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How do the returns to research and development (R&D) evolve over time? This
fundamental question lies at the heart of several important questions in economics. Several
studies have addressed the returns to R&D by looking at the value of the output of R&D. They
do this either directly, by including R&D expenditures in the production function of a firm, or
indirectly, by estimating the value of holding patent rights." This paper approaches the question
from a different direction. Rather than asking the value of the output of the research process, I
ask what is the expected value of the imputs to the research process — that is, how much will
additional R&D spending increase the expected value of th'e outcome of the R&D project. The
expected value of R&D spending is an important determinant of the amount of R&D spending in
any given time period. Empirical work on the determinants of R&D spending have been
burdened by a lack of data on the research opportunities facing inventors. This paper uses patent
citation data to fill this gap.

The pattern of returns to research over time is important for several reasons. This paper
focuses on two questions for which the productivity of research inputs provide valuable
information. The primary motivation of this research is that the productivity of research inputs is
an important determinant of a firm’s research investment decision. Many models of innovation
make assumptions about the returns to R&D. For example, the induced innovation literature,
which studies the impact of factor prices on innovative activity, postulates the presence of an
innovation possibilities frontier (IPF), which represents the possible technological advances in a
given period.> However, that literature does not successfully address how the opportunities for
induced innovation will vary over time. Instead, the frontier is treated as exogenous. No
relationship between past research and the current IPF is posited. Yet, unless returns to research
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effect of demand variables to vary over time. As noted in Nordhaus (1973), the failure of the
induced innovation literature to address the formation of the innovation possibilities frontier
prevents the theory from truly endogenizing technological change. This paper addresses that
criticism by examining how previous research efforts affect the productivity of future research.

A second reason for concern over the productivity of research inputs comes from data on
patents and R&D spending. Over time, the ratio of patents to R&D expenditures has fallen in all
industrial nations. Figure 1 illustrates this trend for the United States. In addition, total factor
productivity growth declined during the 1970’s. Noting the correlation between the declining
patent-to-R&D ratio and total factor productivity growth, V'some researchers have attributed this
fall to a decline in the productivity of research.

Hypotheses to explain the falling ratio focus either on the returns to R&D, such as
Evenson (1991) or Ko;tum (1993), or on exogenous changes in the willingness to patent
(Griliches 1989, 1990). Those who argue that exogenous changes in patenting behavior are the
cause of the declining patent-to-R&D ratio argue that the returns to tesearch have not fallen over
time, but rather that inventors are less likely to patent successful innovations that they were
earlier? Changes in industry composition or legal rulings by the courts could change the
perceived value of patent protection. By focusing only on the returns to R&D, this paper will
shed some light on the puzzle of the falling patent-to-R&D ratio.

This study of the productivity of research R&D is carried out by examining trends in
energy-saving innovations over the past 25 years. To show how the trends in research
productivity vary across technologies, several different energy-efficient technologies are
included. Studying energy-efficient innovations are of interest because of the insight they

provide into the role that technological change can play in alleviating many of today’s



environmental problems. Many of these, such as global warming, are long-term problems,
Technological change is likely to play a key role in alleviating them. In addition, several papers
show that policymakers can induce environmentally-friendly innovation with policies such as a
carbon tax or a regulation restricting emissions*. Knowing how the productivity of such research
varies over time is important to understanding just how important a role technological change
will play in easing environmental concerns. If evidence of diminishing returns is found, the
effects of induced innovation from a policy change are likely to be short-lived.

This paper uses patent citation data as a means of quantifying the research opportunities
available. When a patent is granted, the patent document inl:ludes citations to earlier patents that
are similar to the new invention. The legal purpose of these citations is to limit the claim of the
new patent — any part qf the invention that duplicates things from the cited patents cannot be
claimed by the holder of the new patent. Previous work with patent citations has focused on the
flow of knowledge across institutions (such as from universities to private industry), across
regions, and across nations (Jaffe and Trajtenberg, 1995; Jaffe, Henderson, and Trajtenberg,
1993). In addition, patent counts weighted by the number of subsequent citations have been
found to be a good measure the social value of innovation (Trajtenberg, 1990). Finally,
Caballero and Jaffe (1993) use citations in a macro growth model both to study the diffusion and
obsolescence of knowledge, and to study the productivity of knowledge. The current paper is
most similar in spirit to the Caballero and Jaffe work, in that the focus is on changing citation
patterns over time. However, this paper takes a more micro-oriented approach by studying
citations in several different technology areas.

The paper is organized as follows. It begins with a review of the existing literature on the
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productivity of research inputs. A model of research under uncertainty, first developed by
Evenson and Kislev (1975), is introduced. Using the implications of their model, I discuss how
patent citation data can be used as a proxy for the opportunities facing inventors. In section III, a
model of patent citations, first developed by Adam J affe and his co-authors (Caballero and Jaffe,
1993; Jaffe and Trajtenberg, 1995), is used to estimate parameters for this opportunity. These are
referred to as productivity parameters. The validity of these parameters is tested in section IV.
Section V examines the behavior of the productivity estimates over time. Diminishing returns
are found, both across time and with respect to the number of patents granted in a given year.
The productivity estimates are compared to the falling pa;c.ent-to-R&D ratio in energy research,
and shown to explain the trend well. More general implications for the falling patent-to-R&D
ratio in the economy as a whole are discussed. Section VI concludes.

I. Previous Studies of tie Returns to R&D

This paper examines the productivity of research inputs — that is, what do inventors
perceive as the expected value of research before a research project is begun. It uses subsequent
citations to patents in the energy fields to make inferences about the potential for successful
research at any given time. In contrast, several papers have examined the productivity of
research output — that is, what are the contributions of the results of R&D to economic growth.
Griliches (1995) presents a survey of this work.

Griliches outlines three approaches used to assess the effects of R&D on economic
growth. The first, historical case studies, find high private and social rates of return on new
inventions. However, only focusing on successful innovations may bias the results of such case
studies. The second line of research is the use of invention counts and patent statistics. Much of
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patent in force. Using data on the number of patents that are renewed and the number allowed to
expire, researchers such as Pakes (1986) and Pakes and Schankerman (1984) have found that the
value of patents are highly skewed. Most patents have little worth, but a few have enormous
value. Lanjouw, Pakes, and Putnam (1996) provide a review of empirical work using patent
renewal data. However, to interpret the results of renewal data studies, it is important to note that
these studies capture the value of patent protection to the inventor, rather than the value to
society of the invention itself,

The third line of research on R&D productivity 'estimates production functions that
include R&D expenditures as a right-hand variable. Examples include Griliches and Jaques
Mairesse (1984), Clark and Griliches (1984) and Scherer (1982, 1984). The rate of return to
R&D found by these s_tgdies generally lies between 0.2 and 0.5, where the rate of return is
defined as the change in the growth rate of output which results from additional R&D spending.
Some evidence is found to suggest that research was less productive during the 1970’s.
However, Griliches notes that this change in productivity is not enough to explain the fall in total
factor productivity growth during this period. In addition, the returns to R&D appear to recover
by the end of the 1980’s, bringing the hypothesis of diminishing returns to R&D into question.
These studies are complicated by all of the econometric difficulties of estimating production
functions, such as simultaneity, and also by data problems, as measures of output do not
adequately account for changes in quality brought about by successful innovation.

In contrast with these papers, this study looks at the productivity of research inputs. To
understand the distinction between the inputs and outputs of research, consider a production

function of the form:
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Equation (1) states that output in time #, denoted O, is a function of the inputs used, X,. The
productivity of the inputs is a function of the current state of knowledge, K;. The current state of
knowledge is a stock that depends on current research R,, and the productivity of the previous
stock of knowledge. The previous studies mentioned examine the productivity of the output of
R&D — that is, they attempt to measure S/ K, = (A2/ &X)*(EXy/ 2Ky). In contrast, this paper is
concerned with the marginal benefits of additional research — that is, K/ éR;. In particular, this
paper looks at how past knowledge affects the productivity of current research, or FKJRKy1.

Patent citations will be used for this purpose. The one previous study that has related
patent citations to the returns to research is Caballero and Jaffe (1993). They use a database of
U.S. patents from 1975 to 1992, and examine citations contained in these patents to patents
dating back to 1900, Among their findings is that newer patents are less likely to be cited,
suggesting a decline in the value of knowledge represented by these patents.

This paper builds on the work in Caballero and Jaffe. Rather than focusing on all
inventions, we look only at inventions in the area of energy efficiency. By studying several
different technologies within this area of research, I am able to see how research opportunities
vary across fields. In addition, annual estimates of the productivity of past knowledge are
obtained, so that changes in these estimates can be studied more carefully than in Caballero and
Jaffe. The estimates are related to the amount of innovative activity in these fields. I find that
the productivity estimates are significant predictors of the overall level of R&D in a given field.
Finally, the pattern of productivity estimates across time is examined for diminishing returns.

