
1  

RECENTERED AND RESCALED INSTRUMENTAL 
VARIABLE ESTIMATION OF TOBIT AND PROBIT 

MODELS WITH ERRORS IN VARIABLES 
  
 

Shigeru Iwata 
 

Department of Economics  
University of Kansas  

Lawrence, KS 66045, U.S.A. 
 

Key Words and Phrases: instrumental variables; GMM estimator; nonlinear 
errors in variables; elliptically symmetric distribution. 
  
Journal of Economic Literature classification: C24, C25. 
 

ABSTRACT 
  

Since Durbin (1954) and Sargan (1958), instrumental variable (IV) 

method has long been one of the most popular procedures among economists and 

other social scientists to handle linear models with errors-in-variables. A direct 

application of this method to nonlinear errors-in-variables models, however, fails 

to yield consistent estimators. 

This article restricts attention to Tobit and Probit models and shows that 

simple recentering and rescaling of the observed dependent variable may restore 

consistency of the standard IV estimator if the true dependent variable and the 

IV's are jointly normally distributed. Although the required condition seems rarely 

to be satisfied by real data, our Monte Carlo experiment suggests that the proposed 

estimator may be quite robust to the possible deviation from normality. 



1  

 
1. INTRODUCTION 

 
It is widely known that when the explanatory variables are measured with 

errors the least square regression will yield an inconsistent estimator.   For linear 

models the instrumental variable method has provided an important solution to 

this problem.  However, in non-linear models with errors in variables, the 

instrumental variable method fails to provide a consistent estimator.   The 

importance of this problem has grown with the increasing use of non-linear 

models for economic analysis.  The purpose of this paper is to show that, for 

Probit, Tobit, and many other non-linear models, simple re-centering and re-

scaling of the observed dependent variable will restore consistency of the 

instrumental variable estimators, if the true dependent variable and the 

instrumental variables are jointly normally distributed.  Furthermore, under a 

more relaxed distributional assumption, the proposed instrumental variable 

estimator of the slope is shown to be consistent up to a multiplicative constant. 

 The errors-in-variables (EIV) literature has a long history.   Measurement 

errors result in a lack of orthogonality between regressors and regression equation 

disturbance terms and hence cause the least square estimator to be inconsistent.  In 

fact, in the presence of such errors the model is generally not identified without 

additional information and consistent estimation is not possible.  [Bekker (1986) 

provides a necessary and sufficient distributional condition for model identification].  

A major breakthrough in this literature came with the recognition of the importance 

of a postulated set of variables that are correlated with the true explanatory variables 

but uncorrelated with the regression equation errors.  It is now well known that the 

instrumental variable (IV) estimator that exploits this assumption is consistent 

[Durbin (1954), Sargan (1958), Leamer (1978), Carter and Fuller (1980), Anderson 

(1984), Fuller (1987, Ch.1.4 and 2.4), Iwata (1992a)].  
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Nonlinear models have recently become important for economic 

investigation and this has stimulated new interest in the problem of errors-in-

variables [Wolter and Fuller (1982), Carroll et al. (1982), Hausman et al. (1991), 

Hsiao (1989, 1991, 1992), Iwata (1992b)].   The IV estimation method simply does 

not work in nonlinear EIV models.  This observation is somewhat surprising because 

IV estimation does work in nonlinear simultaneous equations models.  Because of 

the similarity between the use of IV methods in linear EIV models and linear 

simultaneous equations models, we might expect a corresponding similarity between 

the use of IV methods in the two nonlinear models.   However, as Amemiya (1985) 

pointed out, there is a fundamental difference between EIV models and 

simultaneous equations models.  In EIV models the parameters to be estimated 

characterize the relationship between unobserved true variables, while in the 

simultaneous equations model they pertain to the relationship between observed 

variables. In linear regression models, measurement errors cause the regressors to be 

correlated with equation disturbances (observationally equivalent to endogeneity) 

but the regression coefficients correctly describe the true relationship. In nonlinear 

regression models, however, measurement errors are no longer additively separable 

from the true regressors, and hence, the true relationship breaks down with error in 

variables. As a result, the IV estimator fails to be consistent for nonlinear EIV 

models. 

Given the inherent inconsistency of the IV estimators in nonlinear models, 

the literature has proceeded under the assumption that the error variances shrink as 

the sample size increases. Along this line, the asymptotic behavior of the IV 

estimator has been analyzed [Wolter and Fuller (1982), Amemiya (1985), Stefanski 

and Carroll (1985) etc.] and the 'approximate consistency' of IV estimators has been 

investigated [Carroll and Stefanski (1990), Stefanski and Buzas (1995), Carroll et al. 

