0, Ω). We first show that when a rule gives one
agent the whole endowment at a profile, for it to be efficient and strategy-proof,
it should be dictatorial over a certain neighborhood of the initial profile.9 In
this sense, dictatorship at a profile contaminates the choices made for some other
profiles. For the formal description, we need the following notation.

Let R ∈ D and i ∈ N. Let S i(R) ≡ {R′ ∈ D : I ′−i (0) ⊇ I−i (0) and there exists
R′′

i ∈ Di such that R′
−i ∈ D−i(R

′′
i ) and R′′

i ∈ Di(R−i)}. Note that if R′ ∈ S i (R) ,
then R′ is reachable from R through the following three unilateral variations:
(Ri, R−i) → (R′′

i , R−i) →
(
R′′

i , R
′
−i

) → (
R′

i, R
′
−i

)
, where R′′

i ∈ Di is such that
R′
−i ∈ D−i(R

′′
i ) and R′′

i ∈ Di(R−i). Since I ′−i (0) ⊇ I−i (0) , all these unilateral
variations are 0-indifference-monotonic for −i. Note also that if R′ is a unilateral
variation of R, which is 0-indifference-monotonic for −i, then R′ ∈ S i (R) .

Let S̄ i(R) be defined as follows: for all R′ ∈ D, R′ ∈ S̄ i(R) if and only
if there exists a finite sequence (R1, · · ·, Rn) of profiles in D, n ≥ 2, such that
R1 ≡ R, Rn ≡ R′, and R2 ∈ S i(R1), · · · , Rn ∈ S i(Rn−1). We call S̄ i(R) the
contamination set relative to R and i. Then every R′ ∈ S̄ i (R) is reachable
from R through iterative unilateral variations 0-indifference-monotonic for −i
and conversely.

When D is everywhere reachable∗ and R−i is strictly monotonic, every R′ ∈ D
is reachable from R through iterative unilateral variations 0-indifference-monotonic
for −i. Hence S̄ i (R) = D.

Lemma 4: Let ϕ : D → Z be efficient and strategy-proof. If there exist i ∈ N
and R ∈ D such that ϕi(R) = Ω, then ϕ is dictatorial over S̄ i(R).

Proof: Let ϕ : D → Z be efficient and strategy-proof. We only have to show
that for all R ∈ D, all i ∈ N, and all R′ ∈ S i (R) , ϕi (R) = Ω ⇒ ϕi (R

′) = Ω.
Let R, i, and R′ be given as above. By definition of S i (R) , I ′−i (0) ⊇ I−i (0)

and there exists R′′
i ∈ Di such that R′

i ∈ Di(R
′
−i), R′

−i ∈ D−i(R
′′
i ), and R′′

i ∈
Di(R−i). Since Ri is strictly monotonic over Rl

++, then by i’s incentive compati-
bility condition relative to (Ri, R

′′
i , Ω) , ϕi (R

′′
i , R−i) = Ω and so ϕ−i (R

′′
i , R−i) = 0.

By−i’s incentive compatibility condition relative to (R−i, R
′
−i, 0), ϕ−i

(
R′′

i , R
′
−i

)
I−i 0.

Since I ′−i (0) ⊇ I−i (0) , ϕ−i

(
R′′

i , R
′
−i

)
I ′−i 0. Therefore, by efficiency, ϕ−i

(
R′′

i , R
′
−i

)
=

0 and so ϕi

(
R′′

i , R
′
−i

)
= Ω. Finally, by i’s incentive compatibility condition rela-

tive to (R′′
i , R

′
i, Ω), ϕi

(
R′

i, R
′
−i

)
= Ω. Q.E.D.

Let D have rich transformability with respect to D̄ ⊆ D and M ⊂ Z. Given

9By using the term “neighborhood” of a profile R, we do not mean an “open” set containing
R. It simply means a set containing R.
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(D̄, M), we call
⋃

R∈{R′∈D̄ : P (R′)=M} S̄ i(R) i’s minimal contamination set rel-

ative to
(D̄, M

)
.

Proposition 1: Assume that domain D satisfies rich transformability with re-
spect to D̄ ⊆ D and M ⊂ Rl

+. Then if a rule over D is efficient and strategy-proof,
then for some i ∈ N, the rule is dictatorial over i’s minimal contamination set
relative to

(D̄, M
)
.10

Proof: Let ϕ : D → Z be efficient and strategy-proof. Let d be an allocation such
that for all R′ ∈ D̄, if P (R′) = M, then ϕ(R′) = d. By potential efficiency and
Lemma 3, d is well-defined. Let R ∈ D̄ be such that P (R) = M. By Lemmas 3
and 4, we only have to show that d1 ∈ {0, Ω}.

Suppose to the contrary that d1 /∈ {0, Ω}. By double transformability, there
exists R ∈ D̄ such that
(i) P1(R) ∩M1 = {0, Ω} and
(ii) if z ∈ P (R) with z1 6= d1, then there exists R′

1 ∈ D̄1(R2) such that
for all z′1 ∈ P1(R

′
1, R2) ∩ LC(R1, z1) ∩ UC(R′

1, z1), either
(ii-1) for some R′′

1 ∈ D̄1(R2),

P1(R
′′
1, R2) ∩ LC(R′

1, z
′
1) ∩ UC(R′′

1, z
′
1) = {z′1} and d1 P ′′

1 z′1

or
(ii-2) for some R′

2 ∈ D̄2(R
′
1),

P2(R
′
1, R

′
2) ∩ LC(R2, z

′
2) ∩ UC(R′

2, z
′
2) = {z′2} and d2 P ′

2 z′2.