II. Patent Citations and the Productivity of Earlier Knowledge
When a patent is granted, it contains several citations to earlier patents that are related to
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applicant and the patent examiner. It is the applicant’s responsibility to list any related previous
patents of which he or she is aware. In addition, the examiner, who specializes in just a few
patent classifications, will add other patents to the citations, as well as subtracting any irrelevant
patents cited by the inventor. Patent citations narrow the reach of the current patent by placing
the patents cited outside the realm of the current patent, so it is important that all relevant patents
be included in the citations.”> For the same reason, inventors have incentives to make sure that no
unnecessary patents are cited. As a result, the previous patents cited on a new patent should be a
good indicator of previous knowledge that was utilized by the inventor.

My interest in patent citation data is to develop a proxy for the expected value of research
at any given time. Citations provide evidence of the existing state of technology when an
invention is completed. T ust as citations to earlier work in a journal article indicate that the cited
works were of use to the author, citations to previous patents indicate that earlier innovations
were of use to the inventor.® Frequent citations to a patent indicate that the knowledge embodied
in that invention is useful to other inventors. When several past useful inventions are available to
inventors, current research should be more productive.

To visualize this, it is useful to consider the R&D process of a firm more carefully. In
this section, I summarize the search model of R&D (Evenson and Kislev, 1975).” The model
provides an explicit formalization of the expected value of research. Although the data in this
study are not sufficient to estimate the expected value of research as set out in the search model,
the model does provide useful intuition as to how patent citation data can be used to infer this
information.

The results of R&D are not certain when the investment is made. Acknowledging the
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process of searching over a distribution of possible outcomes. The distribution represents the
value of the possible outcomes from a given level of research. The current level of knowledge is
represented by one point in the distribution. Since the probability of successful research varies
across different technologies, each technology is assumed to have its own distribution. For
example, the invention of a new engine and the invention of a new solar collector presumably
come from different distributions of potential outcomes.

- Figure 2 presents a distribution of outcomes for a hypothetical research field. The x-axis
measures the value of the invention that results from research. X, represents the current level of
knowledge. The search model portrays research as a ser;es of random draws taken from this
distribution of possible outcomes. A number of draws are taken each period, and the result from
the highest draw is ponsidered the output of the research that period. If the highest draw is
greater than the previously existing knowledge, research is successful. As a result, the expected
value of research is represented by the area to the right of K, (shaded in Figure 2). This area can
be thought of as the stock of unexploited technology. It tells us how useful the existing stock of
knowledge (K;) is to inventors. When K; is further left in the distribution of possible outcomes,
there are more opportunities for research that follows up on this idea. Thus, the larger the stock
of unexploited technology, the greater the expected value of research.

The distribution of possible outcomes also provides insight as to how the returns to
research can vary over time. If a successful invention occurs in period ¢, the state of knowledge
in period #+1 shifts rightward. As a result, the expected value of research will be less in period
t+1. Evenson (1991) refers to this as invention potential exhaustion. The intuition is that there is
a limited pool of potential inventions on which to draw. As ideas in this pool are used up, the
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3a. The expected value of research in time 7 is equal to A+B. An invention in period ¢ shifts out
the level of knowledge facing inventors in period r+1. As a result, the expected value of research
in period #+1 is only area B.

However, there is a second possibility. The preceding discussion assumes that the
distribution of potential outcomes does not change over time. This is not necessarily the case.
Advances in science may change the nature of the distribution of possible outcomes. New
innovations may contain basic knowledge that make possible in period +1 inventions that were
not possible in period £. Evenson refers to this as recharge. Recharge occurs when inventions
shift the distribution of potential outcomes rightward. Recharge can also come from inventions
in related fields or from advances in basic science. For example, the invention of microcompﬁter
chips led to the developlflent of a generation of electronic equipment.® Recharge is illustrated in
Figure 3b. Again, the original state of knowledge is K, and the new state of knowledge is K.
However, in this example, the distribution of potential outcomes has shifted outward. The
expected value of research in period ¢ is A+B; in period ¢+1 it is B+C. Since area C is drawn to
be larger than area A, the effect of recharge dominates invention potential exhaustion. As a
result, there are no diminishing returns to R&D in this example.’

As Evenson notes, the debate over retums to R&D centers on the possibilities _for
recharge. The principles of diminishing returns should apply to research just as much as any
other economic activity, leading to invention potential exhaustion. The question is whether new
advances in science — or recharge — occur quickly enough to counteract the effect of exhaustion.
In this paper, I look at variations in the expected value of research over time to address this

question.
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As figures 2 and 3 show, two pieces of information would be needed to estimate the
expected value of research as modeled by Evenson and Kislev:

1) the properties of the distribution of possible outcomes, and

2) the position of the current level of knowledge within this distribution.

Unfortunately, neither of these is observed directly in the data set used in this paper. However,
Evenson’s search model of R&D does provide insight as to how to make inferences about the
expected value of research using patent citation data.

The expected value of current research is higher the farther left the current state of
knowledge is in the distribution of possible outcomes. Iftl;e patent répresenting the current state
of knowledge is at the left of a distribution, it should be followed by many improvements tb it,
and thus be cited oﬁen by subsequent patents. Conversely, if an invention is at the right of the
distribution of potentiai- outcomes, subsequent patents will cite it less often. By observing the
subsequent citations to patents from any given year, one can infer how large the stock of
unexploited technology was.

Figure 4 illustrates how the expected value of research relates to the nature of the
distribution, and how citation data can be used to infer this information. Consider a firm
considering two research projects, each represented by a different distribution of possible
outcomes. Ky represents the current state of knowledge in each field. Research is only
successful if it results in a draw from the distribution greater than K. The expected value of
research is the area under the distribution and to the right of the current level of knowledge.'® To
simplify matters, assume that the only difference between the two distributions is the level of the

current state of knowledge in each field. Figure 4 is drawn so that K < K. There is a greater
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stock of unexploited technology remaining to be discovered by the second project (represented
by the shaded areas in figure 4).

Thus, by looking at the subsequent cites to the patents representing these inventions, one
can infer where in the distribution of possible outcomes they lie, and thus how large the stock of
unexploited technology is. To do this, I assume that inventions at the upper end of a distribution
of potential outcomes will cite earlier inventions in the distribution. Of course, in any given vear,
there will be many inventions, taken from many different -distributions. For example, the
invention of a new engine and the invention of a new so}ar collector presumably come from
different distributions of potential success. Inventions that are at the left of a distribution will be
followed by many improvements to it, and will thus be cited often. Inventions at the right 6f a
distribution will be citeq_l_ess often. In figure 4, we see that there are more potential inventions
available for the second project. Thus, if K, and K, represent previously patented innovations,
we would expect more citations to the patent for Ky, than to the patent for K.

HI. Estimaﬁon

The previous section shows that a higher number of citations to a patent results in a
higher expected value of R&D for future inventors. The goal of this section is to observe the
likelihood that patents granted in any given year are cited by patents from subsequent years.
However, a simple count of subsequent citations is not enough. Since the raw number of citations
to any patent depends on the total number of patents that follow, it is necessary to look at the
probability of citation, rather than a pure count of citations. In addition, because most patents are
never cited, patents are grouped by years, rather than using individual patents as data points,

To begin, cohorts of patents that could potentially cite each other are created. For each
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the United States, a patent application is not made public unless the patent is granted. Thus, the
year of grant is the year in which the patented innovation entered the public domain. The patents
that do the citing are sorted by year of application, so that the results of this paper will
correspond to the results of Popp (1997, 1998), in which energy patents were sorted by year of
application to estimate a model of induced innovation. Citing patents are denoted CTG. The data
are sorted by CTD,CTG cohorts. Separate cohorts are constructed for each technology group, i.
For example, one cohort might be citations to all solar energy patents granted in 1975 made by
solar energy patents applied for in 1980. Denoting citations as ¢ and the number of patents from

each year as n, the probability of citation for patents within each cohort is:

C; crp.c16
@ PicIDeTg = -
Replerg

The goal is td find the likelihood that patents granted in year CTD will be cited by patents
in any subsequent year. To find this, it is necessary to control for other extenuating factors that
affect the likelihood of citation. The model used in this paper builds on a model used in
Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1995) for that purpose. These authors
identify three factors that affect the probability of a patent being cited by subsequent patents.
They are:

1) the rate at which newly produced knowledge, as represented by a newly-patented

innovation, diffuses through society,

2) the rate at which new innovations become obsolete, as they are replaced by better

inventions, and

3) the ways in which citing behavior has changed over time.
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In addition, a fourth factor, the size of the technology group, is added for this paper.
About half of all patent citations are to patents in the same classification (Jaffe, Henderson, and
Trajtenberg, 1993). However, the technology groups used in this paper range from groups with
one or two subclassifications to groups with patent from many different broad classifications.
Technology groups with broad definitions are more likely to include subclasses that are not
strongly related. As a result, citations to other patents in the group are less likely in these groups.