(1995)]. However, as Hsiao (1989) noted, the assumption of shrinking variances will 

not fit many econometric modeling situations. 
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 In this paper we take a different approach and show that, for a variety of 

nonlinear models, under certain distributional assumptions, the consistency of IV 

estimators can be restored by a simple re-centering and re-scaling of the of the 

observed dependent variable. 

The organization of the rest of the paper is as follows: the next section 

introduces the EIV Tobit and Probit models. Section 3 shows that re-centering and 

re-scaling the dependent variable yields a consistent IV estimator. In section 4, we 

relax the distributional assumption and examine the properties of the estimator. 

Section 5 conducts a Monte Carlo experiment to investigate the small sample 

behavior of the proposed estimator. Section 6 presents an application of the 

proposed estimation method to the female labor supply study. A brief conclusion is 

given in the final section. 
 

2. TOBIT AND PROBIT EIV MODELS 

 

Consider the linear regression model  

 

iii uy ++= 0
*

0
* 'βxα        ,,,1 ni !=                                                              (1) 

 

where *
iy  is the dependent variable, *

ix is a 1×k  vector of explanatory variables, 0α  

is a scalar, 0β  is a 1×k  vector of unknown parameters, and iu  is an unknown 

disturbance with mean zero and variance 2σ . Unlike in the standard case in which 

the observations on ),( **
iiy x are available, we assume here that neither *

iy  nor *
ix are 

directly observable. We observe instead iy  and ix , which are defined as  
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where τ stands for some known, possibly non-bijective, transformation, iv is a 1×k  

vector of measurement errors with mean zero and variance vvΣ , and xμ  is a vector 

of constants . The model given by (1)--(4) is general enough to cover the Tobit  and 

Probit models [the Tobit model corresponds to *** )0(1)( yyy ⋅>=τ , while the 

Probit model corresponds to )0(1)( ** >= yyτ ] as well as many familiar one-to-one 

transformations of the dependent variable. The error iv  is assumed to be correlated 

neither with *
ix  nor iu . We include (4) to make sure that we consider the 

“structural” (as opposed to “functional”) errors-in-variables models. We also assume 

the availability of an 1×m  vector ( km ≥ ) of instrumental variables (IV), iz , such 

that iz  is uncorrelated with iv and iu  but correlated with *
ix . Not all components of 

ix  need to contain measurement errors. If the j-th explanatory variable is error free, 

i.e. *
jiji xx =  and 0v =ji , then jix  is included in iz . We denote by 

VuXXyy ,,,,, ** , and Z , the matrices whose i-th row is equal to 

',,',',, **
iiiiii uyy vxx  and 'iz , respectively for ni ,,1 != . 

If we can observe ),( *
iiy x , (1) and (2) give the standard Tobit and Probit 

models. If we instead observe ),( *
iiy x , then (1) and (3) give the standard classical 

errors-in-variables regression model and it is well known that the IV estimator 

[commonly referred to the two stage least square (2SLS) estimator] 
*1 ')'(~ yPXXPXθ ZZIV

−≡  yields a consistent and optimal estimator of  

)'',( 000 βθ α= , where ')'(],,[],,[ 1 ZZZZPZ1ZX1X −=== Z and 1 denotes the 
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1×n  vector of 1's (Sargan 1958). When the observation is on ),( iiy x , the usual 

orthogonality condition is clearly violated, i.e., 0βxz ≠−− )]'([ 00 iii yE α  and 

hence, the standard IV estimator yPXXPXθ ZZIV ')'(~ 1−≡  is inconsistent. Since the 

IV estimator can be written as yXXXθ '~)~'~(~ 1−≡IV  where XPX Z=~ , it is equivalent 

to applying OLS with *X  replaced by X~  (hence the name 2SLS).  Maximizing the 

Tobit likelihood with this replacement, however, does not result in a consistent 

estimator of 0θ  either. As shown by Amemiya (1985), the IV estimation of the type 

described above fails, in general, to produce a consistent estimator. 