Let z ≡ ϕ(R). Then clearly z ∈ P (R) and by (i), z1 6= d1. Therefore by
efficiency and strategy-proofness and (ii), there exists R′

1 ∈ D̄1(R2) such that
either (ii-1) or (ii-2) holds at z′1 ≡ ϕ1(R

′
1, R2).

When (ii-1) holds, there exists R′′
1 ∈ D1(R2) such that d1 P ′′

1 z′1 and P1(R
′′
1, R2)∩

LC(R′
1, z

′
1) ∩ UC(R′′

1, z
′
1) = {z′1}. By Lemma 2, ϕ(R′′

1, R2) = z′. By attainabil-
ity, there exists R̄1 ∈ D1(R2) such that P (R̄1, R2) = M. Since ϕ(R̄1, R2) = d,
ϕ1(R̄1, R2) P ′′

1 ϕ1(R
′′
1, R2). This contradicts strategy-proofness.

When (ii-2) holds, similarly we derive a contradiction. Q.E.D.

When the domain satisfies everywhere reachability∗ in addition, the minimal
contamination set in Proposition 1 coincides with the entire domain. Therefore,
dictatorial rules are the only efficient and strategy-proof rules.

10Proposition 1 corresponds to Steps 2, 5, and 6 in Proof of Theorem 1 by Zhou (1991) and
Proof of Theorem 1 by Schummer (1997). Zhou and Schummer construct kinked preferences
and make use of the invariance of strategy-proof and efficient rules with respect to Maskin
monotonic transformations. Our proof is simpler and works well without kinked preferences.
This is because our proof makes use of the stronger invariance property in Lemma 2.

14



Theorem 1: Assume that domain D satisfies rich transformability and every-
where reachability∗. Then a rule over D is efficient and strategy-proof if and only
if it is dictatorial.

Proof: Let D satisfy rich transformability and everywhere reachability∗. Then
there exist D̄ ⊆ D and M ⊂ Rl

+ satisfying potential efficiency, attainability,
transformability with crossly local dominance, and double transformability. Let
ϕ : D → Z be efficient and strategy-proof. Then by Proposition 1, there exists
i ∈ N such that ϕ is dictatorial over i’s minimal contamination set relative to
(D̄, M). By potential efficiency, there exists R ∈ D̄ such that P (R) = M and
both R1 and R2 are strictly monotonic. Then since R−i is strictly monotonic and
D satisfies everywhere reachability∗, S̄ i(R) = D. Therefore ϕ is dictatorial.

Q.E.D.

Remark 1: Theorem 1 applies to product domains with rich transformability.
Also it applies to everywhere reachable domains with rich transformability, when
preferences are strictly monotonic.

Remark 2: Both rich transformability and everywhere reachability∗ are essential
in Theorem 1. Example 1 shows that without rich transformability, the impos-
sibility does not hold. Without everywhere reachability∗, the impossibility does
not hold either. The following example shows this. Let Da and Db be such that
D ≡ Da ∪Db. Suppose that for all R ∈ Da and all R′ ∈ Db, R′ cannot be reached
from R through iterative unilateral variations. Now let ϕ be dictatorial over Da

and agent 1 be the dictator over Da. Let ϕ be dictatorial over Db and agent 2 be
the dictator over Db. Then ϕ is efficient, strategy-proof, and non-dictatorial.

4 Applications

In this section, we apply our result in Section 3 to “intertemporal exchange
problem”, “risk sharing problem”, and two restricted domains, the “CES domain”
and the “quasilinear domain”.

4.1 Intertemporal exchange

In this section, we apply our main result to the following intertemporal exchange
problem.

Let T be the number of periods, T ≥ 2. For each t = 1, · · · , T, let Ωt > 0
be the endowment of a single consumption good at period t. Suppose that there
exists no saving technology. Then an allocation (zi)N ∈ RT×N

+ is feasible if for all
t = 1, · · · , T,

∑
i zit ≤ Ωt.
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Each agent i ∈ N has a preference Ri represented by a temporal utility func-
tion ui : R+ → R and a discount factor δi ∈ (0, 1) as follows: for all x, y ∈ RT

+,

x Ri y ⇐⇒
T∑

t=1

δt−1
i ui (xt) ≥

T∑
t=1

δt−1
i ui (yt) .

When the temporal utility function ui is concave (respectively, strictly concave),
Ri is convex (respectively, strictly convex ). Let RIE-convex be the class of all such
preferences represented by concave, strictly monotonic, and continuous temporal
utility functions. Let RIE-lin be the class of preferences in RIE-convex with the
linear temporal utility function, ulin (m) = m, for all m ∈ R+. Let RIE-s.convex be
the set of preferences inRIE-convex with strictly concave temporal utility functions.

We first consider RN
IE-lin, in which the temporal utility function is fixed by the

linear function ulin and the only variable parameter of each agent’s preference is
his discount factor.

We show that RN
IE-lin satisfies rich transformability and so does RN

IE-convex.
Therefore, the impossibility result in Theorem 1 applies to both domains.