The reasons for considering the decay and diffusion of knowledge are straightforward. It
is not the production of a new process in a laboratory that spurs further innovation, but rather the
dissemination of the new knowledge throughoﬁ society. The rate of diffusion accounts for the
delays in new knowledge becoming publicly available. This effect would cause older patents to
be cited more than newer patents. Working against the diffusion process is the obsolescence of
older knowledge. As time passes, newer inventions will make older ones obsolete. The rate of
decay accounts for this.

Institutional changes at the patent office make it necessary to consider changes in citing
behavior over time. These changes make patents more likely to cite earlier patents than was
previously true, even if all other factors are equal. In particular, two changes have played an
important role. First, computerization of patent office records has made it easier for both patent
examiners and inventors to locate other patents similar to the current invention. Second,
increasing legal pressure has made it more important for examiners to be sure that all relevant
patents are cited.

Jaffe and his co-authors develop a model that estimates the probability of a patent granted
in a given year being cited by future patents, taking into account the three factors mentioned

above. This paper extends their model by adding the parameter to control for technology group
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size. I estimate the probability of citation among patents in a cohort, p, as a function of several
factors:

o the usefulness of the knowledge represented in the patent being cited (o crp),

o the frequency by which patents applied for in the citing year cite earlier patents (acro)',

» the frequency of citations within each technology group (),

o the rate at which the knowledge represented by the cited patent becomes obsolete (),

o the rate at which this knowledge diffuses through society (5).

Note that the first parameter, a;crp is the value of most interest for this paper. It is a;crp
that tells us the likelihood that patents from year CTD will be cited- by subsequent patents. The
other parameters control for other facets of the patenting process that might affect the likelihood
of citation. Higher values of ¢; crp indicate that the patents in question are more likely to be cited
by subsequent patents. This implies that the knowledge embodied in those patents is particularly
useful. Referring back to Figure 4, patents cited more frequently are at the left of the distribution
of potential research outcomes. The expected returns on R&D to researchers building on the
knowledge in these patents should be larger than for patents from other years. Thus, lagged
values of @ crp can be interpreted as a measure of the expected return of R&D. I refer to a;crp as
the productivity parameter.

A. Estimating the Model

The data set to be used for estimation are the citations in the energy patent data set first
described in Popp (1997, 1998). It includes patents granted in the United States in 12 technology
groups related to energy efficiency. The technology groups are created from various subclasses
of the U.S. patent classification system. Patents are sorted by the year in which they were applied

for. Although that data set includes patents applied for since 1970, only patents granted since
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1975 have citation information available. A more thorough description of the data set can be
found in appendix B.

Figure 5 provides examples of the trends in citation data. The graphs plot the probability
of patents granted in year CTD being cited by other patents x-years after the year of grant for
solar energy and fuel cell patents. In these graphs, only citations to patents in the same
technology group are considered. Similar plots are obtained when all citations are used. Each line
represents citations to patents granted in a given year. The x-axis measures the lag in years since
the patent was granted, and the y-axis shows the probabil'ity of a patent from year CTD being
cited by a patent x-years later. The productivity parameter, e;crp, can be visualized as the y-
intercept in the figures. Patents from productive years, such as solar energy patents from 1975,
have higher y-intercepts. The figure shows that the probability of citation falls over time,
suggesting that the decay of knowledge is more influential than the diffusion of knowledge in
determining the probability.'? Finally, note that the pattern of decay is similar for patents of
different vintages, so that productive patents, such as solar energy patents from 1975, remain
more likely to be cited than other patents, even after a lag of several years.

Estimation of the values of the productivity parameter, o;czp, proceeds as follows. As in
the work of Jaffe ef al., an exponential distribution is used to capture the probability of citation
among cohort members. Adding an error term, &cm,cre, the probability of citation among cohort
members can be written as:

3 Pictoere = ¥i @icrpereeXpl-fi(CTG-CTD)){ 1-exp[-f(CTG-CTD)]} + & crp,cro-
Equation (3) is estimated using non-linear least squares, using all patents granted from 1970 to
1989 as the cited years, and all patents applied for from 1974 to 1991 as the citing years.!® To

identify the parameters, it is necessary to normalize one of each of the o's to be 1. For a;cm,
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patents granted in 1970 are normalized to 1. Thus, estimates greater than one mean that patents
granted in those years were more useful to future inventors than patents from the base year of
1970. Finally, since this is grouped data, the observations are weighted by (nCTD*ncm)O-S to
avoid problems with heteroskedasticity (Greene, 1993).

Two separate regressions were done. In the first, only citations to other patents in the
technology group are considered. Theoretically, the setup for this equation is preferable, since
these are the patents represented in the distribution of potential outcomes described in section II.
However, the usefulness of knowledge from other technology classes is also of interest to us. For
example, advances in chemistry could lead to recharge inﬁpmany energy fields. Thus, a second
estimation is done in which citations to all patents are considered.

B. Results

We are most int;résted in the results for the productivity parameters, acrp. A high acrp
means that a patent from year CTD is more likely to be cited by future patents, implying that the
knowledge embodied in those patents is particularly useful. The expected returns on R&D to
researchers building on the knowledge in these patents should be larger than for patents from
other years. Returning back to figure 4, a patent which is cited often, such as K;, must be further
left in the distribution of possible outcomes than a patent which is cited less often, such as Kj,
leaving a greater probability for future research success. Researchers following up on the
invention represented by K face a higher expected marginal return to their research investment.
Thus, lagged values of acrp can be interpreted as a measure of the expected return of research.

The results of the estimation using only citations within the technology groups are
presented first. Figure 6 displays the results. The productivity parameters for each technology

group are plotted. Numerical results for the remaining parameters are presented after the plots.
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We begin with a brief look at the productivity parameter estimates. A more detailed
analysis is put off until section V. Recall that the productivity parameters for 1970 were
normalized to 1. Estimates greater than one for a given year indicate that patents granted in that
year are more likely to be cited than patents that were granted in 1970. Note that a downward
trend in the productivity parameter occurs in most groups. The downward trend suggests that
there are diminishing returns to energy research over time. It is consistent with the notion that
invention potential exhaustion occurs within the individual technology groups. There are a
couple of interesting patterns. Note, for example, the peak, in research opportunities before the
energy crisis in solar energy. The combination of technological opliortunity and higher prices
together apparently account for the particularly strong reaction of solar patents to the energy
crisis. Returning to figure 5, we see that patents granted in 1975 are more likely to be cited than
patents from other vintages, which confirms the estimated productivity parameter.

Periods of recharge are identified by jumps in the estimates. For example, the
productivity estimates of many of the technology groups exhibit an upswing at the end of the
1980%s."* As will be discussed more thoroughly in section V, the upswing in the productivity
parameters cotresponds with a general upswing in the ratio of patents to R&D. Also of interest is
evidence of recharge in specific technologies, such as in fuel cells during the late 1970’s. Fuel
cell patenting activity was strong in the 1960’s, slc’)wed during the 1970’s, and then rose again in
the 1980’s. These results suggest that one reason for the decline in fuel cell patents in the 1970’s
is that research opportunities had been exhausted. New opportunities presented themselves at the
end of the decade led to an increase in inventive activity in the 1980’s.

Finally, in the interest of conciseness, standard errors were not presented for all of the

productivity parameters. However, it should be noted that the estimates were fairly precise. In
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general, standard errors are about one-third to one-fourth of the estimated value. T-tests that the
parameters do not equal one (the test for insignificance in this case) reveal that most estimates
significantly differ from one soon after moving away from 1970.

Other results of the estimation are also encouraging. The adjusted R-square is 0.778.
Both the rates of decay and diffusion are similar to the estimates in Jaffe and Trajtenberg (1995).
As expected, the estimated p’s are higher for smaller technology groups. In addition, there is
generally a rising trend in the citing behavior over time, acrg. However, the initial dip in acrg is
unexpected. This is likely the result of “demand-side” influences in these time periods. It
suggests that the decay rate is underestimated. The intuitioﬁ is as follows. In the years with low
acrg there are many more patents than other years. The estimated decay rate is for time elapsed.
However, it is not mcrgly time that causes the knowledge contained in a patent to lose value.
Rather, patents become less valuable as they are replaced by new patents that make them
obsolete. This will occur more quickly if more innovatiors are occurring.'* Since the estimated
decay rate is too low for years with many patents, the estimated probability of citation is too high.
The estimated acrg is lower in these years to compensate.

I now move to the results of the second regression. In this regression, citations to all
patents, both in and out of the technology group, were considered. Here, the scaling factor, , has
a slightly different interpretation. In this case, it is not realistic to consider ncrp, the number of
potentially cited patents, to be all patents granted in a given year, Most patents are not related.
Energy patents will not cite a shoelace patent, for example. To account for this, the number of
patents in a given technology group is used as a measure of the potentially cited patents. This is
not a perfect measure, since obviously some patents outside of the group will be cited. For

example, solar energy patents might cite patents relating to semiconductors. However, it seems
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reasonable to assume that the pool of potentially cited patents will move in proportion to the
number of patents in each energy group.