In the next section I shall provide a new IV approach that leads to a 

consistent estimator of 0θ in the model given by (1)--(4) under the assumption that 

*
iy and iz are jointly normally distributed. The idea is that, by re-centering and re-

scaling iy , the model may be expressed as a linear form to which the standard IV 

technique can apply. Before getting into the discussion, we summarize the first and 

second moments assumption as follows:  
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which implies that ),,( *
iiiy zx is distributed according to 
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3. RECENTERED AND RESCALED IV ESTIMATOR 

 

3.1 General model 

We now show that re-centering and re-scaling iy  yields a consistent IV 

estimator of  0θ . To motivate this procedure in a general framework, consider the 

linear projection of iy  on *
iy :  

 

)]([
)(

),(
)()|( **

*

*
*

* ii
i

ii
iii yEy

yVar
yyCov

yEyyE −+=  

 

which can be solved for *
iy  as  

 

)()]()|([
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*
*
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ii

i
i yEyEyyE
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yVar
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where )|(* xyE stands for the linear projection of  y on x. Replacing )|( *
* ii yyE  

with )|( *
ii yyE , the conditional expectation of  iy  given *

iy , and noticing 

iiiiii yyyyEyyE === )(]|)([)|( **** ττ , we obtain an ‘estimate’ of  *
iy  as  

 

)(~
2

1
1

* ψψ −= −
ii yy                                                                                          (7) 
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The *~
iy  is simply a recentered and rescaled iy  to mimic the *

iy  that is unobservable. 
A key idea here is that )|()|( **

* iiii yyEyyE −  is orthogonal to iz  when iz  and *
iy  

are jointly normal [which is a direct implication of the key relation 
),(),( *

1 iiii yzCovyzCov ψ= ]. The expression (7) still contains unobservable 1ψ and 

2ψ  but these are estimable for the Tobit and Probit models, as shown below. Denote 
any consistent estimators of 1ψ  and 2ψ  by 1ψ̂  and 2ψ̂ , respectively. Define 

)ˆ(ˆˆ 2
1

1
* ψψ −= −

ii yy  and let *ŷ  be an 1×n  vector with the i-th component equal to 
*ˆ iy . 

 
Proposition 1: Let *1 ˆ'ˆ')'ˆ'()''ˆ,ˆ(ˆ yZHZXXZHZXβθ −== α , where Ĥ is an mm×  
symmetric positive definite matrix. Then θ̂  is a consistent estimator of 0θ  in the 
model given by (1)--(4). 
 
 
Proof: Note first that 0yyZ =− )~ˆ(')/1(plim **n  implies 
 

ezzxxzzx HΣΣHΣΣθθ 1
0 )(ˆ plim −=−  

 
where HH =ˆ plim , 0

*~ θXye −= , 
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Consistency of estimator θ̂  then follows from 0Σ ez = . To show the latter claim, 
note that (Brillinger 1982)  
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which implies  
 

0zβxzz ==−−= ),()',(),( 00
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by the IV assumption. The claim follows by noting that  
 

0)(])([)'()~()( *
2

1
100

* =−−=+−= −
iiiii yEyEEyEeE ψψα βx .  

 
We refer to the above estimator θ̂  as the Recentered and Rescaled IV (or GMM) 

estimator (RR estimator, in short) of 0θ . To find the limiting distribution of β̂ , 

consider the case in which the true value of 1ψ  is known. Write the GMM estimator 

for the latter case as *1
10

~'ˆ')'ˆ'()(~ yZGZXXZGZXββ −=≡ ψGMM , which is 

distinguished from *1
10 ˆ'ˆ')'ˆ'()ˆ(ˆ yZGZXXZGZXββ −=≡ ψGMM , where 

H1ZHZ1Z11ZHHG ˆ)]'ˆ'/(''ˆ[ˆˆ 1 −= − . The limiting distribution of β~ follows from the 

standard result of GMM estimation (Hansen 1982), which is given by  
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with [ ]wzxzx ΣμΣ = , HHμμμμHHG zzzz )]'/('[ 1 −= −  and [ ]''zz μ1μ = . 

The limiting distribution of β̂  is then given by the following result. 

Proposition 2: Suppose  
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Then 

 

)~,()ˆ( 0 Σ0ββ Nn L→−  

 

where  

 

')/(/'/'~
00

2
1011100*10*0* βββσσβΣΣ ψσψψ +−−= .                                 (13) 

 

Proof: By Taylor's expansion,  
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It follows from  
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that  

 

)~,()ˆ()/()~()ˆ( 10110000 Σ0βββββ Nnnn L→−−−≈− ψψψ .         