Let P y ≡ {z ∈ Z : for some t ∈ {1, · · · , T}, z1 = (Ω1, · · · , Ωt−1, z1t, 0, · · · , 0)
and z2 = (0, · · · , 0, z2t, Ωt+1, · · · , ΩT )}. Let P p ≡ {z ∈ Z : for some t, z2 =
(Ω1, · · · , Ωt−1, z2t, 0, · · · , 0) and z1 = (0, · · · , 0, z1t, Ωt+1, · · · , ΩT )}. Note that for
each i ∈ N, both P yi and P pi are monotonic path from 0 to (Ω1, · · · , ΩT ).

Proposition 2: Both domains RN
IE-lin and RN

IE-convex in the intertemporal ex-
change problem satisfy rich transformability.11

Proof : For each δ ∈ (0, 1) , the linear preference with discount factor δ is denoted
by Rlin

δ . Then Rlin
δ is represented by the following utility function U lin

δ : for all
x ∈ RT

+, U lin
δ (x) ≡ ∑

t δ
t−1xt.

We make use of the following claim, which states that when both agents have
linear preferences, the Pareto set is equal to P y (respectively, P p) if and only if
agent 2 is more (respectively, less) patient than agent 1. We omit the proof.

Claim 1: For all δ1, δ2 ∈ (0, 1) , (i) P
(
Rlin

δ1
, Rlin

δ2

)
= P y ⇐⇒ δ1 < δ2; (ii)

P
(
Rlin

δ1
, Rlin

δ2

)
= P p ⇐⇒ δ1 > δ2.

11In the two period case, T = 2, for each agent, there are infinitely many admissible linear
preferences inRIE-lin. Schummer (1997) shows that in the 2-good exchange economy case, given
any domain with at least four admissible linear preferences for each agent, dictatorial rules are
the only efficient and strategy-proof rules. Therefore his result applies. Schummer (1997)
extends this result for the 2-good case to the l-good case using specific preferences in which
commodities are partitioned into two groups with identical marginal utilities. Such preferences
are not admissible in RN

IE-lin, since marginal utility decreases in the rate of discount factor over
periods. Therefore, when T ≥ 3, Schummer’s result does not apply.
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Let M ≡ P y and D̄ ≡ RN
lin. Then both potential efficiency and attainability

follow from Claim 1.

Transformability with crossly local dominance: Let (δ1, δ2) , (δ′1, δ
′
2) ∈ (0, 1)×

(0, 1) and z, z′ ∈ M be such that z 6= z′ and P
(
Rlin

δ1
, Rlin

δ2

)
= P (Rlin

δ′1
, Rlin

δ′2
) = M.

Without loss of generality, we assume z1 ≤ z′1.
By Claim 1, δ1 < δ2 and δ′1 < δ′2. There exists δ∗1 ∈ (0, 1) such that δ∗1 ≤

min{δ1, δ
′
1}. Then by Claim 1, P (Rlin

δ∗1
, Rlin

δ2
) = P y. Since P y is a monotonic path,

P1(R
lin
δ∗1

, Rlin
δ2

)∩LC(Rlin
δ1

, z1)∩UC(Rlin
δ∗1

, z1) = {z1}. Also by Claim 1, P1(R
lin
δ∗1

, Rlin
δ′2

) =

P y. Hence P1(R
lin
δ∗1

, Rlin
δ′2

) ∩ {x ∈ Z0 : Ω − x ∈ LC(Rlin
δ2

, z2) ∩ UC(Rlin
δ′2

, z2)} = {z}.
Since z1 ≤ z′1, z1 ∈ LC0(Rlin

δ∗1
, z′1). ¤

Double transformability: Let d ∈ M. Let δ1 > δ2. Then P
(
Rlin

δ1
, Rlin

δ2

)
= P p

and so Pi

(
Rlin

δ1
, Rlin

δ2

)∩Mi = {0, Ω} for each i ∈ N. Let z ∈ P
(
Rlin

δ1
, Rlin

δ2

)
be such

that z1 6= d1. When U lin
δ1

(z1) < U lin
δ1

(d1) , if we let R′
1 = R′′

1 ≡ Rlin
δ1

, then (ii-1) of
double transformability holds. When U lin

δ2
(z2) < U lin

δ2
(d2) , if we let R′

1 ≡ Rlin
δ1

and
R′

2 ≡ Rlin
δ2

, then (ii-2) holds.
Now assume U lin

δ1
(z1) ≥ U lin

δ1
(d1) and U lin

δ2
(z2) ≥ U lin

δ2
(d2) . Then d1 ∈ P y\{0, Ω}.

So d is not efficient for
(
Rlin

δ1
, Rlin

δ2

)
. Hence either U lin

δ1
(z1) > U lin

δ2
(d1) or U lin

δ2
(z2) >

U lin
δ2

(d2) .
We consider the case U lin

δ1
(z1) > U lin

δ2
(d1) and U lin

δ2
(z2) ≥ U lin

δ2
(d2) (the same

argument applies in the other case). Since U lin
δ2

(z2) =
∑

t δ
t−1
2 (Ωt − z1t) ≥∑

t δ
t−1
2 (Ωt − d1t) = U lin

δ2
(d2) , then U lin

δ2
(z1) ≤ U lin

δ2
(d1) . Since U lin

δ1
(z1) > U lin

δ1
(d1) ,

U lin
δ2

(z1) ≤ U lin
δ2

(d1) , and δ1 > δ2, then there exists δ′2 ∈ (δ2, δ1) such that
U lin

δ′2
(z1) > U lin

δ′2
(d1) . Then, U lin

δ′2
(z2) < U lin

δ′2
(d2) . Now let R′

1 ≡ Rlin
δ1

and R′
2 ≡ Rlin

δ′2
.