Once again, however, because of the variation in group sizes, the proportion will vary
across groups. Denoting the actual pool of citable patents as #*; crp, we are claiming that n*; o7,
= ¥incrp. Again, we expect % to be lower for larger technology groups, since those groups
would include more of the cited patents in them. For example, the solar energy technology group
includes many different classifications, so it is likely that most of the patents cited are included in
this group. In this case, ncrp should be a good measure. of the potentially cited patents. We
would expect a low y for solar energy. By comparison, the solar cells- technology group is small.
There may be many other classifications that are related to the technology, and thus cited often,
but that are not energy specific. Classifications relating to general aspects of semiconductors
would be an example. We would expect a high y for solar cells. For identification, the y for heat
exchange, class 165, is normalized to 1.

Figure 7 presents the results for the second regression. The trends in the estimates are
similar to the first regression. Looking at the productivity parameter estimates first, there is
again some evidence of a general downward trend in the estimates, although not as pronounced
as in the previous regression. In addition, U-shaped trends are more prevalent in the productivity
estimates using all citations. Since the U-shaped plots are not as strong when only citations
within the group are considered, the U-shaped plots may be evidence of new inventions outside
of these fields providing recharge. However, other explanations are possible. Higher
productivity estimates tend to coincide with a low number of citable patents. It may suggest that
when R&D efforts increase, inventors are left to discover inventions at the bottom of the barrel

that would have otherwise been ignored. This would suggest diminishing retumns to increases in
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research spending in any one time period. It may also be the case that using only patents in the
technology group as a measure of potentially cited patents might not capture all of the movement
in the potentially cited patents. These explanations will be explored more fully in section V.

Other results of this regression are similar to the first. The adjusted R-squate of 0.8 is
slightly higher. Again, most estimates are still significantly different from one soon after moving
away from 1970. One other result is of note. The decay rate is slightly smaller, 0.32 instead of
0.39. In addition, the unexpected “demand side” drop in citing practices, acrg is even larger than
before. This is further evidence that the decline is due to underestimating the decay rate.

IV. Do the Productivity Estimates Measure the Expected Returns to R&D?

In this paper, the lagged values of the productivity parameters just estimated are to be
interpreted as a measure of the expected returns to R&D. In this section, I test whether this
conjecture is reasonable. I verify that patent citations are a valid measure of the value of a patent
by examining the relationship between patent citations and patent renewals. I show that the
likelihood of renewing a patent increases as the number of citations to the patent increases.

Beginning with the work of Pakes and Schankerman (1984), patent renewal data have
been used to value patent protection. In most countries, patent holders must pay an annual fee to
keep their patent in force. In addition, the required fee increases with age. Pakes and
Schankerman note that a patent holder maximizing the expected discounted value of the net
returns to patent protection will only pay the fee to renew a patent if the value of patent
protection is greater than the fee. Asa result, patent renewal data can be used to estimate a
distribution of the value of patents. Several papers have since used this technique to value patent

protection. In each, a highly skewed distribution is found, with most patents having little value,
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but with a few highly valuable patents. Lanjouw, Pakes, and Putnam (1996) provide a survey of
the patent renewal literature.

Unfortunately, patent renewal data is of less use when analyzing patents granted in the
United States. Patent renewal fees were instituted for patent applications filed in the U.S. after
December 12, 1980. Until then, no renewal fee was required. In contrast, renewal fees have
been required in Europe for much longer. Since the maximum length of a patent in the U.S. is 17
years, the first patents subject to patent renewal fees are just now reaching the end -of their lives.
Thus, useful time series can not be obtained for estimating the value of U.S. patents using
renewal data. In addition, the renewal fees are only due three times-during the life of a patent
(after 3 1/2, 7 1/2, and 11 1/2 years after the patent was granted), so that the fees are not as large
a burden as those as other countries. As a result, using U.S. patent renewal data to estimate a
value of patent protection is not feasible.

However, the limited renewal data on U.S. patents does make it possible to test the
validity of the productivity estimates. In particular, the productivity estimates rely on the
assumption that more citations to a patent indicate that the patent is more valuable. To test this
hypothesis, in this section regressions are run to compare the probability of renewing a patent to
the number of citations it has received by the time renewal is required. A patent will be renewed
only if the expected value of future returns is greater than the renewal fee. If citations are a good
measure of the value of a patent, the number of citations should have a positive effect on the
probability of renewal.

For each technology group, a logit regression is run relating the probability of renewal in
the eight year to the number of citations received by the eighth year.'® The dependent variable, ¥,

is equal to one if the patent was renewed after eight years, and 0 if it was allowed to expire. The
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independent variable is the number of citations received by the patent in the first eight years of its
life. The function estimated is:

4  E]=AQ@®),

where:

__ |1if the patent was renewed in the 8th year
y= 0 otherwise

x = [1, # of citations received after 8 years]'

(f'x)
A= e

= T_-ﬁ = the logistic cumulative distribution function
+e g

Table 1 presents the marginal effects of an additional citation on the probability of
renewal. The effect is positive for each technology group. The standard errors of the estimations
are low, so that most coefficients are significant. Seven of the twelve are significant at the one
percent level, and all but two are significant at the five percent level. The range of the marginal
effects is between 1.5% and 12.5%. Both the mean and median increase is approximately four
percent.

These results suggest that there is a significant correlation between patent renewals and
patent citations. Since many papers have found European patent renewal data to be a useful
indicator of the value of patents, the correlation between renewals and citations suggests that
patent citation data are also of use in valuing patents. This result is of particular importance to
researchers using United States patent data, since patent citation data is more readily available

than patent renewal data in the United States.
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V. Are There Diminishing Returns to R&D?

Having demonstrated that the productivity parameters are a valid measure of the expected
returns to R&D, I now turn to the final question of this paper: are there diminishing returns to
R&D? For this, I will examine the behavior of the productivity estimates over time.

It is a well-documented fact that the ratio of patents to real R&D expenditures declined in
the industrialized world during the 1970’s and 1980°s, before turning upward again in the late
1980’s."” Figure 1 illustrates this decline. Three main explanations have been offered for this
decline. Based on the search model of R&D, Evenson (1991) offers invention potential
exhaustion (IPE) as a possible explanation. As discussed in section I, the IPE explanation
observes that inventors have a limited pool of possible inventions from which new innovations
are drawn. As more in_lfgntions are created, fewer possibilities for future success exist. The
search for new ideas gets harder and harder. Griliches (1989, 1990) disputes this view, arguing
instead that changes in the propensity to patent inventions have caused the decline in patent-to-
R&D ratios. According to this argument, it is the likelihood of a successful inventor seeking
patent protection that has fallen, not the likelihood of successful research. Finally, Kortum
(1993) looks at the effect of increased demand on returns to R&D. If demand for research
increases, marginal projects, which did not seem worthwhile before, will be undertaken. The
overall productivity of research will fall as a result.

The downward-sloping plots of the productivity estimates suggest that there are
diminishing returns to R&D. In terms of the search model of R&D presented in section II, the
estimates suggest that researchers are moving to the right of the distribution as time progresses,
and that new knowledge is not causing the distribution to shift fast enough to compensate. In this

section, I take a closer look at the productivity estimates and the hypothesis of diminishing

24



returns. First, I regress the productivity estimates, @ crp, on time and the total number of patents.
Next, a quick comparison of the productivity estimates to the ratio of patents to R&D spending in
energy technologies is presented. Finally, the implication of these results on the patent-to-R&D
expenditure ratio is discussed.

A. Regression Analysis

Diminishing returns to the productivity of research could exist in one of two forms. First,
there may be diminishing returns over time. As more inventions are created, the pool of potential
new inventions dries up, making future successes more difficult. Evenson’s invention potential
exhaustion hypothesis predicts this.'* Second, the retum; to additional R&D spending in any
given period may be diminishing. Intuitively, since optimizing researchers will choose the most
productive avenues of study first, additional research must focus on less and less productive
searches. Formally, the;mplication is that the second derivative of the knowledge with respect to
R&D, FKJ R, is negative. This section searches for evidence of each.

For this, two additional regressions were run. First, the productivity estimates were
simply regressed on a constant and a time index. A negative coefficient on the time index is
e\'.;idence of diminishing returns over time. Second, the productivity estimates were regressed on
a constant, a time index, and the number of patents granted in each year. A negative coefficient
on the number of patents is evidence of diminishing returns to additional research spending
within a given year. The data from each technology group were pooled so that single coefficient
estimates could be obtained. The results were corrected for autocorrelation.