The optimal GMM estimator is obtained by setting Ĥ  such that plim 1ˆ −= AH . For 

example, one may estimate A by ∑= 'ˆ)/1(ˆ 2
iiien zzA  where βx ˆ'ˆˆˆ *

iii ye −−= α  and 

set 1ˆˆ −= AH . Then we have  

 

))(,()ˆ( 1
0

* −→− xzzx BΣΣ0ββ Nn L , 
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where 11 )]'/('[ −− −= AAμμμμAAB zzzz . Propositions 1 and 2 cover the Tobit and 

Probit models as special cases. To discuss those specific cases, we denote 

00
22* ' βΣβ ww+= uy σσ , )/)(( **

yiyE σΦ=Φ , and )/)(( **
yiyE σφφ = , where )(⋅Φ  

and )(⋅φ  stand for the distribution function and the density function of a standard 

normal r.v. and βμ x ')( 0
* +=αiyE . 

 

3.2 Tobit model 

For the Tobit model, *** )0(1)( yyy ⋅≥=τ  and the rescaling and recentering 

parameters 1ψ  and 2ψ  are given by )(1 δψ Φ=  and )(*
2 δφσψ y= , where 

*
00 /)'( yσαδ βμ x+= . The estimators 1ψ̂  and 2ψ̂  are given by 

∑=
>=Φ= n

i iyn
11 )0(1)/1(ˆψ̂  and φσψ ˆˆˆ *

2 y=  where ))ˆ((ˆ 1 ΦΦ= −φφ  and 

∑=
−− Φ⋅ΦΦ+Φ−⋅ΦΦ−−Φ−= n

i iy yyn
1

1122* ]}ˆ)ˆ(ˆ)][ˆ1()ˆ(ˆ[ˆ/{)()/1(ˆ φφσ [see 

Greene (1981)]. Now we check Proposition 2 for the Tobit model. In this case, the 

covariance matrix (12) is given by  
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which implies that the limit distribution of  β̂  is given by  

 

)')]1([,()ˆ( 00*0 ββΣ0ββ Φ−Φ−→− Nn L                                            (14) 

 

where *Σ  is given in (11). If  1=Φ  or there is no censored observation, (14) 

implies that the covariance matrix of the limit distribution of β̂  reduces to 
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1
00

2 ))('( −+ xzzxvv GΣΣβΣβσ , the covariance matrix for the standard GMM 

estimator. The matrix *Σ  is estimated by  
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1

21
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where βx ˆ'ˆˆˆ *
iii ye −−= α . 

 

3.3 Probit model 

For the Probit model, )0(1)( ** ≥= yyτ . Note that  
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which implies that, by (8) and (9),  
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Since some normalization is required in any case to identify the Probit model, we set 

1* =yσ . Then 1ψ  and 2ψ  are consistently estimated by φψ ˆˆ1 =  and δφψ ˆˆˆˆ 2 −Φ= , 

where ∑==Φ iyny )/1(ˆ , )ˆ(ˆ 1 ΦΦ= −δ  and )ˆ(ˆ δφφ = . 

It is not difficult to find that the covariance matrix in (12) is given by  
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which implies  
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4. EXTENSION 

 

4.1 Errors in dependent variable 

On some occasions we encounter the situation in which not only the 

explanatory variables ix  but also the dependent variable iy  are measured with 

errors. Consider, for example, the Tobit model where the observation rule (2) is 

replaced by 

 



 >+

=
otherwise           0

0 if   **
iii

i
yy

y
η

                                                                             (15) 

 

where iη  is zero mean measurement errors. It is assumed that 0>iy  when 0* >iy , 

which is a reasonable assumption for wage data of married women, for example 

(Stapleton and Young, 1984). There are no measurement errors in classification 

between working and not-working women, but the reported wages for working 

women are likely to be mismeasured. 

The problem with the above Tobit model given by (1), (3), (4) and (15) is 

that, while 22*
ησσ +y  is consistently estimable, 2*

yσ  cannot be estimated separately. 
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As a result, the recentered rescaled IV estimator of β  is consistent up to a 

multiplicative constant. 