Then P (R′
1, R

′
2) = P p and (ii-2) holds. ¤ Q.E.D.

We now consider the domain of preferences associated with strictly concave
temporal utility functions. We show that this domain also satisfies rich trans-
formability.

Proposition 3: The domain RN
IE-s.convex in the intertemporal exchange problem

satisfies rich transformability.

Proof : The following proof is similar to the proof of Proposition 2. In what
follows, we assume T = 2. However, our proof can be extended to the general
case.

Let ρ > 0 be given. Let u : R+ → R be the following temporal utility function:
for all m ∈ R+, u (m) = −e−ρm. Throughout the proof we use the following
notation. For each discount factor δ ∈ (0, 1) , let Uδ : R2

+ → R be the utility
function associated with u and δ and let Rδ be the corresponding preference.
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For each x ∈ R2, let MRS (x; Uδ) be the ratio of the marginal utility of period
1 consumption and the marginal utility of period 2 consumption at x, that is,
MRS (x; Uδ) = 1

δ
eρx2

eρx1
. Then clearly, MRS is minimized at (Ω1, 0) and maximized

at (0, Ω2) and it is easy to show the following claim.

Claim 1: For all δ1, δ2 ∈ (0, 1) , (i) P (Rδ1 , Rδ2) = P y ⇐⇒ δ2

δ1
≥ eρ(Ω1+Ω2);

(ii) P (Rδ1 , Rδ2) = P p ⇐⇒ δ1

δ2
≥ eρ(Ω1+Ω2).

Let D̄ be the set of all preference profiles (Rδ1 , Rδ2), where δ1 ∈
(
0, e−ρ(Ω1+Ω2)

)
and δ2 ∈ (0, 1). So in D̄, the temporal utility function is known and the only
unknown parameter of each preference is the discount factor. Let M ≡ P y. We
show that D̄ and M satisfy rich transformability.

Potential efficiency holds by (i) of Claim 1. Since agent 1’s discount factor
is smaller than e−ρ(Ω1+Ω2), attainability also holds. Transformability with crossly
local dominance can be shown by using Claim 1 and the same argument as in the
proof of Proposition 2. We now show double transformability.

Double transformability: Let d ∈ M. Let δ1 ∈
(
0, e−ρ(Ω1+Ω2)

)
and δ2 ∈ (0, 1)

be such that δ1

δ2
≥ e−ρ(Ω1+Ω2). Then By Claim 1, P (Rδ1 , Rδ2) = P p and so for

each i ∈ N, Pi (Rδ1 , Rδ2) ∩ Mi = {0, Ω}. Let z ∈ P (Rδ1 , Rδ2) be such that
z1 6= d1. When Uδ1 (z1) < Uδ1 (d1) , if we let R′

1 = R′′
1 ≡ Rδ1 , then (ii-1) of

double transformability holds. When Uδ2 (z2) < Uδ2 (d2) , if we let R′
1 ≡ Rδ1 and

R′
2 ≡ Rδ2 , then (ii-2) holds.

Now assume Uδ1 (z1) ≥ Uδ1 (d1) and Uδ2 (z2) ≥ Uδ2 (d2) . Since d1 ∈ P y\{0, Ω},
d is not efficient for (Rδ1 , Rδ2) . Hence either Uδ1 (z1) > Uδ1 (d1) or Uδ2 (z2) >
Uδ2 (d2) . In what follows, we consider the case Uδ1 (z1) > Uδ1 (d1) and Uδ2 (z2) ≥
Uδ2 (d2) (the same argument applies in the other case).

Since Uδ1 (z1) > Uδ1 (d1) , z ∈ P p, and d ∈ P y, then δ1 > −e−ρd11+e−ρz11

−e−ρz12+e−ρd12
,

d11 > z11, and d12 < z12 (so d21 < z21 and d22 > z22). Let δ′1 ∈ (0, 1) be such that

δ′1 < −e−ρd11+e−ρz11

−e−ρz12+e−ρd12
(since d11 > z11 and d12 < z12, then there exists sufficiently

small δ′1 satisfying the inequality). Then Uδ′1 (d1) > Uδ′1 (z1) and δ′1 < δ1.

Let δ′2 ≡ min{δ2, δ
′
1/e

ρ(Ω1+Ω2)}. Then δ′1
δ′2
≥ eρ(Ω1+Ω2). Therefore by Claim 1,

P (Rδ′1 , Rδ′2) = P p. Let R′
1 ≡ Rδ′1 and R′

2 ≡ Rδ′2 . Then (ii-2) of double transforma-
bility holds. ¤ Q.E.D.