I begin by testing for diminishing returns across time. For this, the equation estimated is:

6) aicrp=a+btte, i=1.,Nt= 1,...,20.
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A significantly negative estimate of b is evidence that the productivity of R&D is falling over
time. The productivity estimates represent how useful the ideas contained in patents of a given
year are to future inventors. A declining productivity estimate implies that the ideas are less
useful, meaning that researchers are moving rightward in the distribution of possible inventions.
Results are presented in the first two columns of table 2. Column 1 presents the results
for the productivity estimates that were obtained by using citations to other patents in the same
technology group, and column 2 uses the productivity parameters obtained by including all patent
citations. For the productivity estimates using only within group citations, the sign of b is
negative and significant at the 10 percent level. This is evidence that diminishing returns over

time — or invention potential exhaustion — occurs on research within individual technology

groups. -

For the regression using estimates of citations to all patents, presented in the second
column, opposite results are found. The coefficient on the time trend is positive, although it is
not significantly different from zero. Recall that many of the productivity estimates using all
patents exhibited U-shaped trends. Thus, there is no evidence of diminishing returns across time
when looking at the usefulness of all patents.

Finally, a second set of regressions was run using both time and the number of patents in
a given year as dependent variables. The number of patents is included to test for diminishing
returns to R&D within a given year. If the coefficient on the number of patents is significant and
negative, it reveals that the average patent is less likely to be cited in years when more inventions
occur. This suggests that some of the innovations are from the “bottom of the barrel” of new

ideas, or that research is being duplicated, so that there are more similar patents that are potential

cites for future patents. Observing that R&D expenditures have increased, rather than decreased,
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over time, Kortum (1993) suggests that diminishing retarns to R&D in a given year, rather than
across time, may explain the falling patent-to-R&D ratio. A negative coefficient on the number
of patents would be consistent with Kortum’s hypothesis. The estimated equation is:

6) aicp=atbttcePite i= 1,...,N; t=1,...,20,

where P, represents the number of successful patent applications in year .

Results are presented in the last two columns of table 2. Again, the results for citations
within the technology group are presented first. Including the number of patents in a given year
offers a slight improvement to the adjusted R-square. Again, the coefficient on time, b, is
negative and significant. For citations within the techﬁology group, the coefficient on the
number of patents, ¢, is positive and highly significant.'’ These results suggests that current
research does use up ideas for future researchers, but that an increase in current R&D is not likely
to lead to redundant research. Of course, this result could be clouded by the nature of the
patenting process. It may be that redundant research is being carried out, but that only one patent
is being awarded for each similar invention.

For the set of regressions using all citations, the results are opposite. The time trend, b, is
positive. However, the number of patents, ¢, has a negative impact, and is highly significant. In
addition, there is a dramatic improvement in the adjusted R-square. For this regression, the
productivity estimate a;,crp represents the productivity of all patents granted in year CTD. These
results suggest that, when considering the usefulness of all technologies, diminishing retumns to
research occur within a given year, rather than over time. It appears that recharge occurs to keep
the returns to research from falling too drastically over time.

Thus, the results suggest a bit of a contradiction. To summarize, I find:
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1) evidence of diminishing returns over time when looking only at patent citations within
a technology group, with little evidence of diminishing returns to additional research in
a given year, but
2) evidence of diminishing returns to additional research in a given year when looking at
citations to all patents, with little evidence of diminishing returns to research over
time.
How can this apparent contradiction be explained? An important factor is likely to be the ability
of scientific advances outside the technology fields to keep pace with changes in the level of
innovative activity within these fields. The number of 'patents in the technology groups is
strongly influenced by demand forces such as energy prices. However, higher energy prices
should not lead to an inc;{ease in useful knowledge from outside the technology field. As a result,
researchers in the energy fields will be trying to get more ideas out of a fixed base of outside
knowledge. An increase in innovation in any period will cause this knowledge to be used up
more quickly, leading to diminishing returns in any given time period when looking at the
usefulness of outside knowledge.

In contrast, the observation that the number of patents granted does not have much affect
on the likelihood of patents within the technology group being cited suggests that demand forces
that encourage innovation prevent technology-specific knowledge from being used up too
quickly. New advances within the field are created more quickly when energy prices are high.
However, these appear to be useful innovations for future inventions. The “bottom of the barrel”
is not reached quickly. It is reached eventually, however, as each year slightly less valuable ideas
are created. This may suggest that the knowledge becomes more specialized as time progresses,

so that it is not as useful to future inventors. Finally, the lack of evidence for recharge in the
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within group citations suggests that the new inventions that result from recharge outside of the
technology group are not as useful as previous inventions,

B. Energy Patents and R&D Spending

The energy patent data set also offers insight into the falling patent-to-R&D ratio, at least
in the narrowly defined field of energy research. For this, a measure of energy R&D
expenditures to use with the data on patent counts is needed. Unfortunately, published R&D data
do not go into great detail as to the nature of the research. However, the National Science
Foundation does provide estimates of the amount of industrial R&D expenditures devoted to
energy research. The data are taken from the NSF’s" Survey of Industrial Research and
Development. Included in the survey results are the amounts of energy R&D expenditure by
primary energy source. These figures are presented in table 3.

In this paper, I i;éve argued that lagged estimates of ¢;crp provide informatipn on the
productivity of R&D inputs. I will use these estimates in combination with the ratio of patents to
R&D expenditures in selected technologies to see what decline, if any, in the ratio can be
explained by the productivity estimates. Figure 8 plots the productivity estimates from section
IM, lagged one year, along with the patent-to-R&D ratios in three fields: solar energy, coal, and
various demand-side technologies.?’

The figures show that changes in productivity explain much of the variation in these
ratios. I have asserted that citations to patents granted in a given year are an indicator of the
remaining possible inventions. Thus, years with higher estimated o;crp’s should precede years
in which the ratio of patents to R&D expenditures is high. In general, this appears to be the case.

Several features stand out. First are the high patent-to-R&D ratios for solar energy during the
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1970’s, when research on these technologies was in its infancy. The productivity estimates
confirm that research was productive in this period.

Second, note that the patent-to-R&D ratio rises in the late 1980’s for the conservation and
coal technologies. In addition, note that solar energy does not experignce a rise in either the
productivity estimates or the patent-to-R&D ratios during the late 1980°s. These results seem to
confirm the U-shaped plots of the productivity estimates that are found in many of the
technologies. Two possible explanations exist. One is that the U-shaped plots are evidence of
recharge. New inventions from outside these fields may have made research more productive.
Interestingly, a similar pattern is observed m the ratio of pafents to R&D for all patents and R&D
expenditures in the U.S. during this period. Another possibility is that demand forces are at
work. Note the low patgnt—to—R&D ratios for conservation technologies in the 1970’s. Whereas
the supply side technologies, such as solar energy, were in their infancy at this time, the
conservation technologies did exist before the energy crisis. The energy crisis merely stimulated
research activity in these fields. Thus, while researchers on solar energy were dealing with an
untapped pool of new ideas, researchers in the conservation field may have been faced with
diminishing returns. By increasing their R&D investments in any given year, researchers were
left with ideas at the “bottom of the barrel”. These ideas, being less valuable, are cited less ofien,
resulting in lower productivity estimates.

C. Implications for the Patent-to-R&D ratio

The above results shed much light on the puzzle of the falling patent-to-R&D ratio. At
first glance, diminishing returns, as a result of exhaustion, would appear to be the culprit.
Although this explanation seems satisfactory to explain behavior in the energy innovation field, it

does not seem enough to explain the fall in the overall ratio. As noted by Griliches (1989):
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A priori one would expect to hit diminishing returns in any narrowly defined field, at least until the
field or the product area is redefined anew by another major breakthrough.... Inventive effort,
however, moves from one fishing ground to another, and new fishing grounds open up as the result
of basic R&D and other sources of discovery. Thus, in the longer run, there is less evidence of
exhaustion of opportunities, and studies that have tried to look for declines in the rates of return to
R&D have found very little evidence of them, (p. 317)

Griliches argument implies that falling productivity estimates will result in R&D shifting
to more productive sectors. Popp (1998) confirms this by showing that higher lagged values of
the productivity estimates lead to more patenting activity in the energy technology fields studied
in this paper. Since research inputs flow towards more productive sectors, evidence of
diminishing returns within a technology field is not enough to prove that the falling patent-to-
R&D ratio observed in the entire economy is also due to Wsﬁng returns. For this to be true,
we would also need evidence that new sectors of research are less productive than older ones.
Other studies such as this one could be useful for that purpose.

VI Conclusion T

This paper used patent citation data to examine trends in the productivity of energy
research from 1970-1990. It estimated annual productivity parameters for patents in 12 energy
technology gl'oups. The major findings of this work are:

e The likelihood of subsequent citations to a newly granted patent, as captured by the

productivity estimates in section I, falls over time.

« The productivity estimates are correlated with changes in the ratio of patents to R&D
spending, suggesting that they are a useful measure of the productivity of R&D
spending.

« Declining productivity estimates are suggestive of invention potential exhaustion within

each technology group.
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e In addition, after a spurt of innovative activity, the sciences outside of a technology
group need time to catch up. Thus, some recharge occurs after an increase in innovative
activity. However, the new inventions that follow the recharge tend to be less useful
than older inventions.