 

4.2 Non-normality case 

In many instances the multivariate normality assumption is too restrictive. In 

particular, it automatically rules out any discrete variables. A closer look at equation 

(10), however, reveals that what is needed for consistency of β̂  defined in 

Proposition 1 is only the linearity of the conditional expectation of z  given *y , or  

 

)]([)|( ***
iiii yEyyE −+= γμz z                                                                  (16) 

 

for some 1×m  vector γ  [Chung and Goldberger (1984)]. Under condition (16) 

together with finiteness and non-block-diagonality of the covariance matrix of 

),( ii zx , β̂  is still consistent up to a scale factor. A sufficient condition for (10) is 

that )',( *
iiy z  has an elliptically symmetric distribution, which may include either 

discrete or continuous distributions. 

 

5. MONTE CARLO SIMULATION 

 

A series of Monte Carlo simulations was conducted to see how successfully 

the proposed estimator removes bias in small samples. The simulations are based on 

the model given by (1)--(5) with 5.00 =α , 0.10 =β  and a scalar *
ix . The artificial 

data are generated from the multivariate normal distribution [cases (a)--(d) in Tables 

1 and 2]:  
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and the fraction p of the sample is then made censored or truncated, where r is the 

signal to noise ratio ( 22 / vw σσ ) and ρ  is the correlation between the true regressor 

and the IV. In our baseline model, we set 6.0=ρ , 5.1=r , and 30.0=p  with 

sample size 200=n . Variations from the baseline model are indexed by ρ , r, and p 

in Tables 1 and 2. Tables 1E and 2E report the case of non-normal regressors. In 

each case, 1,000 samples are generated, the (Tobit or Probit) maximum likelihood 

estimates (MLE), the simple IV estimates (IV), and the Recentered and Rescaled IV 

estimates (RR) are calculated for each sample, and the biases, standard errors, and 

the root mean squared errors are reported. 

The simulation results are summarized as follows: First, the MLEs suffer 

quite substantial bias in both the Tobit and Probit models, when the explanatory 

variables are measured with error. The bias of the estimated slope coefficient is more 

severe in the Tobit case (Tables 1a, 1b) than in the Probit case (Tables 2a, 2b). 

Second, the simple IV estimators partially remove measurement error bias in the 

Tobit case (Table 1a), while the bias gets even worse in the Probit case (Table 2a). 

Third, the Recentered and Rescaled IV estimator are quite successful in removing 

bias, especially in the Tobit case (Table 2a, 2b). Fourth, improvement by the RR 

estimators of the slope coefficient is quite uniform and consistent over the range of 

the parameters ρ , r, and p (Tables 1b, 1c, 1d and 2b, 2c, 2d). Furthermore, such bias 

reduction appears to be robust to certain types of deviation from normality of 

),( *
ii zx , i.e., when *

ix  and iz  are distributed as a t-distribution and a Chi-squared 

distribution (Tables 1e and 2e) and when z  consists of dummies indicating group 

membership (Tables 1f and 2f). 
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TABLE 1: Monte Carlo Comparison of Estimators for the Tobit Errors-in-
Variables Model 

 
(a) Different sample size when ρρρρ=0.6, r=1.5 and p=30%. 

 
               n=100                n=200                n=500  
bias se rmse bias se rmse bias se rmse 

MLE -0.579 0.059 0.582 -0.578 0.042 0.579 -0.581 0.026 0.582 
IV -0.283 0.165 0.327 -0.288 0.103 0.306 -0.296 0.066 0.303 
RR 0.026 0.239 0.241 0.019 0.153 0.154 0.007 0.098 0.098 

 
 

(b) Different percentage of censored when n=200, ρρρρ=0.6 and r=1.5. 
 

               p=15%                p=30%                p=50%  
bias se rmse bias se rmse bias se rmse 

MLE -0.488 0.046 0.490 -0.578 0.042 0.579 -0.698 0.038 0.699 
IV -0.137 0.115 0.179 -0.288 0.103 0.306 -0.490 0.086 0.498 
RR 0.017 0.138 0.139 0.019 0.153 0.154 0.022 0.179 0.180 

 
 

(c) Different values of ρρρρ when n=200, r=1.5 and p=30% 
 

               ρ=0.40                ρ=0.60                ρ=0.90  
bias se rmse bias se rmse bias se rmse 

MLE -0.578 0.042 0.579 -0.578 0.042 0.579 -0.578 0.042 0.579 
IV -0.274 0.168 0.321 -0.288 0.103 0.306 -0.295 0.068 0.303 
RR 0.039 0.244 0.248 0.019 0.153 0.154 0.011 0.104 0.105 

 
 

(d) Different signal-noise ratios when n=200, ρρρρ=0.6 and p=30% 
 

               r=1.00                r=1.50                r=2.00  
bias se rmse bias se rmse bias se rmse 