Remark 3: In the proof of Proposition 3, we use only the restricted family of
smooth preferences, D̄, in which each preference has a temporal utility function
u of the following form: there exists ρ ∈ (0, 1) such that u (m) = −e−ρm for all
m ∈ R+. Therefore any domain including D̄ satisfies rich transformability ; for
example, the domain consisting of all profiles of smooth preferences in RN

IE-s.convex.
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It may be the case that both agents share a common cultural background
relevant to impatience. Then it is appealing to assume that their impatience
levels are not too different; that is, the difference of their discount factors is
bounded by a fixed positive number. For each µ > 0, let DIE-lin&|δ1−δ2|<µ be
the family of linear preference profiles (R1, R2) ∈ RN

lin such that the difference
between the two discount factors δ1 and δ2 for R1 and R2 respectively is less
than µ; that is, |δ1 − δ2| < µ. Similarly, let DIE-convex&|δ1−δ2|<µ be the family of
preference profiles (R1, R2) ∈ RN

IE-convex such that the difference between the two
discount factors δ1 and δ2 for R1 and R2 respectively is less than µ. Similarly, we
define DIE-s.convex&|δ1−δ2|<µ. The proof of Propositions 2 and 3 can be modified to
derive the same conclusion for these domains. It is easy to show that the three
domains satisfy everywhere reachability∗.

Corollary 1: All three non-product domains, DIE-lin&|δ1−δ2|<µ, DIE-convex&|δ1−δ2|<µ,
and DIE-s.convex&|δ1−δ2|<µ, satisfy rich transformability and everywhere reachabil-
ity∗.

Corollary 2: Let D be one of the following domains in the intertemporal ex-
change problem,RN

IE-lin,RN
IE-convex,RN

IE-s.convex,DIE-lin&|δ1−δ2|<µ,DIE-convex&|δ1−δ2|<µ,
and DIE-s.convex&|δ1−δ2|<µ, where µ > 0. Then a rule over D is efficient and strategy-
proof if and only if it is dictatorial.

4.2 Risk sharing

In this section, we consider the following risk sharing problem.
Let S be the number of states, S ≥ 2. For each s = 1, · · · , S, let Ωs >

0 be the endowment at state s. We consider the problem of allocating these
endowments prior to the realization of state. An allocation is a list of state
contingent consumption bundles indexed by agents, z ≡ (zi)i∈N ∈ RS×N

+ .
Each agent i ∈ N has a preference Ri that is represented by a subjective prob-

ability distribution, or belief, πi ≡ (πis)s ∈ ∆S−1 and a utility index ui : R+ → R
in the expected utility form as follows: for all x, y ∈ RS

+

x Ri y ⇐⇒
S∑

s=1

πisui (xs) ≥
S∑

s=1

πisui (ys) .

We assume that πi > 0 and that ui is strictly increasing and continuous. We
further assume that ui is concave. Let RRisk be the family of all such expected
utility preferences. Preference Ri is risk averse if ui is strictly concave. It is risk
neutral if ui is the linear function ulin, that is, for all m ∈ R+, ulin (m) = m. Let
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RRisk-aver be the family of all risk averse preferences. Let RRisk-neut be the family
of all risk neutral preferences.

Let R0 ∈ RIE-convex be the preference in Section 4.1, which is represented
by a temporal convex utility function u0 and discount factor δ ∈ (0, 1) . Then
R0 is represented by the following utility function U : for all x ∈ RT

+, U (x) ≡∑
t δ

t−1u0 (xt) . Therefore, when T = S, R0 coincides with the preference in RRisk

with utility index u0 and the following belief,

(
1∑

t δ
t−1 ,

δ∑
t δ

t−1 , · · · ,
δT

∑
t δ

t−1

)
.

Therefore, RN
IE-lin ⊆ RN

Risk-neut ⊆ RN
Risk and RN

IE-s.convex ⊆ RN
Risk-aver. Therefore, it

follows directly from Propositions 2 and 3 that:

Proposition 4: All three domains, RN
Risk-neut, RN

Risk, and RN
Risk-aver, in the risk

sharing problem satisfy rich transformability.

Remark 4: It follows from the proof of Proposition 3 that the following restricted
domains in the risk sharing problem also satisfy rich transformability.

For each ρ > 0, let uρ
CARA : R+ → R be such that for all m ∈ R+, uρ

CARA (m) ≡
−e−ρm. The utility index uρ

CARA exhibits constant “Arrow-Pratt coefficient of

absolute risk aversion” equal to ρ; that is, for all m ∈ R+, −d2uρ
CARA(m)/dm2

duρ
CARA(m)/dm

= ρ.12

Let RRisk-CARA,ρ be the family of all expected utility preferences represented by
π ∈ ∆S−1 and uρ

CARA. Then in the domain RN
Risk-CARA,ρ, agents’ utility indices

are fixed and the only unknown factors of preferences are their beliefs. It follows
directly from the proof of Proposition 3, that for each ρ > 0, RN

Risk-CARA,ρ satisfies
rich transformability.

Every domain including RN
Risk-CARA,ρ for some ρ > 0 satisfies rich transforma-

bility. For example, the domain consisting of profiles of expected utility prefer-
ences that are smooth and risk averse satisfies rich transformability.

When both agents share an information on the state space, their beliefs will
be affected commonly by this information. Then, agents’ beliefs may not be
too far from each other. For each µ > 0, let DRisk-neut&|π1−π2|<µ be the family
of risk neutral preference profiles (R1, R2) ∈ RN

Risk-neut such that the difference
between the two beliefs π1 and π2 for R1 and R2 respectively is less than µ; that
is, |π1− π2| < µ. Similarly, let DRisk&|π1−π2|<µ be the family of preference profiles
(R1, R2) ∈ RN

Risk such that the difference between the two beliefs π1 and π2 for R1

and R2 respectively is less than µ. Similarly, we define DRisk-aver&|π1−π2|<µ. As in

12CARA stands for the constant absolute risk aversion.
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Corollary 1, the same conclusion as Proposition 4 can be derived in these domains.
It is easy to show that the three domains satisfy everywhere reachability∗.