The lessons drawn from this paper have implications both for environmental economists
and technology economists. For environmental economists, evidence of diminishing returns to
R&D suggest that the largest stimulus to innovation after the imposition of a carbon tax or other
similar policy will come soon after the policy is implement‘ed. For the stimulus to innovation to
continue, research opportunities must be maintained. Governinent—supported R&D, by
increasing the stock of basic knowledge, could play a role in this.

For technology _gconomists, the results shine some light on the mystery of declining
patent-to-R&D ratios in the industrial world. We see that the productivity estimates in the energy
technologies decline during the time frame studied in this paper, and that this decline seems to
correspond to falls in the patent-to-R&D ratio. However, this alone cannot explain the falling
patent-to-R&D ratio. Rational investor behavior implies that less innovative activity will occur
in fields with low productivity estimates. Inventive activity should shift toward more productive
areas of research. This is confirmed in Popp (1998), which finds that lagged values of the
productivity estimates are good predictors of innovative activity. For diminishing returns to lead
to a falling patent-to-R&D ratio, it would have to be the case that new areas are less productive
than old areas of. Micro-level studies of other technologies would be useful to resolve this
question.

Finally, the results of this paper can also be linked to the theory of endogenous growth.

Endogenous growth depends on the returns to research not diminishing, so that incentives to
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improve knowledge always exist. Having shown that diminishing returns exist within narrowly
defined technology fields, knowing how the returns to research vary across different areas would

be of use to endogenous growth theory as well.
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APPENDIX A - THE SEARCH MODEL OF R&D

The search model of R&D, first proposed by Evenson and Kislev (1975), was introduced
in section II. In this appendix, a more formal mathematical treatment of the model is presented.
The model treats research and development as a search process over a random distribution of
outcomes. This distribution is unknown to us, but we assume that a firm undergoing research has
an idea of what the probability for success is before beginning a research project. Denote this
distribution of possible outcomes as (x|, 0), a probability density function of x with mean 4 and
variance o®. The current state of the technology, which is ﬂ'l’e highest outcome from the previous
draws, can be denoted X,.

In the model, R&D results in random draws being taken from this distribution. Research
is only successful if the result is greater than the current state of technology. At any time ¢, n,
searches are done over this distribution. For this paper, n can be thought of as the amount spent
on research and development activity. x; is the yield of the ith search. The research is successful
only if the result is higher than the previous best state of the technology, or if x; > K;. For
simplicity, assume that a firm only produces one innovation per period, so that for a given set of
searches with results x;, where i = 1, 2,...,n, the only result in which the firm is interested in is the
highest. Denote this as z, so that z = x, x; 2 x, V i. Let F(x|,0) denote the cumulative
distribution of f{x|41,6). Using the theory of order statistics, the cumulative distribution of z is
(Al) Izl 1,0} = Pr (all x; < z| ,0) = F'(z| p,0)
and the probability density function is

(A2) J2) = n F™\(@| p,0)fzl 1,0).

34



Note that the probability density function is, among other things, a function of the number
of draws taken. Additional draws in a given period shift the distribution of potential outcomes
outward. See figure Al.

To value innovation, normalize X and z so that the distance between them is the value of

the innovation. This gives us:

(A3)EV=(R,,K,)=HK, ~K,]= J,:zj(ziﬂ,,a,)dz= EZR,FR"(z|/1,,o-,)f(z|yt,0',)dz,

where R, the amount spent on R&D at time ¢, replaces n. The expected value of research is
illustrated in figure 2. The shaded area is the expected value of research given that the current
level of technology is at K. It represents the possible successes that have not yet been realized.
We can think of this area as the stock of unexploited technology.

Because I do not-observe the distributions in equation (A3), I cannot directly calculate
values for the expected value of research at time ¢. For this, data on both research inputs and
outputs would be needed. However, as discussed in section II, it is possible to use the patent
citations to observe how the expected value changes over time. I review that discussion here, to
make clear how the use of citations is linked to the search model of R&D. Consider a
distribution of potential outcomes for a given number of draws, N*. With a current level of
technology of K,, the expected value of research is the shaded area in figure 2. Now, consider
what happens in the next period. If a successful invention occurs in period ¢, the state of
knowledge in period #+1 shifts rightward. If there is no change in the distribution of potential
outcomes, the expected value of research will be less in period #+1. This is illustrated in figure

3a. The expected value of research in time ¢ is equal to A+B. In period #+1, after the level of
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knowledge has shifted outward, the expected value is only area B. Evenson (1991) refers to this

as invention potential exhaustion. Formally, this relationship is derived from equation (A3) as;
(A4) ok =—2R F (K| o, 0V [ (K pty50,) <0.

As a result, the marginal returns to R&D are lower after the shift of knowledge:

(AS) gy =—2F " (K |4,0,)/ (K ttys0) — RR=-DF K, |1y, 0,) [ (K pr,0,) <O,

However, it is possible that new knowledge will change the nature of the distribution.
New innovations may contain basic knowledge, which make possible in period r+1 inventions
that were not possible in period ¢. Evenson refers to this as recharge. He notes that recharge can
come from inventions in related fields or from advances in basic science. For example, the
invention of microcomputer chips led to the development of a generation of electronic
equipment. In the search model, recharge is represented as an increase in the mean of the
distribution. Formally, 1 > 4. Another possibility is that the results of innovation may make
clearer which avenues of research are likely to be successful and which aren’t. Thus, future
researchers will have a better idea of which research to pursue, lowering the variance of future
results. Formally, o1 < o;. In this case, even unsuccessful research can be helpful, by clarifying
which direction future research should take.

Recharge is illustrated in figure 3b. Again, the original state of knowledge is K, and the
new state of knowledge is K,+1. However, in this example, the distribution of potential outcomes
has shifted outward. The expected value of research in period ¢ is A+B; in period #+1 it is B+C.
Since area C is drawn to be larger than area A, the effect of recharge dominates the exhaustion in
this example. As Evenson notes, the debate over returns to R&D centers on the possibilities for

recharge. The principles of diminishing returns should apply to research just as much as any
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other economic activity, leading to invention potential exhaustion. The question is whether new
advances in science occur quickly enough to counteract the effect of exhaustion. In this paper,
instances in which the effect of recharge dominates invention potential exhaustion are observed

as positive jumps in the estimates of the productivity parameters.
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APPENDIX B - DATA DESCRIPTION

The most important data used in this paper is the energy patent data set. To create the
energy patent data set, I first created 12 technology groups pertaining to energy efficiency, with
each group containing several U.S. patent classifications. Appendix C briefly describes the
major technology areas studied, and Appendix D lists the technology groups and the patent
classifications used in each. The data set includes all successful patent applications in these
classifications in the United States from 1970 to 1994. The patent data set was assembled from
two sources. The main source of patent data for this project is the MicroPatent CD-ROM
database of patent abstracts. The MicroPatent database contains evelly U.S. patent issued from
1975-1994. This data set includes all of the information that is found on the front page of a
patent, including the date of application, date of grant, name of the inventor and his or her
organization, the nation of the patent holder, and citations to previous patents. In addition, since
the MicroPatent database does not extend far enough into the pass to encompass the first energy
crisis of 1973, additional lists of patents in our target classes has been obtained from the
Classification and Search Support System (CASSIS) available from the U.S. Patent and
Trademark Office. Unfortunately, for these patents the additional data found on the MicroPatent
database is not available.

Using these data sources, all patents in the classifications in question were chosen. Both
patents granted to American and foreign inventors are included in this paper, since the origin of
knowledge should not affect its usefulness much. For each technology group, patents are sorted
by the year of application. Several papers have found that patents, grouped by the date of
application, to be a good indicator of R&D activity (see Griliches 1990 for a survey). Figure Bl

shows trends in the patent data from 1969 to 1993, along with an index of energy prices taken
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from the State Energy Price and Expenditure Report. Since a patent application is only made
public when a patent is granted, the data for the last 10 years have been scaled up by using a
distribution of the lag between patent application dates and patent grant dates for the patents in
the sample. Note that for most of the technology groups, there is a jump in patent applications
during the energy crises of the 1970’s. Notable exceptions include fuel cells, the use of waste as
fuel, and continuous casting. Reasons why these technologies differ are discussed in Popp

(1998).
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APPENDIX C - ENERGY TECHNOLOGY GROUPS STUDIED

For this study, 12 groups of energy-related patents were created, with each group
representing a different technology. Of these, 7 are related to energy supply, and 5 are related to
energy demand. Groups were included based on their importance to energy conservation and the
clarity of patent classification. Importance to energy conservation was determined by a review of
literature on energy conservation, including references on industrial energy conservation and
several Department of Energy publications. Clarity of patent classification means that the patent
classifications included must clearly be used for energy conservation purposes.”’ Appendix D
lists the patent classifications in each of the 12 technology groups.