MLE -0.648 0.040 0.649 -0.578 0.042 0.579 -0.531 0.043 0.533 
IV -0.285 0.116 0.307 -0.288 0.103 0.306 -0.289 0.097 0.305 
RR 0.024 0.170 0.172 0.019 0.153 0.154 0.017 0.143 0.144 
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TABLE 1: (continued) 
 

(e) Non-normal distributions of w and z when ρρρρ=0.6 and r=1.5 
 

t(5) 
n=200 n=500 

 

bias se rmse bias se rmse 
MLE -0.592 0.055 0.595 -0.594 0.037 0.595 
IV -0.307 0.118 0.329 -0.318 0.078 0.327 
RR -0.029 0.169 0.172 -0.045 0.110 0.119 

 
2χ (10) 

n=200 n=500 

 

bias se rmse bias se rmse 
MLE -0.541 0.061 0.545 -0.542 0.036 0.543 
IV -0.208 0.233 0.312 -0.228 0.131 0.263 
RR 0.197 0.364 0.414 0.164 0.202 0.261 

 
 

(f) Dummy IV when n=500, ρρρρ=0.6, r=1.5 and p=30% 
 

Dummy (h=4) Dummy (h=6) Dummy (h=8)  
bias se rmse bias se rmse bias se rmse 

MLE -0.581 0.026 0.582 -0.581 0.026 0.582 -0.581 0.026 0.582 
IV -0.301 0.075 0.310 -0.308 0.071 0.316 -0.312 0.068 0.320 
RR -0.017 0.116 0.117 -0.027 0.111 0.114 -0.034 0.107 0.112 

 
Notes: 
(1) The data are generated by 

iii uxy ++= ** βα  where  5.0=α  and  β = 10.  

)0(1 * >= ii yy ,  iii vxx += *  ,  ixi wx += µ* , where 0.1=xµ  

the variance-covariance matrix of ( , , , )u v w zi i i i is given in equation (17) of the text. 
(2) “ρ” stands for the correlation between w and z, “p” the percentage of truncation, “n”  the sample size, 

“r”  the signal-noise ratio= var(w)/var(v), and “h” the number of groups in the categorical IV. 
(3) “bias”, “se”, and “rmse” stand for the bias, the standard error, and the root mean square error of each 

estimates, respectively.  
(4) Non-normal w and z in (e) are generated from a bivariate Student t-distribution in case of t(5), and a 

bivariate Wishart distribution in case of χ 2 (10), after adjusted for having the first and second moments 
given in (17). Unlike other cases, the percentage of censoring or truncation is not necessarily 30% in (e). 

(5) Dummy IV case (f) is based on the baseline simulation model (with n=500, ρ=0.6, r=1.5, and p=30%) 
with z replaced by a h×1 vector of dummy variables z~ . The latter is created as follows: First, the real 
line (the support of z) is partitioned into h intervals. “h” stands for the number of the intervals.  The 
partition is given by (-∞, -1.5, 0, 1.5, ∞) for h=4, (-∞, -2.0, -1.0, 0, 1.0, 2.0, ∞) for h=6, and (-∞, -2.1, -
1.4, -0.7, 0, 0.7, 1.5, ∞) for h=8. Second, z~  is obtained by setting its j-th element equal to unity and all 
other elements equal to zeroes when z falls into the j-th interval. The actual correlation in each case is 
not necessarily equal to 0.6.  
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TABLE 2: Monte Carlo Comparison of Estimators for the Probit Errors-in-
Variables Model 

 
(a) Different sample size when ρρρρ=0.6, r=1.5 and p=30%. 

 
               n=100                n=200                n=500  
bias se rmse bias se rmse bias se rmse 

MLE -0.333 0.160 0.370 -0.358 0.105 0.373 -0.364 0.064 0.370 
IV -0.710 0.076 0.714 -0.713 0.048 0.715 -0.714 0.033 0.715 
RR -0.156 0.217 0.270 -0.171 0.134 0.217 -0.176 0.091 0.198 

 
 

(b) Different percentage of censored when n=200, ρρρρ=0.6 and r=1.5. 
 

               p=15%                p=30%                p=50%  
bias se rmse bias se rmse bias se rmse 