Corollary 3: All three non-product domains, DRisk-neut&|π1−π2|<µ, DRisk&|π1−π2|<µ,
and DRisk-aver&|π1−π2|<µ, satisfy rich transformability and everywhere reachabil-
ity∗.

Corollary 4: Let D be one of the following domains in the risk sharing problem,
RN

Risk-neut,RN
Risk,RN

Risk-aver,DRisk-neut&|π1−π2|<µ,DRisk&|π1−π2|<µ, and DRisk-aver&|π1−π2|<µ,
where µ > 0. Then a rule over D is efficient and strategy-proof if and only if it
is dictatorial.

Remark 5: An interesting case not considered in this paper is when all agents
have a common prior. Domains with the common prior restriction do not satisfy
rich transformability, as our discussion in Example 1 shows.13 However, in such
a common prior case, Ju (2001) shows that the same result as Theorem 1 applies
when aggregate uncertainty holds.

4.3 Other restricted domains

In this section, we show that the domain of “CES preferences” and the domain of
“quasilinear”, strictly convex, and smooth preferences satisfy flexibility and rich
transformability respectively.

Let (a1, · · · , al) ∈ Rl
++. For each ρ ∈ (−∞, 0), the CES function u : Rl

+ → R
parametrized by ((a1, · · · , al), ρ) is defined as follows: for all x ∈ Rl

++, u(x) ≡
(
∑

k akx
ρ
k)

1/ρ . For each ρ ∈ (0, 1), the CES function u : Rl
+ → R parametrized

by ((a1, · · · , al), ρ) is defined as follows: for all x ∈ Rl
+, u(x) ≡ (

∑
k akx

ρ
k)

1/ρ .
Finally, for ρ ≡ 0, the CES function u : Rl

+ → R parametrized by ((a1, · · · , al), ρ)
is defined as follows: for all x ∈ Rl

+, uρ(x) ≡ xa1
1 × · · · × xak

k . A preference Ri is
a CES preference if Ri is represented by a CES function. Let RCES be the class
of all CES preferences. We refer to RN

CES as the CES-domain.

Proposition 5: The CES-domain is flexible.

Proof: Let M ≡ {z ∈ Z : z1 ∈ 0, Ω}. We show that RN
CES and M satisfy

potential efficiency, attainability, transformability with crossly local dominance,

13In Example 1, we showed that when aggregate certainty holds, there exists a efficient,
strategy-proof, and non-dictatorial rules over the domain of expected utility preferences with a
common prior. Therefore, by Theorem 1, the domain violates rich transformability∗; in fact,
the domain violate double transformability. We can also show that even if aggregate uncertainty
holds, the domain violate rich transformability∗.
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F1, and F2. The first four properties can be shown similarly to Example 2. We
are left with F2. In what follows, we only consider the 2-good case and show
F2; our argument can be extended to the l-good case.14 We use the following
property of Pareto set for homothetic preferences.

Fact 1 (Thomson, 1995): Let l = 2. When R1 and R2 are homothetic preferences
in R, P (R) is “doubly visible”, that is, for all z1, z

′
1 ∈ Rl

++, if z1, z
′
1 ∈ P1(R) and

z11 < z′11, then
[z12/z11 ≥ z′12/z

′
11 and z22/z21 ≥ z′22/z

′
21] or [z12/z11 ≤ z′12/z

′
11 and z22/z21 ≤ z′22/z

′
21] .

Let i ∈ N and di ∈ Mi. Without loss of generality we set i ≡ 1. We show
that for some R ∈ RN

CES,
(i) P1(R) ∩M1 = {0, Ω} and
(ii) if z ∈ P (R) \{d} and p · z1 = p · d1 for all p ∈ ∇R(z), then there exists

R̄1 ∈ RCES such that for all z̄1 ∈ P1(R̄1, R2)∩LC(R1, z1)∩UC(R̄1, z1), p·z̄1 6= p·d1

for some p ∈ ∇(R̄1, R2)(z̄).

Clearly, (i) holds. If d1 ∈ {0, Ω}, (ii) holds vacantly.
Assume that d1 /∈ {0, Ω}. Without loss of generality, let Ω ≡ (1, · · · , 1). Let

u1 : Rl
+ → R and u2 : Rl

+ → R be defined as follows: for all x ∈ Rl
+, u1(x) ≡

(ax
ρ1
1 + x

ρ1
2 )

1/ρ1 and u2(x) ≡ (bx
ρ2
1 + x

ρ2
2 )

1/ρ2 , where ρ1, ρ2 ∈ (0, 1) and a, b ∈
R++. Let R1 and R2 be the two preferences represented by u1 and u2 respectively.
Let ρ1, ρ2 ∈ (0, 1) and a, b ∈ R++ be chosen in such a way that P1(R) ∩ 0, Ω =
{0, Ω}, P1(R)\{0} ⊂ Rl

++, and for all z′1 ∈ P1(R)\{0, Ω}, z′1 ∈ Rl
++ and z′12/z

′
11 >

d12/d11.
Let z ∈ P (R) be such that z1 6= d1 and for all p′ ∈ ∇R(z), p′ ·z1 = p′ ·d1. Then

clearly, z1 /∈ {0, Ω}. Then since P1(R)\{0} ⊂ Rl
++, z1 ∈ Rl

++ and z2 ∈ Rl
++. Let

p ≡ ∇u1(z1). Since d1 ∈ 0, Ω and (Ω1, Ω2) = (1, 1) , then for all i ∈ N, di1 = d12.
Since p ∈ Rl

++ and p · z1 = p · d1, then z1 6≤ d1 and z1 6≥ d1.