Supply technologies included in the data set were those that are substitutes for fossil
- fuels. Nuclear technolog_igs were not included, since nuclear patents would be strongly influenced
by changing attitudes about the safety of nuclear power and the resulting changes in the
regulatory burden of the nuclear industry. Technologies that were utilized include technologies
for getting fuel from coal, fuel cells, and renewable sources such as solar, wind, and biomass
energy.

Demand technologies focus mainly on industrial energy consumption. They include a
mixture of technologies chosen for specific industries, and technologies with a more general
usage. Energy use varies greatly across sectors. Petroleum refining, chemicals, primary metals,
pulp and paper, food, and ceramics and glass accounted for 74% of total industrial energy use in
1988. In some cases, energy use is high because the output of the industry is high — food and oil
and gas extraction are examples. In other industries, both output and the energy intensity is high.
Such industries are petroleum refining, steel, organic chemicals, and paper (OTA, 1993). Table

C1 presents energy consumption and energy intensity in selected industries. Energy intensity is
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calculated as real energy expenditures divided by real value added in the industry. Most energy
R&D is concentrated in these energy intensive industries.

Table C1 - Energy Use for Selected Industries

Real Energy Consumption Energy Intensity
(millions of 1987 $’s) (Real Energy/Real Value
Added)

Industry SIC 1971 1981 1991 1971 1981 1991
Food 20 3,916 4,534 4,597 0.05 0.05 0.03
Paper 26 4,289 4,970 5,184 0.13 0.13 0.10
Chemicals 28 8,028 10,389 8,174 0.10 012 0.06
Petroleum Refining 29 3,836 4,214 4,176 0.17 0.26 0.18
Stone, Clay, and Glass 32 3,932 4,027 3,194 | 0.13 0.14 0.10
Primary Metals 33 10,225 10,765 7,008 0.18 0.21 0.17
Steel 3312 } 6,064 5,741 2,951 022 0.27 0.21
Aluminum o= 3334 | 1,101 1,539 1,266 0.53 0.65 0.70

Source: Calculated from data in NBER Manufacturing Productivity Database

Of the demand-side technology groups, some have general industrial applications.
Industrial processes produce much heat that is never used. Recovery of this waste heat would
allow for substantial energy savings. Three of the categories relate to the use of waste heat —
waste heat, heat exchange, and heat pumps. Some of the technology groups chosen relate to
specific energy intensive industries. For example, continuous casting is a method of steel
production that requires less energy than traditional techniques. Industry-specific technologies
could not be chosen for all of the energy intensive industries, because in some of these industries
there are a broad range of energy uses, making it difficult to focus on individual technologies.
For example, the chemical industry makes a diverse range of products such as rubber, plastics,
soaps, paints, industrial gases, fertilizers, and pharmaceuticals. Obviously, different technologies

to conserve energy would be needed in the production of these various products. In addition, for
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products such as these, it is difficult to identify innovations that are clearly related to energy

conservation, as opposed to other improvements in the product.
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APPENDIX D: U.S. patent classifications related to energy

Guide to definitions: The first phrase is the main classification. For example, class 208 containg
patents for Mineral Oils: Processes and Products. These are followed by the various
subclassifications, listed in descending order of precedence.

Supply Technologies:

Coal Liguefaction:
208/400-435

Coal Gasification:
48/200
48/201
48/202
48/210
48/71
48/72
48/73
48/77
48/98
48/99
48/100
48/101

Solar Energy:
60/641.8-641.15
62/235.1
126/561-568
126/569-713
126/903
126/904

126/905
126/906

126/910

Mineral Oils: Processes and Products/By treatment of solid material (e.g.
coal liquefaction)

Gas: Heating and Iluminating/Processes/Coal, oil and water

Gas: Heating and [lluminating/Processes/Coal and oil

Gas: Heating and Illuminating/Processes/Coal and water

Gas: Heating and Illuminating/Processes/Coal

Gas: Heating and Illuminating/Generators/Cupola/Coal, oil and water
Gas: Heating and Illuminating/Genetrators/Cupola/Coal and oil

Gas: Heating and Illuminating/Generators/Cupola/Coal and water
Gas: Heating and Illuminating/Generators/Cupola/Producers/Coal
Gas: Heating and [lluminating/Generators/Retort/Coal, oil and water

* Gas: Heating and llluminating/Generators/Retort/Coal and water

Gas: Heating and llluminating/Generators/Retort/Coal and oil
Gas: Heating and lluminating/Generators/Retort/Coal

Power Plants/Utilizing natural heat/Solar

Refrigeration/Utilizing solar energy

Stoves and Furnaces/Solar heat collector for pond or pool

Stoves and Furnaces/Solar heat collector

Stoves and Furnaces/Cross-Reference Art/Solar collector cleaning device
Stoves and Furnaces/Cross-Reference Art/Arrangements for sealing solar
collector

Stoves and Furnaces/Cross-Reference Art/Preventing condensing of
moisture in solar collector

Stoves and Furnaces/Cross-Reference Art/Connecting plural solar
collectors in a circuit

Stoves and Furnaces/Cross-Reference Art/Heat storage liquid

Solar Energy — Batteries:

136/206

136/243
136/244-251
136/252-265

Batteries: Thermoelectric and Photoelectric/Thermoelectric/Electric power
generator/ Solar energy type

Batteries: Thermoelectric and Photoelectric/Photoelectric

Batteries: Thermoelectric and Photoelectric/Photoelectric/Panel

Batteries: Thermoelectric and Photoelectric/Photoelectric/Cells
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Fuel Cells:

429/12-46 Chemistry: Electrical Current Producing Apparatus, Product, and
Process/Fuel cell, subcombination thereof or method of operating
Wind:
290/44 Prime-Mover Dynamo Plants/Electric control/Fluid-current motors/Wind
290/55 Prime-Mover Dynamo Plants/Fluid-current motors/Wind
416/132B Fluid Reaction Surfaces (i.e., Impellers)/Articulated resiliently mounted or
self-shifting impeller or working member/Sectional, staged or non-rigid
working member/windmills
416/196A Fluid Reaction Surfaces (i.e., Impellers)/Lashing between working
members or external bracing/Connecting adjacent work surfaces/Non-
turbo machine (windmills)
416/197A Fluid Reaction Surfaces (i.e., Impellers)/Cupped reaction surface normal
to rotation plane/Air and water motors (natural fluid currents)
Using waste as fuel:
110/235-259 Furnaces/Refuse incinerator
110/346 Furnaces/Incinerating refuse
Demand Technologies: ~
Waste heat:
122/7R Liquid Heaters and Vaporizers/Industrial/Waste heat
TA Liquid Heaters and Vaporizers/Industrial/Waste heat/Steel converter
7B Liquid Heaters and Vaporizers/Industrial/Waste heat/Additional burner
7C Liquid Heaters and Vaporizers/Industrial/Waste heat/Waste sulfate
7D Liquid Heaters and Vaporizers/Industrial/Waste heat/Carbon monoxide
60/597-624 Power Plants/Fluid motor means driven by waste heat or by exhaust
energy from internal combustion engine
Heat exchange:
165 Heat Exchange
Heat pumps:
62/238.7 Refrigeration/Disparate apparatus utilized as heat source or absorber/With

62/324.1-325

Stirling engine:
60/517-526

vapor compression system/Reversible, i.e. heat pump
Refrigeration/Reversible, i.e., heat pump

Power Plants/Motor operated by expansion and/or contraction of a unit of
mass of motivating medium/Unit of mass is a gas which is heated or
cooled in one of a plurality of constantly communicating expansible
chambers and freely transferable therebetween



Continuous casting:

148/541 Metal Treatment/Process of modifying of maintaining internal physical
structure (i.e. microstructure) or chemical properties of metal, process of
reactive coating of metal and process of chemical-heat removing (e.g.,
flame-cutting, etc.) or burning of metal/With casting or solidifying from
melt/Iron(Fe) or iron base alloy/Continuous casting

148/551 Metal Treatment/Process of modifying of maintaining internal physical
structure (i.e. microstructure) or chemical properties of metal, process of
reactive coating of metal and process of chemical-heat removing (e.g.,
flame-cutting, etc.) or burning of metal/With casting or solidifying from
melt/Aluminum (Al) or aluminum base alloy/Continuous casting

164/263 Metal Founding/With product severing or trimming means/Associated
with continuous casting means

164/268 Metal Founding/With coating means/associated with a continuous or
semicontinuous casting means

164/415 Metal Founding/Means providing inert or reducing atmosphere/In
continuous casting apparatus '

164/416 Metal Founding/Including vibrator means/In continuous casting mold

164/417 Metal Founding/Combined/Including continuous casting apparatus

164/418-444 Metal Founding/Means to shape metallic material/Continuous or
semicontinuous casting

164/445-446 Metal Founding/Starter bar

164/447-448 Metal Founding/Product supporting or withdrawal means for continuous
casting apparatus