MLE -0.354 0.128 0.376 -0.358 0.105 0.373 -0.353 0.101 0.367 
IV -0.809 0.043 0.810 -0.713 0.048 0.715 -0.669 0.053 0.671 
RR -0.177 0.167 0.243 -0.171 0.134 0.217 -0.167 0.132 0.213 

 
 

(c) Different values of ρρρρ when n=200, r=1.5 and p=30% 
 

               ρ=0.40                ρ=0.60                ρ=0.90  
bias se rmse bias se rmse bias se rmse 

MLE -0.356 0.107 0.371 -0.358 0.105 0.373 -0.358 0.102 0.372 
IV -0.711 0.080 0.715 -0.713 0.048 0.715 -0.715 0.030 0.715 
RR -0.163 0.226 0.279 -0.171 0.134 0.217 -0.178 0.078 0.194 

 
 

(d) Different signal-noise ratios when n=200, ρρρρ=0.6 and p=30% 
 

               r=1.00                r=1.50                r=2.00  
bias se rmse bias se rmse bias se rmse 

MLE -0.493 0.089 0.501 -0.358 0.105 0.373 -0.258 0.117 0.283 
IV -0.712 0.053 0.714 -0.713 0.048 0.715 -0.714 0.045 0.715 
RR -0.167 0.147 0.223 -0.171 0.134 0.217 -0.172 0.127 0.214 
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TABLE 2: (continued) 
 
 

(e) Non-normal distributions of w and z when ρρρρ=0.6 and r=1.5 
 

t(5) 
n=200 n=500 

 

bias se rmse bias se rmse 
MLE -0.410 0.104 0.423 -0.417 0.062 0.422 

IV -0.737 0.054 0.739 -0.741 0.034 0.742 
RR -0.221 0.155 0.270 -0.236 0.101 0.257 

 
2χ (10) 

n=200 n=500 

 

bias se rmse bias se rmse 
MLE -0.535 0.087 0.542 -0.541 0.054 0.544 

IV -0.765 0.109 0.772 -0.770 0.056 0.772 
RR -0.353 0.296 0.461 -0.370 0.151 0.399 

 
 

(f) Dummy IV when n=500, ρρρρ=0.6, r=1.5 and p=30% 
 

 
 

Notes: See the notes of TABLE 1. 
 
  
 

In summary, the RR estimator is proved to be very effective in reducing bias 

of the estimated slope coefficient caused by measurement errors in the regressors. 

 

6. EXAMPLE 

 

In this section we apply the estimation procedure developed in the previous 

sections to a simple model of the labor supply behavior of married women. There 

Dummy (h=4) Dummy (h=6) Dummy (h=8)  
bias se rmse bias se rmse bias se rmse 

MLE -0.364 0.064 0.370 -0.364 0.064 0.370 -0.364 0.064 0.370 
IV -0.716 0.036 0.717 -0.719 0.034 0.720 -0.721 0.033 0.722 
RR -0.203 0.109 0.231 -0.208 0.101 0.232 -0.215 0.101 0.237 
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have been extensive studies by economists on this subject in the 1970s and early 

1980s [see Killingsworth (1983) for a comprehensive survey]. Here we take up the 

estimation problem of women's labor force participation decisions. A simplified 

version of the model postulates that the i-th woman works if and only if her market 

wage iW  is higher than or equal to her reservation wage r
iW  where the latter is 

defined as the minimum level of wage at which she is willing to work. Of course the 

market wage is observed only when the woman works, while the reservation wage is 

not directly observable in any case. We can, however, relate these wages to the 

observable variables via  

 

 
ii

r
i

iii

uW
uW

222

111

'

'

+=

+=

θx
θx

 

 

where ]',[ jiji x1x =  for 2,1=j , 1θ  and 2θ  are vectors of unknown parameters and 

1u  and 2u  are disturbances. The components of 1x  are the variables included in the 

standard wage generating equation such as age, education, and experience, while 2x  

includes variables such as the number of children and the family income other than 

the wife's, as well as age and education. The woman's labor force participation 

decision is, therefore, described as follows: the i-th woman works if  

 

 βxθx '' **
iii

r
ii uWW −−=−>⇔> α  

 

where iii uuu 21 −=  and 2211
* ''' θxθxθx iii −= . Assuming the joint normality of the 

distributions of 1u  and 2u  leads to the standard Probit likelihood 

ii y
i

y
iL −Φ−Φ= 1)1(),( σθ  where )/)'(( * σα βx ii +Φ=Φ , σ  is the standard 

deviation of iu  (usually set equal to unity for normalization), and iy  is the labor 
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force participation variable ( 1=iy  if the i-th woman works and 0=iy  otherwise). 