14For the l-good case, we simply use the following relations between some special preference
profiles in the l-good case and their counterparts in the 2-good case.

Let a, b ∈ R++ and (c2, · · · , cl) ∈ Rl−1
++ . Let U1 : Rl

+ → R and U2 : Rl
+ → R be de-

fined as follows: for all x ∈ Rl
+, U1(x) ≡

(
a(x1/Ω1)ρ1 +

∑l
k=2 ck(xk/Ωk)ρ1

)1/ρ1
; U2(x) ≡

(
b(x1/Ω1)ρ2 +

∑l
k=2 ck(xk/Ωk)ρ2

)1/ρ2
. Let u1 : R2

+ → R, and u2 : R2
+ → R be defined

as follows: for all (x1, x2) ∈ R2
+, u1(x1, x2) ≡

(
a(x1/Ω1)ρ1 +

(∑l
k=2 ck

)
(x2/Ω2)ρ1

)1/ρ1
;

u2(x1, x2) ≡
(
b(x1/Ω1)ρ2 +

(∑l
k=2 ck

)
(x2/Ω2)ρ2

)1/ρ2
. Then for all x ∈ Rl

++, (i) if (x, Ω− x)
is efficient in l-good economy (U1, U2,Ω), then x2

Ω2
= x3

Ω3
= · · · = xl

Ωl
and ((x1, x2), (Ω1−x1, Ω2−

x2)) is efficient in 2-good economy (u1, u2, (Ω1, Ω2)), and (ii) if ((x1, x2), (Ω1 − x1,Ω2 − x2))
is efficient in 2-good economy (u1, u2, (Ω1,Ω2)), then ((x1, x2,

Ω3
Ω2

x2 · · · , Ωl

Ω2
x2), (Ω1 − x1,Ω2 −

x2, Ω3(1− x2
Ω2

), · · · , Ωl(1− x2
Ω2

))) is efficient in l-good economy (U1, U2, Ω).
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Let (x̄1, x̄2) ∈ R2
++ be such that u2(1− x̄1, 1− x̄2) = u2(z21, z22) and x̄1 < z11

(since z1, z2 ∈ Rl
++, there exists such (x̄1, x̄2) ∈ R2

++). Let (p̄1, p̄2) ∈ R2
++ be a

vector normal to (x̄1, x̄2), (d11, d12). Then

(?) (p̄1, p̄2) · (x̄1, x̄2) = (p̄1, p̄2) · (d11, d12) < (p̄1, p̄2) · (z11, z12).

Then there exists a CES function ū such that ū1(x̄1, x̄2) = ū1(z11, z12) and
∇ū1(x̄1, x̄2) = (p̄1, p̄2). Without loss of generality, we assume that ū1(x1, x2) ≡(
āx

ρ̄1
1 + x

ρ̄1
2

)1/ρ̄1 , where ā ∈ R++ and ρ̄1 ∈ (−∞, 1). Then∇ū1(x) ≡ K·(āxρ̄−1
1 , xρ̄−1

2 ),

where K ≡ (
āxρ̄

1 + xρ̄
2

)1/ρ̄−1
, for all x ∈ Rl

++.
By (?), ∇ū1 (x̄) · x̄ = ∇ū1 (x̄) · d1. By Fact 1, we can show that for all

z̄1 ∈ P1(R̄1, R2) ∩ LC(R1, z1) ∩ UC(R̄1, z1), x̄2/x̄1 > z̄12/z̄11 > d12/d11 = 1.
Clearly, ∇ū1 (x̄) · z̄1 > ∇ū1 (x̄) · x = ∇ū1 (x̄) · d1. Then āx̄ρ̄−1

1 z̄11 + xρ̄−1
2 z̄12 >

āx̄ρ̄−1
1 d11 + x̄ρ̄−1

2 d12, that is, āz̄11 − ād11 + ( x̄1

x̄2
)1−ρ̄(z̄12 − d12) > 0. Since z̄11 < d11,

z̄12 > d12. Since x̄1

x̄2
< z̄11

z̄12
, āz̄11 − ād11 + ( z̄11

z̄12
)1−ρ̄(z̄12 − d12) > 0. Therefore,

∇ū1 (z̄1) · z̄1 > ∇ū1 (z̄1) · d1. Q.E.D.

A preference R0 ∈ R is quasilinear with respect to the numeraire good
k ∈ {1, · · · , l} if for all x, y ∈ Rl

+ and all α ∈ R, whenever x+αek, y +αek ∈ Rl
+,

where ek is the unit vector with zero components except at the kth component,
x I0 y ⇒ (x + αek) I0 (y + αek) . Let RQ be the family of quasilinear, strictly
convex, and smooth preferences with respect to a common numeraire good.

Proposition 6: Domain RN
Q satisfies rich transformability.