164/449.1-450.5 Metal Founding/Control means responsive to or actuated by means sensing
or measuring a condition or variable (i.e., automatic control)/Control of
feed material enroute to shaping area/Responsive to material level/In

continuous casting apparatus

164/451-455 Metal Founding/Process/With measuring, testing, inspecting, or condition
determination/Of continuous or semicontinuous casting

164/459-491 Metal Founding/Process/Shaping liquid metal against a forming
surface/Continuous or semicontinuous casting

164/502-504 Metal Founding/Including means to directly apply magnetic force to work
or to manipulate or hold shaping means/In continuous casting apparatus

164/505-509 Metal Founding/Means to directly apply electrical or wave energy to
work/In continuous casting apparatus

164/154.4 Metal Founding/Control means responsive to or actuated by means sensing

or measuring a condition or variable (i.e., automatic control)/Responsive
to position or spatial dimension/Responsive to rate of change/Continuous
casting

164/154.5 Metal Founding/Control means responsive to or actuated by means sensing
or measuring a condition or variable (i.e., automatic control)/Responsive
to position or spatial dimension/Continuous casting
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ENDNOTES

! Examples of the first type of study include Griliches and Mairesse (1984), Clark and Griliches (1984) and Scherer
(1982, 1984). See Griliches (1995) for a survey of this work. Examples of the second type of work include Putnam
(1996), Lanjouw (1993), Pakes (1986), and Pakes and Schankerman (1984). See Lanjouw, Pakes, and Putnam
(1996) for a review of this literature. '

2 See, for example, Binswanger (1978) and Thirtle and Ruttan (1987).

3 Tt is important to note that not all inventions are patented. Patents provide monopoly protection for a period of
years (17 in the United States) in return for making the invention public knowledge. If an inventor feels that
making an invention public will enable others to “invent around” the patent in such a way as to improve the
existing invention but not violate the patent, the inventor may prefer to keep the invention secret.

‘ Empirical work demonstrating the effect of prices or regulation on innovation include Popp (1998), Newell, Jaffe
and Stavins (1998), and Jaffe and Palmer (1997). Theoretical models include Milliman and Prince (1989, 1991)
and Krutilla and Jung (1996).

5 «“Narrowing the realm” means that the holder of a patent cannot file an infringement suit against someone whose
invention infringes on qualities of the patented invention that were also included in patents cited by the invention.

¢ In fact, patent citations are more useful to researchers than journal citations. Because of the detailed patent
examination process, and because of the legal importance placed on patent citations, we can be more confident that
patent citations are an accurate representation of the knowledge upon which an inventor built, rather than just, for
example, a random survey of previous literature in a journal article.

7 A more detailed presentation of the search model is provided in appendix A of this paper.
® This is also the intuition behind the evolutionary theory of invention, discussed in Nelson and Winter (1982).

% An analogy with academic research might be useful here. One of the papers cited most often in economic literature
is Ronald Coase’s 1960 treatise on social cost. This paper is cited often because it motivated several papers to
examine his ideas more closely. Thus, Coase’s article shifted the distribution of research related to social cost
outward. Now, consider what would happen if an author came along and wrote a paper that proved beyond doubt
that Coase was correct (or that he was incorrect). This paper would be of great value to economists, s that it
would be far to the right of the distribution of possible outcomes. However, if the paper truly settled the debate
once and for all, there would be little work to follow it, so that the paper would not be cited often. The distribution
of outcomes would not shift. This would be an example of invention potential exhaustion.

19 1n the search model of R&D, the only result that matters is that of the most successful search. Because of this, the
theory of order statistics demonstrates that the distribution of outcomes shifts outward as more searches are taken.
Thus, the distributions in figure 3 should thus be thought of as distributions for a certain number of searches. If
the number of searches changes, the nature of the distributions will also change.

I! gince institutional changes will affect all patents equally, this parameter is not indexed by i.
12 1) these figures, the probability of citation is highest in the year after the patent is granted. This is consistent with

the data in Jaffe and Trajtenberg (1995) as well. In their paper, they find that most cites occur in patents granted
three years after the initial patent. In this data set, citing patents are sorted by year of application. Since there is,
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on average, a two year lag between the initial patent application and the granting of the patent, the results are
consistent.

" The model! does not converge when estimating separate o’s for every possible year. Since the main parameters of
interest are the productivity parameters, ¢;crp, separate coefficients are obtained for each of these. The parameters
for institutional changes are grouped by two-year periods. Thus, a; represents citation practices in 1974-1975, e,
citation practices in 1976-1977, ete.

¥ To verify that the upswing is not simply due to truncation of the data set, the regressions were rerun with two
years less data (that is, cited patents through 1987 and citing patents through 1989). The upswing is not present in
the results of this regression.

13 As this discussion suggests, the ideal specification of the model would use the number of patents, rather than time,
to estimate the decay rate. Unfortunately, the model does not converge when specified in this manner,

1 Regressions were also run for renewals in the fourth and twelfth years, and similar results were obtained.
However, the results of the regression for renewals after eight years are best for two reasons: 1) after 4 years,
patents that are highly cited have not received many of their citations, and 2) there are few patents in the data set
that are old enough to have needed renewal after twelve years,

17 See, for example, Griliches (1989, 1990) and Evenson (1991).

1® More correctly, the issue in question is whether the impact of invention potential exhaustion is greater than the
impact of recharge. 7

* Note that, if individual regressions are run for each technology group, the coefficient on the number of patents is
only positive for 5 of the 12 technologies, so the sign should be interpreted carefully. However, when it is
negative, it is rarely significant.

# For the solar energy ratio, the sum of patents in all four solar energy patents is used. For the demand-side
technologies, patents for waste heat, heat exchange, heat pumps, Stirling engines, and continuous casting are used.

! For example, refrigeration is energy-intensive activity that could be improved by R&D. Such R&D might focus on
more efficient compressors or better insulation materials, However, patents in the refrigeration subclass are
organized by the end-use of refrigeration, rather than by the components of refrigerators. Since there are other
reasons for inventive activity in refrigerators, such as to reduce CFC emissions, refrigeration patents are not used.
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Figure 2 -- The Expected Value of Research

EV of research

The expected value of research is the area under the distribution of potential outcomes to the
right of the current level of knowledge, K.



Figure 3 — Invention Potential Exhaustion and Recharge

Invention Potential Exhaustion: The expected value of research in period ¢ is areas A and B, but
only area B in period #+1.

Distribution at Distribution at
time 1 time t+1

Recharge: The expected value of research at time ¢ is A+ B. Attime ¢+ 1,itis B+ C. Since
area C > area A, recharge increases the expected value of research in period r + 1.



Figure 4 -- Citations and the Expected Value of Research

Project 1:

Project 2:

K,

The expected value of research is greater for project 2 than project 1. Mre new inventions will
follow from projectd 2, resulting in more citations to the patent representing K.



Figure 5 -- Probability of Citation

Citations to Solar Energy Patents
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The figure presents the probability that patents granted in year x will be cited by
patents applied for in following years. Each line represents the patents granted in
a different year. The x-axis is the number of years since the patent was granted.
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Figure 8 -- Productivity Estimates and Patent/R&D Ratios

Productivity Estimates and Patent/R&D ratios:
Coal Technologies
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Lines in the figures show values of the productivity estimates, lagged one year, for the
technologies listed. The dots show patent-to-R&D ratios. Note that lagged values of the
productivity estimates provide a good explanation of changes in the patent-to-R&D ratio.

Figure continued on the next page.




Figure 8 -- Productivity Estimates and Patent/R&D Ratios

Productivity Estimates and Patent/R&D ratios:
Conservation Technologies
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Lines in the figures show values of the productivity estimates, lagged one year, for the
technologies listed. The dots show patent-to-R&D ratios. Note that lagged values of the
productivity estimates provide a good explanation of changes in the patent-to-R&D ratio.




Figure A1 -- How Research Affects the Distribution of Possible Outcomes
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The figure shows how the distribution of potential outcomes shifts outward as the number of
trials increases. The function illustrated is the exponential variate. It is:

Jn(z) = n(1-e"" e

Source: Evenson & Kislev (1975)



Figure B1- Patent Applications by U.S. Inventors
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Figure is continued on the next page.



Figure B1 -- Patent Applications by U.S. Inventors (continued)

Patents -- Privately Held U.S. Patents
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Table 1 -- Marginal Effects of an Additional Citation on the

Probability of Renewal
Data after eight years of a patent’s life

Technology Group A probability of renewal
Coal Gasification 0.059 *
Coal Liquefaction 0.042 ***
Continuous Casting 0.037 ***
Fuel Cells 0.015 ***
Heat Pumps 0.125 =~
Heat Exchange 0.031 =
Solar Batteries 0.033 ***
Solar Energy 0.019 *
Stirling Energy 0.045 *
Wind Power 0.023
Waste as Fuel 0.012 **
Waste Heat 0.046 ***
Mean 0.041
Median 0.035

*_ estimated coefficient is significant at the 10% level
= _ estimated coefficient is significant at the 5% level
=« _ astimated coefficient is significant at the 1% level
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