The model can also be described in a latent variable model form as (1) and  

)0(1 * >= ii yy . Our problem is to estimate α  and β  when some of the variables in 

*
ix  are mismeasured in the manner given in (3). 

The data used here contain 753 observations on married white women aged 

30 to 60, extracted from the 1975 Panel Study of Income Dynamics data (Mroz 

1987). Table 3 provides definitions and simple descriptive statistics for the variables 

used. Table 4 reports the estimation results. For comparison purpose, we first present 

three sets of estimates in columns 2 to 4, ignoring any measurement errors in ix . 

They are (i) ordinary least squares (‘OLS’) which regresses y on x directly, (ii) the 

recentered and rescaled version of OLS (‘RROLS’), and (iii) the Probit maximum 

likelihood estimates (‘MLE’). RROLS uses xz =  as instruments. It is observed that 

RROLS is much closer to MLE than OLS is despite the apparent actual deviation 

from the normality assumption of the explanatory variables. The last two columns 

assume that the education variable contains measurement errors and report the 

instrumental variables estimate (‘IV’) and the recentered and rescaled generalized 

method of moments estimate (‘RRGMM’) given in Proposition 1 with 1ˆˆ −= AH . 

Both estimates use the education variables of the woman's mother and father as 

instruments. The latter two variables might also be measured with errors but can still 

serve as instruments as long as those errors are uncorrelated with hers. The absolute 

values of the estimated coefficients are found, except for the intercept, to be all 

larger with RRGMM than with IV. This is the same pattern as is displayed between 

OLS and RROLS. Comparison of RRGMM with RROLS or MLE leads to the 

conclusion that the positive effect of a woman's education on her working decision 

might be smaller than that which is estimated when measurement errors in education 

variables are not considered.  
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TABLE 3: List of Variables for Married Women Data 
 
 

variable description mean std max min 
LFP Labor force participation (1 if 

woman works, and 0 otherwise) 
0.568 0.496 1 0 

Age Woman’s age 42.5 8.07 60 30 
Education Woman’s years of schooling 12.3 2.28 17 5 
Kids under 6 Number of children of age lower 

than 6 years 
0.238 0.524 3 0 

Kids 6-18 Number of children of age between 
6 and 18 

1.35 1.32 8 0 

Mother Ed Years of schooling of woman’s 
mother 

9.3 3.37 17 0 

Father Ed Years of schooling of woman’s 
father 

8.8 3.57 17 0 

 
Notes: The labels “mean,” “std,” “max” and “min” stand for, respectively, the mean, standard 
deviation, maximum, and minimum values of observation for each variable. 
 
 

TABLE 4: Estimation of Woman’s Labor Force Participation 
 
 

 OLS RROLS MLE IV RRGGM 
Constant 0.712 

(0.155) 
0.539 

(0.395) 
0.624 

(0.465) 
0.869 

(0.248) 
0.942 

(0.633) 
Age -0.013 

(0.002) 
-0.034 
(0.006) 

-0.038 
(0.007) 

-0.014 
(0.002) 

-0.035 
(0.006) 

Education 0.042 
(0.007) 

0.107 
(0.018) 

0.120 
(0.022) 

0.031 
(0.015) 

0.078 
(0.039) 

Kids under 6 -0.307 
(0.033) 

-0.783 
(0.083) 

-0.886 
(0.113) 

-0.304 
(0.033) 

-0.774 
(0.084) 

Kids 6-18 -0.018 
(0.014) 

-0.045 
(0.036) 

-0.056 
(0.040) 

-0.020 
(0.014) 

-0.049 
(0.036) 

 
Notes: The figures in parentheses are the heteroskedasticity consistent standard errors (Eicker 
1963, White 1980). 

 

7. CONCLUSION 

 

This article provides a recentered and rescaled instrumental variable 

estimation procedure for the errors-in-variables Tobit and Probit models that 

guarantees consistency when the true dependent variable and IV's are jointly normal. 
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Our Monte Carlo experiment seems to suggest that the proposed estimator is very 

effective in reducing bias of parameter estimates in small samples under normality 

and is quite robust to certain types of deviation from normality. If this is generally 

the case, its simplicity and ease of construction makes the proposed estimator 

practically useful for quick and preliminary investigations of Tobit and Probit 

models involving errors in variables. 
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