Proof : Let ρ ∈ (0, 1). For each a > 0, let ua : Rl
+ → R be such that: for all

x ∈ Rl
+, ua(x) ≡ a · x1

Ω1
+

∑l
k=2

(
xk

Ωk
+ 1

)ρ

. Let RQ,ρ be the set of preferences

represented by ua for some a > 0. Let M1 ≡ {z ∈ Z̄ : z11 = 0 or z12

Ω2
= z13

Ω3
= · · · =

z1l

Ωl
= 1}, and M2 ≡ {z ∈ Z : z11

Ω1
= 1 or z12

Ω2
= z13

Ω3
= · · · = z1l

Ωl
= 0}. Let D̄ ≡ RN

Q,ρ

and M ≡ M1. We show that D̄ and M satisfy potential efficiency, attainability,
transformability with crossly local dominance and double transformability.

It is easy to show the following claim.

Claim 1: Let R1, R2 be represented by ua1 , uα2 respectively . Then for all i ∈ N,

P (R) = M i if and only if ai ≤ a−i · 21−ρ

Potential efficiency and attainability are trivial.

Transformability with crossly local dominance: Let R, R′ ∈ D̄ and zi, z
′
i ∈

Mi be such that P (R) = P (R′) = M and zi 6= z′i. Without loss of generality,
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assume z1 ≤ z′1. For all i ∈ N, let Ri be represented by uai and R′
i by ua′i , where

ai, a
′
i > 0. Then by Claim 1, a1 ≤ a2 · 21−ρ and a′1 ≤ a′2 · 21−ρ.
Let ā1 ≡ min{a1, a

′
1}. Let R̄1 be represented by uā1 . Then since ā1 ≤ a2 · 21−ρ

and ā1 ≤ a′2 · 21−ρ, then by Claim 1, P (R̄1, R2) = P (R̄1, R
′
2) = M. Since M1

is a monotone path and all preferences are strictly monotonic, P1(R̄1, R2) ∩
LC(R1, z1) ∩ UC(R̄1, z1) = {z1}. Hence part (i) of transformability with crossly
local dominance holds. Similarly, P1(R̄1, R

′
2) ∩ {x ∈ Z0 : Ω − x ∈ LC(R2, z2) ∩

UC(R′
2, z2)} = {z1}. Since z1 ≤ z′1 and R̄1 is strictly monotonic, z′1 P̄1 z1. There-

fore part (ii) of transformability with crossly local dominance also holds. ¤
Double transformability: Let d1 ∈ M1. Let R ∈ D̄ be such that P (R) = M2.
Let z ∈ P (R) and z1 6= d1. Then clearly, P1(R) ∩M1 = {0, Ω}: that is, part (i)
of double transformability holds.

When d1 ≥ z1 or d1 ≤ z1, if we let R′
1 ≡ R1, then P1(R

′
1, R2) ∩ LC(R1, z1) ∩

UC(R′
1, z1) = {z1}. Therefore when d1 ≥ z1, by strict monotonicity of R1, (ii-1)

of double transformability is satisfied with respect to R′′
1 ≡ R1. When d1 ≤ z1,

(ii-2) of double transformability is satisfied with respect to R′
2 ≡ R2.

Now assume that d1 � z1 and d1 � z1. Then d11 < z11 and d12 > z12. Let
a1, a2 > 0 be such that R1 is represented by ua1 and R2 is represented by ua2 .
Then by Claim 1, a2 ≤ a1 · 21−ρ.

Let a′2 > (l−1)· (z22+1)ρ−(d22+1)ρ

d21−z21
. Let a′1 ≥ max{a1,

a′2
21−ρ}. Let R′

1 be represented

by ua′1 and R′
2 be represented by ua′2 . Then since a′1 ≥ a1, a′1 · 21−ρ ≥ a2. Hence

by Claim 1, P1(R
′
1, R2) = M2. Since M2

1 is a monotone path through z1 and all
preferences are strictly monotonic, P1(R

′
1, R2)∩LC(R1, z1)∩UC(R′

1, z1) = {z1}.
Since a′1 ≥ a′2/2

1−ρ, by Claim 1, P (R′
1, R

′
2) = M2. Since M2

2 is a mono-
tone path through z2 and all preferences are strictly monotonic, P2(R

′
1, R

′
2) ∩

LC(R2, z2) ∩ UC(R′
2, z2) = {z2}. Since a′2 > (l − 1) · (z22+1)ρ−(d22+1)ρ

d21−z21
, d2 P ′

2 z2.
Therefore, (ii-2) of double transformability is satisfied. ¤

Q.E.D.

Corollary 5: Let D ∈ {RN
CES,RN

Q}. Then a rule over D is efficient and strategy-
proof if and only if it is dictatorial.

5 Concluding remarks

1. In several other economic environments, a number of authors have reported the
same impossibility results as in the 2-agent exchange economy. Among others are
Walker (1980), Zhou (1991b), Schummer (1999), Serizawa (1998), and Le Breton
and Weymark (1999). Identification of general domain properties that induce
their impossibility results will be an interesting research agenda.
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2. Our conclusion makes use of the strong invariance property of efficient and
strategy-proof rules, which is established in Lemma 2. The same invariance prop-
erty will hold in other economic environments, for example, exchange economies
with more than two agents, classical production economies, public goods economies,
etc. Application of the strong invariance property may lead to simpler proofs and
extensions of the existing results, for example, by Walker (1980), Satterthwaite
and Sonnenschein (1981), Serizawa (1998), and Schummer (1999).
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